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In this paper the global patterns that result from local interactions between players on a two-
dimensional lattice are studied. The assumptions on interaction between players are based on
the Prisoner’s Dilemma game that has been used extensively in game theory and in the study
of biological systems. Each player is located on a square lattice, and is assumed to cooperate
or defect, based on mimicking the neighbor with the highest cumulative score from the preced-
ing round of play. The edges of the lattice are glued to form a torus. Computer simulations
are conducted for different sized lattices, different payoff values, and different initial conditions.
Though the paper is primarily concerned with player behavior without self-interaction, some
results with self-interaction are also included. The influence of “ideal” cooperators on the evo-
lution of the system dynamics is also studied. Three generic regimes of behavior are identified.
Complex global patterns with complicated dynamics and sometimes unpredictable results occur.
Steady-state solutions, simple and complex periodic solutions, and traveling waves are observed
depending on the initial conditions and the payoff values.

Keywords : Prisoner’s Dilemma; game theory; bifurcation; cooperator; defector.

1. Introduction

The notion of the importance of patterns is perhaps
as old as civilization itself. Every art is founded on
the study of pattern. The cohesion of social systems
depends on the maintenance of patterns of behav-
ior, and advances in civilization often depend on the
modifications of such behavioral patterns. And yet
these global patterns of behavior in a system emerge
from the myriads of local interactions that occur
among its participants. Most of these local interac-
tions are nonlinear, and such analyses have, for the
most part, been beyond the scope of the available
analytical tools of mathematics. It is only with the
advent of the computer that we have begun to in-
vestigate the emergence of these global patterns and
their dependence on local interactions. This paper
is a contribution towards this investigation.

Most modern societies are governed by mores,
codes of conduct and laws. The peaceful coexistence
of individuals usually requires that they be consid-
erate of each other and desist from taking undue
advantage of each other, through, say, participa-
tion in criminal, illegal or unacceptable behavior.
Consider the example of a single criminal in a com-
munity. Suppose b is a dimensionless parameter that
represents the perceived gain (profit) derived from
engaging in criminal activity, taking into consider-
ation factors like, the probability of being detected,
possible magnitude of punishment, etc. If the crim-
inal exploits his neighbors and makes a large profit,
will he spark a crime wave with other people fol-
lowing in his footsteps? Does the percentage of
people who follow in his footsteps over the long
haul necessarily increase as the gains, b, from such
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criminal activity keep increasing? If a crime wave
is initiated, how will it travel through the com-
munity? Will a steady-state, periodic, or chaotic
crime-dynamic develop? Would the presence of a
few “upright” individuals who cannot be swayed
by profit cause criminal behavior to be curbed in a
community?

Questions similar to these can also be raised
in an ecological context about the competitive be-
havior of two species of animals that cohabit a
given tract of land; or, about the proliferation of
terrorist cells in a community where the “gain”
from such malevolent behavior is measured by the
disruption/fear that can be caused in a politi-
cally polarized environment. All one needs do is re-
place the word “criminal” with “terrorist” in the
afore-mentioned set of questions in the previous
paragraph.

Can the dynamics of such a complicated sys-
tem be mathematically modeled and predicted? Is
it possible to stimulate (control) such a dynamical
system so that it achieves a stable, desired state?
These are some of the questions that have motivated
this study. To begin developing insight into this
type of problem, we choose to explore the nonlin-
ear dynamical response of a two-dimensional Pris-
oner’s Dilemma game, similar to the one proposed
by Nowak et al. [Nowak & May, 1992; Nowak et al.,
1993, 1994a, 1994b, 1995a, 1995b]. Some of the es-
sential aspects of such a nonlinear dynamic system
are determination of the absorbing sets, the tran-
sient behavior towards the absorbing sets, and their
dependence on the number of players in the lattice.

While the majority of the more recent studies
of the iterated Prisoner’s Dilemma appear focused
on biological systems, our interest is on the appli-
cation of the iterated Prisoner’s Dilemma to the
social, political and economic structures of human
civilization. The success of human society depends
on a high level of voluntary, and sometimes forced,
cooperation. Crime rates rise and fall; the economy
has good times and bad times; political agendas
shift; businesses merge, and then split. One possible
way of modeling these expanding and contracting
patterns of “cooperation” and “defection” may be
the iterated Prisoner’s Dilemma type of game.

The paradox of the Prisoner’s Dilemma em-
bodies the struggle between cooperation and ex-
ploitation. Though known to the ancient Greeks,
the Prisoner’s Dilemma was precisely formulated
in the 1950s, and in its classical form refers to

two prisoners involved in a crime, and the decision
each must make to either cooperate with the other
or to defect by cooperating with the authorities
[Nowak et al., 1995a, 1995b]. Neither player knows
in advance what the other will do, and the severity
of the punishment depends on their decision.

Traditionally, the Prisoner’s Dilemma has been
viewed as an iterated game between two players. If
both players cooperate then each gets a reward, R,
for mutual cooperation. If both players defect then
each gets a punishment, P , for mutual defection.
If one player defects and the other cooperates, the
gain for defection, T , is awarded to the defector, and
the payoff, S, is awarded to the cooperator [Axelrod,
1984]. The total score for each player is the cumula-
tive score from each round. With T > R > P > S,
the best strategy for each player in any given round
is to defect. This leads to the gain T if playing
against someone who cooperates, and P if play-
ing against someone who defects. Alternatively, the
strategy of cooperating will at best lead to award R
if playing someone who also cooperates, but will re-
sult in the payoff S if playing someone who defects.
See Fig. 1. The dilemma exists because the strat-
egy of defecting is unbeatable relative to your oppo-
nent’s score, but when both players think this way
and therefore defect, then each receives less than
they would have, had each player cooperated.

The Prisoner’s Dilemma game has been stud-
ied extensively in the context of cooperation theory.
Computer tournaments have been conducted to
determine the best strategy for success in the iter-
ated Prisoner’s Dilemma. One of the simplest and
most successful strategies was Tit For Tat (TFT),
whereby the player starts out cooperating, and sub-
sequently does what the opponent did on the pre-
vious move [Axelrod, 1984]. Because the strategy
depends only on the opponents move in the previous
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Fig. 1. Payoff matrix for the Prisoner’s Dilemma game.
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round, this is a “memory-1 strategy.” Variations of
TFT, such as Generous Tit For Tat (GTFT) and
“Pavlov” have also been shown to be very success-
ful. GTFT players generally copy their opponent’s
last move, but occasionally cooperate after their op-
ponent defects. “Pavlov”, also known as “win-stay,
lose-shift,” is a memory-2 strategy that depends on
both players previous move [Milinski & Wedekind,
1998].

More complicated strategies, and variations
to the iterated Prisoner’s Dilemma, have been
proposed in an effort to more accurately model
different systems. These strategies have included
extended memory of previous encounters, and com-
plex algorithms to try and anticipate the opponent’s
next move. A memory-4 strategy with random mu-
tations has been proposed as a model of primate
behavior [Key & Aiello, 2000]. Spatial mobility of
various types of players has been included in some
models [Ferriere & Michod, 1995; Hutson & Vickers,
1995]. If the payoff for each encounter is allowed
to be variable, then a strategy of “raise-the-stakes”
offers insight into the development of cooperation
[Roberts & Sheratt, 1998].

Rather than the traditional game between two
players, our model consists of a two-dimensional
square lattice of stationary players with dimensions
n × n. The edges of the lattice wrap around in the
shape of a torus, forming periodic boundary condi-
tions so that the players form a “closed community.”
Each player competes against each of his eight im-
mediate neighbors during each round of the game.
At the end of each round of play, each player sums
up his gains from having played against his eight im-
mediate neighbors on the lattice. Gains are defined
as T = b, R = 1, and S = P = 0, thus preserving
the essential paradox in the Prisoner’s Dilemma,
while simplifying the computations and the under-
standing. Further, we assume a “follow the leader”
type strategy wherein each player chooses to either
cooperate or defect by following the strategy of the
neighbor with the maximum gain from the previous
round. While this assumption may appear an over-
simplification, some experimental data has shown
that human beings tend to choose such strate-
gies while playing the Prisoner’s Dilemma game
[Milinski & Wedekind, 1998; Wedekind & Milinski,
1996], thus this simplification may perhaps not be
too unrealistic.

Nowak et al. [Nowak & May, 1992; Nowak
et al., 1993, 1994a, 1994b, 1995a, 1995b] have re-
ported results from a similarly formulated iterated

Prisoner’s Dilemma game. Their work considered
both fixed and periodic boundary conditions, but
focused primarily on situations in which each player
plays with his immediate neighbors and with him-
self. Thus their results mainly concern games with

self-interaction.

2. Global Behavior from Local

Interactions

Since one of our motivations is the need to
understand the system dynamics engendered by
criminal/social behavior, in this paper we con-
cern ourselves primarily with games without self-
interaction. We also provide in-depth results on
the detailed transient dynamics, and give a use-
ful categorization of the global dynamics into three
regimes of behavior. There are several different
specific aspects of this problem that we report on:

(a) analytical determination of the possible bifur-
cation points of the dynamical response;

(b) study of the dynamic response versus the pa-
rameter b for the simple “initial condition” of a
single defector in the center of a square lattice;

(c) effects on the dynamical response of increasing
the lattice size;

(d) sensitivity of the dynamics to small variations
in the initial conditions of symmetrically placed
initial defectors;

(e) characterization of the system dynamics when
the initial condition is a random distribution of
initial defectors;

(f) consideration of self-interaction, solely for com-
parison purposes, when starting from random
initial distributions of defectors;

(g) influence of including ideal cooperators — in-
dividuals who will not defect no matter what
their gains — on the global patterns; and,

(h) discussion on the use of periodicities and per-
centages of defectors as metrics for understand-
ing the global dynamics.

The type of model studied in this paper is also
relevant to ecological dynamics [Dieckmann et al.,
2000]. It can be viewed as an extension of the so-
called “lattice gas models” in physics and engineer-
ing [Doolen, 1991] in which particle interactions are
modeled to occur on a lattice or regular grid, and
the laws of interaction now go beyond the usual
physical laws of mass, momentum and energy bal-
ance. For example, a simplified game where the
players are updated in random sequence and have
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a chance to adopt the neighboring strategies with a
probability depending on the payoff has been inves-
tigated [Szabo & Toke, 1998]. A tit-for-tat strategy
[Szabo et al., 2000] can be included in addition to
cooperation and defection. While most studies of
this kind simply report computational results, the
in-depth analysis performed here allows us to cate-
gorize and understand the qualitative behavior be-
hind the generation of the multitude of dynamical
behaviors exhibited.

In what follows, for convenience of representa-
tion, players are plotted in different colors to in-
dicate their previous and next decisions, either to
cooperate or to defect. A blue player cooperated
on the previous game, and cooperates again in the
next. A red player defected on the previous game,
and defects again in the next game. A green player
defected on the previous game, but cooperates in
the next game. A yellow player cooperated on the
previous game, but defects in the next game. Ideal
cooperators are shown in magenta colored asterisks.

(a) Analytical determination of the possible bifur-
cation points of the dynamical response.

The qualitative nature of the system dynamics de-
pends on the value of the parameter b — the gains
of defection. The value of b where the qualitative
dynamics changes is defined as a bifurcation point.
Because of the deterministic nature of this iterated
Prisoner’s Dilemma game, a finite number of dis-
crete bifurcation points exist. The possible bifurca-
tion points may be calculated by considering the
total possible payoffs to a cooperator, and to a de-
fector, as indicated below in Table 1. A cooperator
will score 1 point from each neighboring cooperator
and 0 points from each neighboring defector, thus
his total score from any given round may range from
0 points to 8 points (excluding self-interaction). A
defector will score b points from each neighboring
cooperator and 0 points from each neighboring de-
fector, thus his total score from any given round
will be a multiple of b, ranging from 0 to 8b. Thus,
bifurcation points may occur when the score of a co-
operator exactly matches that of a defector. In the
course of our numerical simulations, we found that
bifurcation points often coincide with asymmetric

expansion or contraction of clusters of defectors and
cooperators, when starting with a single initial de-
fector. The bifurcation points given in Table 1 were
validated by methodically varying the value of the
payoff parameter, b, during the numerical simula-
tions we conducted. Bifurcation values of b less than

Table 1. Possible discrete values of bifurcation points for
games played without self-interaction. Values less than 1.0
are of little importance for our study because with no incen-
tive to defect, players will generally cooperate.
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1.0 are of little importance for our purposes, as this
implies that the payoff (gain) for defecting is less
than the payoff for cooperating. With no incentive
to defect, players will generally cooperate.

(b) Study of the dynamic response versus the
parameter b for the simple “initial condition” of a
single defector in the center of a square lattice.

The dynamic response is determined as a function
of the value of the payoff parameter, b, for the
case of a single initial defector in the center of a
29 × 29 square lattice without self-interaction, and
with periodic boundary conditions. Through me-
thodical simulations, it is determined that bifur-
cation of the dynamic patterns occur at b values
of 7/8, 1, 6/5, 7/5, 8/5, 5/3, 7/4, 2 and 8/3. The
different dynamical regions consist of 1-period, 2-
period and 3-period solutions. Specific results for
each dynamical region are detailed in Table 2 and
Figs. 2 and 3. The regions are lettered A through J
for convenience.

A critical bifurcation point exists at b = 8/5.
Below b = 8/5, only the immediate neighborhood of
the initial defector is influenced and changes states.
Above b = 8/5, the region of defectors expands
beyond the immediate neighborhood of the initial
defector. The dynamics for 8/5 < b < 5/3 (region
F) are particularly interesting because clusters of
defectors and clusters of cooperators dynamically
expand, collide and collapse. Numerous games are
usually required to reach the attracting state within
this region.

(c) The effects on the dynamical response of increas-
ing the lattice size.

The effects on the bifurcation points, spatial
pattern, and transient dynamics, of increasing the
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Table 2. Dynamical regions for a square lattices with dimensions n = 19, 20, 29 and 59, where the initial condition is a
single defector in the center, there are periodic boundary conditions, and there is no self-interaction. Three distinct regions
occur. For b < 8/5 (regions A through E), the dynamic response is localized about the initial defector and may be periodic or
steady-state. The percentage of defectors in the absorbing state remains less than 2.5%. Region F (8/5 < b < 5/3) is a much
more dynamically active region with expanding and contracting areas of cooperators and defectors, that ultimately results
in a steady-state solution. For b > 5/3 (regions G through J), the region of defectors expands to wrap around the torus,
and then quickly converges to a steady-state solution. Values denoted with an asterisks (∗) indicate the number of games
completed when the first pattern in a periodic solution is formed.

Games to
Dynamic Lattice Attracting % Defectors in

Region Range Size State Attracting State(s) Description of System Dynamics

A b < 7/8 19 1 0.00 The initial defector turns cooperator after the
first game. The final state is all cooperators.20 1 0.00

29 1 0.00
59 1 0.00

B 7/8 < b < 1 19 0 0.28 The initial defector remains as the steady-
state 1-period solution. None of the players
change states.

20 0 0.25
29 0 0.12
59 0 0.03

C 1 < b < 6/5 19 1∗ 2.49, 0.28 The immediate neighbors of the initial defec-
tor form a 2-period solution. One resulting
pattern of the 2-period solution is a 3 × 3
cluster of defectors, and the other is a single
defector.

20 1∗ 2.25, 0.25
29 1∗ 1.07, 0.12
59 1∗ 0.26, 0.03

D 6/5 < b < 7/5 19 1∗ 2.49, 1.39, 0.28 The immediate neighbors of the initial de-
fector form a 3-period solution. The spatial
patterns are: a 3 × 3 cluster of defectors; a
cross-shaped pattern of defectors; and a sin-
gle defector.

20 1∗ 2.25, 1.25, 0.25
29 1∗ 1.07, 0.59, 0.12
59 1∗ 0.26, 0.14, 0.03

E 7/5 < b < 8/5 19 1 2.49 The immediate neighbors of the initial defec-
tor form a 3× 3 cluster of defectors, which is
the 1-period steady state solution.

20 1 2.25
29 1 1.07
59 1 0.26

2
5
5
9
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Table 2. (Continued )

Games to
Dynamic Lattice Attracting % Defectors in

Region Range Size State Attracting State(s) Description of System Dynamics

F 8/5 < b < 5/3 19 24 100.00 Clusters of defectors and cooperators expand,
collide, and contract. Eventually, the attract-
ing state is 100% defectors.

20 25 100.00
29 111 100.00
59 2437 100.00

G 5/3 < b < 7/4 19 9 77.84 The majority of the players eventually defect,
leaving only isolated steady-state clusters of
cooperators. The percentage of defectors in
the attracting state increases as the lattice
size increases.

20 9 85
29 14 87.16
59 32 89.09

H 7/4 < b < 2 19 10 44.60 The region of defectors expands in an ‘X’
shaped pattern. The attracting state is an ‘X’
shaped steady-state solution. The percentage
of defectors in the attracting state decreases
as the lattice size decreases.

20 10 41.50
29 14 30.08
59 29 14.74

I 2 < b < 8/3 19 9 100.00 The majority of the players eventually defect,
leaving only isolated steady-state clusters of
cooperators. The percentage of defectors in
the attracting state does not follow a consis-
tent pattern as in other regions.

20 9 83.50
29 16 94.29
59 33 91.38

J 8/3 < b 19 9 100.00 The cluster of defectors grows as a square
wave front, until all the players are defectors.20 9 100.00

29 14 100.00
59 29 100.00

2
5
6
0
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lattice size is studied for the case of a single defec-
tor in the center of a square lattice without self-
interaction and with periodic boundary conditions.
Square lattices with dimensions n = 19, 20, 29 and
59 are studied. With these conditions, the bifurca-
tion points of the payoff parameter, b, are indepen-
dent of lattice size. While specific spatial patterns
generally vary with lattice size, the qualitative na-
ture of the spatial patterns within a specific range
of b values are similar regardless of the lattice size.
One indicator of the specific spatial patterns is the
percentage of defectors in the attracting state. The
percentage of defectors in the attracting states gen-
erally varies only slightly as the size of the lattice
changes. It is the transient dynamics of the spa-
tial evolution that appears to be most affected by
changes in lattice size. One indicator of this is the
number of games required to reach an attracting
state. See Table 2.

Three interesting dynamical regions emerge.
For b < 8/5 (regions A, B, C, D and E), the local
spatial patterns and the number of games required
to reach an attracting state are independent of lat-
tice size because only the immediate neighbors of
the initial defector are influenced and change states.
For 8/5 < b < 5/3 (region F), the spatial pattern
always contains expanding and contracting clusters
of cooperators and defectors, but the specific spatial
patterns that emerge are very different and depend
on the size of the lattice.

The number of games required to reach the at-
tracting state increases very rapidly with the size
of the lattice. For the lattice sizes evaluated, the
attracting state in region F is always 100% defec-
tors when the initial condition is a single defector
at the center. For b > 5/3 (regions G, H, I, J), the
attracting state is a steady state solution, and the
number of games required to reach the attracting
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Figure 2.  Results of games 1-4 for dynamical regions between b = 1 and 8/5 for an initial single defector in the 

center of a 29 x 29 lattice with no self-interaction and with periodic boundary conditions.  A 2-period solution 

exists in Region C; a 3-period solution in Region D; and a 1-period solution in region E.  Regions A and B are 

not shown as nothing particularly interesting occurs within these regions (see Table 2). 
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Fig. 2. Results of games 1–4 for dynamical regions between b = 1 and 8/5 for an initial single defector at the center of a 29×29
lattice with no self-interaction and with periodic boundary conditions. A two-period solution exists in region C; a three-period
solution in region D; and a one-period solution in region E. Regions A and B are not shown, as nothing particularly interesting
occurs within these regions (see Table 2).
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state increases linearly with the size of the lattice.
See Table 2, and Figs. 4 and 5 for details.

(d) Sensitivity of the dynamics to small variations in
the initial conditions of symmetrically placed initial
defectors.

Sensitivity to initial conditions is studied by making
small changes to simple, symmetrical initial condi-
tions of a 29 × 29 lattice with periodic boundary
conditions and without self-interaction. The follow-
ing initial conditions are considered:

A. A single defector in the center (denoted by
“D”);

B. Two adjacent defectors near the center
(denoted by “DD”);

C. Two defectors with a single cooperator between
them (denoted by “DCD”);

D. Two defectors with two adjacent cooperators
between them (denoted by “DCCD”);

E. Two defectors separated by three cooperators
(denoted by DCCCD);

F. Two defectors separated by four cooperators
(denoted by DCCCCD);

G. Two defectors separated by five cooperators
(denoted by DCCCCCD);

H. Three defectors in a triangle, separated ver-
tically and horizontally by a single defector
(denoted by D/C/DCD).

The spatial dynamics within each dynamic region,
especially the periodicity of the attracting state,
appears to be very sensitive to the initial con-
ditions. 1-period, 2-period and 3-period solutions
are common for b < 8/5. The region with 8/5 <
b < 5/3 also shows other higher period solutions,
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Figure 2.  Results of games 1-4 for dynamical regions between b = 1 and 8/5 for an initial single defector in the 

center of a 29 x 29 lattice with no self-interaction and with periodic boundary conditions.  A 2-period solution 

exists in Region C; a 3-period solution in Region D; and a 1-period solution in region E.  Regions A and B are 

not shown as nothing particularly interesting occurs within these regions (see Table 2). 
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Fig. 3. Results of games 1–7 and 12–16 for the different dynamical regions with b > 8/5 for an initial single defector at the
center of a 29 × 29 lattice with no self-interaction and with periodic boundary conditions. All five regions start similarly, but
differences can start to be observed after the third game as bifurcations along the leading edge of each wave front start to occur.
The most dynamic spatial patterns are generated in region F as clusters of cooperators and defectors begin to expand and
contract. Regions G and I expand similarly, with the final attracting state dominated by defectors with only isolated clusters of
cooperators. Region H expands as an “X” shaped wave front, and results in an “X” shaped one-period (steady-state) solution.
Region J expands as a square wave front with no bifurcations along its leading edge, resulting in 100% defectors. Similar
results occur for square lattices with dimensions n = 19, 20 and 59. See Table 2 for additional details on the spatial patterns.
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Figure 3 (continued). Results of games 1-7 and 12-16 for the different dynamical regions with b > 8/5 for an initial single defector in the center of a 29 x 29 lattice 

with no self-interaction and with periodic boundary conditions.  All 5 regions start similarly, but differences can start to be observed after the 3rd game as 

bifurcations along the leading edge of each wave front start to occur. The most dynamic spatial patterns are generated in Region F as clusters of cooperators and 

defectors begin to expand and contract.  Regions G and I expand similarly, with the final attracting state dominated by defectors with only isolated clusters of 

cooperators.  Region H expands as an ‘X’ shaped wave front, and results in an ‘X’ shaped 1-period (steady-state) solution.  Region J expands as a square wave 

front with no bifurcations along its leading edge, resulting in 100% defectors.  Similar results occur for square lattices with dimensions n = 19, 20 and 59  See 

Table 2 for additional details on the spatial patterns. 

Fig. 3. (Continued )
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Figure 4.  The percentage of defectors in the attracting state is shown versus 

the parameter b, for lattices with dimensions n = 19, 20, 29 and 59, for the 

initial case of a single defector in the center, with periodic boundary 

conditions and without self-interaction.  The percentage of defectors in the 

attracting state generally varies slightly with the size of the lattice.  Note 

that the percentage of defectors in the attracting state seems to increase with 

lattice size in Region G, and decrease with lattice size in Region H.  
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Figure 5.  The number of games required to reach the attracting state is 

shown versus the payoff parameter, b, for lattices with dimensions n = 19, 

20, 29 and 59, for the initial case of a single defector in the center, with 

periodic boundary conditions and without self-interaction.  The number of 

games required to reach the steady-state solution for b > 8/5 generally 

increases with the size of the lattice. 
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horizontally by a single defector (denoted by 
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The spatial dynamics within each dynamic region, especially 

the periodicity of the attracting state, appears to be very 

sensitive to the initial conditions.  1-period, 2-period and 3-

period solutions are common for b < 8/5.  The region with 

8/5 < b < 5/3 also shows other higher period solutions, like 

9-period, 62-period, and 468-period solutions.  Table 3 and 

Figure 6 give our simulation results for periodicity as a 

function of the defector’s gain, b. 

 

The maximum percentage of defectors in the attracting state 

for each dynamic region, however, does not appear to be 

very sensitive to the symmetrical initial conditions we 

considered.  The maximum percentage of defectors in the 

attracting states for the symmetrical initial conditions that 

are considered are given in Table 3, and graphically 

displayed in Figure 6. 

 

The response to different initial conditions is particularly 

interesting in the region 8/5 < b < 5/3.  Not only do 

attracting states with long periods exist within this region, 

but the transient dynamics and the number of games required 

to reach the attracting state are very sensitive to the initial 

Fig. 4. The percentage of defectors in the attracting state is shown versus the parameter b, for lattices with dimensions
n = 19, 20, 29 and 59, for the initial case of a single defector in the center, with periodic boundary conditions and without
self-interaction. The percentage of defectors in the attracting state generally varies slightly with the size of the lattice. Note
that the percentage of defectors in the attracting state seems to increase with lattice size in region G, and decrease with lattice
size in region H.
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Fig. 5. The number of games required to reach the attracting state is shown versus the payoff parameter, b, for lattices with
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without self-interaction. The number of games required to reach the steady-state solution for b > 8/5 generally increases with
the size of the lattice.
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Figure 6.  Periodicities and percentage defectors in the attracting state resulting from different symmetric initial conditions for different values of b. Results are 

for a square 29 x 29 lattice with periodic boundary conditions, and without self-interaction.  The periodicity is more sensitive to the particular initial conditions 

detailed herein than the percentage of defectors in the attracting state.  One of the more complicated dynamic responses occurs for initial condition D/C/DCD; 

it consists of two distinct 2-period solutions, one 3-period solution, and a 9-period solution, depending on the value of b. The periodicities of initial conditions 

D and DCCCCCD are identical.  The five cooperators between defectors isolate the defectors sufficiently so that their influence remains localized and does not 

have a global effect.  The percentage of defectors in the attracting state appears to be minimally affected by the change in initial conditions.  (Note:  For 

periodic attracting states, the maximum number of defectors in the attracting state is shown.) 

Fig. 6. Periodicities and percentage defectors in the attracting state resulting from different symmetric initial conditions for
different values of b. Results are for a square 29 × 29 lattice with periodic boundary conditions, and without self-interaction.
The periodicity is more sensitive to the particular initial conditions detailed herein than the percentage of defectors in the
attracting state. One of the more complicated dynamic responses occurs for initial condition D/C/DCD; it consists of two
distinct 2-period solutions, one 3-period solution and a 9-period solution, depending on the value of b. The periodicities of
initial conditions D and DCCCCCD are identical. The five cooperators between defectors isolate the defectors sufficiently so
that their influence remains localized and does not have a global effect. The percentage of defectors in the attracting state
appears to be minimally affected by the change in initial conditions. (Note: For periodic attracting states, the maximum
number of defectors in the attracting state is shown.)
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Table 3. This table gives the periodicity (“Period”) and maximum percentage of defectors in the attracting state (“% Def”) for different values of gain, b, for small

variations in symmetrical initial conditions. These simulations are conducted on a 29 × 29 lattice with periodic boundary conditions, and without self-interaction.

Distinct regions of 1-period, 2-period and 3-period solutions were common. However, 9-period, 62-period and 468-period solutions also occurred. Not all bifurcation

values in the payoff parameter, b, occur for each set of initial conditions. The bifurcation values that occur for each set of initial conditions are represented by the

formatting of the cells in this table. Single cells indicate the regions over which the dynamics are identical.

Notes:

1. The attracting state for the regions and 7/3 < b < 8.3 are identical. However, the attracting state is reached 1 game sooner for 2 < b < 7/3.

2. The attracting state of all cooperators is reached after 1 game for b < 7/8, and after 3 games for 7/8 < b < 1.

2
5
6
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like 9-period, 62-period and 468-period solutions.
Table 3 and Fig. 6 give our simulation results
for periodicity as a function of the defector’s
gain, b.

The maximum percentage of defectors in the
attracting state for each dynamic region, however,
does not appear to be very sensitive to the symmet-
rical initial conditions we considered. The maximum
percentage of defectors in the attracting states for
the symmetrical initial conditions that are consid-
ered are given in Table 3, and graphically displayed
in Fig. 6.

The response to different initial conditions is
particularly interesting in the region 8/5 < b < 5/3.
Not only do attracting states with long periods exist
within this region, but the transient dynamics and
the number of games required to reach the attract-
ing state are very sensitive to the initial conditions.
We found that the number of games required to
reach the attracting state generally increases with
the complexity of the initial conditions. The num-
ber of games required to reach the attracting state,
whether steady-state or periodic, varies from 73 to

4,690 for the initial conditions that we considered,
as shown in Fig. 7.

(e) Characterization of the system dynamics when
the initial condition is a random distribution of
initial defectors.

As the previous analysis indicates, there appear to
be three well-defined regions in the value of the
parameter b when a simple, symmetrical initial con-
dition is used. For b < 8/5, the affected spatial re-
gion is limited to the immediate neighborhood of
the initial defector(s); attracting states are reached
quickly and consist of steady-state or periodic so-
lutions. For 8/5 < b < 5/3, the attracting state
generally takes many games to reach, and is either
a steady-state solution (typically 100% defectors),
or a periodic solution. For b > 5/3, the attracting
state is a steady-state solution; no periodic solutions
exist within this region.

These three regions are further explored in
this section for the case of a random distribu-
tion of initial defectors in a square lattice without
self-interaction and with periodic boundary condi-
tions. Simulations are conducted with b = 1.45 or

  11 

 

 Initial Condition 

 D DD DCD DCCD DCCCD DCCCCD DCCCCCD D/C/DCD 

Parameter, b Period % Def Period % Def Period % Def Period % Def Period % Def Period % Def Period % Def Period % Def 

b < 7/8 1 0.00 1 0.00 1  
 2/

 0.00 1 0.00 1 0.00 1 0.00 1 0.00 

7/8 < b < 1 1 0.12 
1 0.00 

1 0.12 1  
 2/

 0.00 1 0.24 1 0.24 1 0.24 1 0.12 

1 < b < 8/7 1 0.24 1 0.36 1 0.48 1 0.59 

8/7 < b < 6/5 
2 1.07 

2 1.43 2 1.78 2 2.14 2 2.26 
2 2.14 2 2.14 2 1.07 

6/5 < b < 4/3 3 2.26 

4/3 < b < 7/5 
3 1.07 3 1.43 3 1.78 3 2.14 

3 1.78 
3 2.14 3 2.14 3 1.43 

7/5 < b < 3/2 1 1.55 1 2.14 

3/2 < b < 8/5 

1 1.07 1 1.43 
2 1.78 

1 1.66 2 2.50 1 2.14 1 2.14 
2 2.26 

8/5 < b < 5/3 1 100.00 1 100.00 1 100.00 468 98.10 1 100.00 62 98.10 1 100.00 9 92.39 

5/3 < b < 7/4 1 87.16 1 94.65 1 92.87 1 96.08 1 88.59 1 78.12 1 86.44 1 91.08 

7/4 < b < 2 1 30.08 1 29.96 1 29.13 1 28.54 1 26.99 1 26.63 1 28.42 1 29.49 

2 < b < 7/3 1  
 1/

 95.01 1  
 1/

 94.65 

7/3 < b < 8/3 
1 94.29 

1   
1/

 95.01 
1 94.05 

1   
1/

 94.65 
1 98.10 1 98.57 1 93.58 1 92.27 

8/3 < b 1 100.00 1 100.00 1 100.00 1 100.00 1 100.00 1 100.00 1 100.00 1 100.00 

Table 3.  This table gives the periodicity (‘Period’) and maximum percentage of defectors in the attracting state (‘% Def’) for different values of gain, b, for 

small variations in symmetrical initial conditions.  These simulations are conducted on a 29 x 29 lattice with periodic boundary conditions, and without self-

interaction.  Distinct regions of 1-period, 2-period and 3-period solutions were common.  However, 9-period, 62-period and 468-period solutions also occurred.  

Not all bifurcation values in the payoff parameter, b, occur for each set of initial conditions.  The bifurcation values that occur for each set of initial conditions 

are represented by the formatting of the cells in this table.  Single cells indicate the regions over which the dynamics are identical. 

Notes: 

1/ The attracting state for the regions  and 7/3 < b < 8/3 are identical.  However, the attracting state is reached 1 game sooner for 2 < b < 7/3. 

2/ The attracting state of all cooperators is reached after 1 game for b < 7/8, and after 3 games for 7/8 < b < 1. 
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Figure 7.  Number of games required to reach the attracting state varies 

significantly for small variations in the initial conditions.  Note that the 

vertical scale is logarithmic.  These simulations were conducted for a 29 x 

29 lattice with periodic boundary conditions and without self-interaction, 

with 8/5 < b < 5/3.  
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boundary conditions.  Simulations are conducted with b = 
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different regions.  Descriptions of typical results for different 

initial percentages of defectors are given in Table 4, and 

graphically displayed in Figures 8 and 9. Though most of the 

results presented below are for a 20 by 20 lattice, similar 

results are generally obtained for 29 by 29, and 59 by 59 
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With b = 1.55, a 1% random initial distribution of defectors 

results in attracting states that include local steady-state and 

periodic solutions in the regions surrounding the initial 

defectors.  A 5% and a 10% random initial distribution of 

defectors results in ‘lines of defectors’ partitioning the 

lattice.  Along these lines, or boundaries, local steady-state 

and periodic solutions exist.  Observed periodicities include 

2, 3, 4 and 6-period solutions at various locations along the 

lines of defectors.  The global periods are multiples of the 

Fig. 7. Number of games required to reach the attracting state varies significantly for small variations in the initial conditions.
Note that the vertical scale is logarithmic. These simulations were conducted for a 29 × 29 lattice with periodic boundary
conditions and without self-interaction, with 8/5 < b < 5/3.
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Table 4. This table describes typical results achieved for simulations with gain values of b = 1.55, 1.63 and 1.70. The results are shown for a 20× 20
lattice with periodic boundary conditions and without self-interaction. Similar results seem to occur regardless of lattice size. The percentage of
defectors versus the number of games completed, and representative spatial patterns corresponding to these descriptions are shown in Figs. 8 and 9,
respectively.

Initial % Initial % Initial %
Defector b = 1.55 Defector b = 1.63 Defector b = 1.70

1% The attracting state is reached after
5 games and is a 2-period solu-
tion with localized clusters of de-
fectors. Some clusters have players
that alternate their states. In this
case, the yellow players alternate
yellow-green-yellow. . . (i.e. defector-
cooperator-defector. . .)

1% The percentage of defectors grows
quickly in the first few games. The
regions of cooperators and defec-
tors each expand, contract and col-
lide. The attracting state is all de-
fectors, and it is reached after 1007
games. Figure 9 shows the spatial
pattern following game 301. The yel-
low players are the advancing defec-
tors, and the green players are the
advancing cooperators.

1% Clusters of defectors grow around
4 initial defectors. The results of
game 3 are shown, and the 4 clus-
ters of defectors are still discernible.
These clusters of defectors combine
and continue growing until a steady-
state solution with 96.25% defectors
is reached after 12 games. In this
particular case, the steady-state so-
lution consists of a single 3× 5 clus-
ter of cooperators.

10% The attracting state is reached after
14 games. Defectors form in “lines”
partitioning the space. Along the
lines, localized 2 and 3-period os-
cillations result in a global 6-period
response.

10% (a) Again, the percentage of defectors
grows quickly in the first few games.
The regions of cooperators and de-
fectors each expand, contract and
collide. The attracting state is all
defectors, and is reached after 255
games. Figure 9 shows the spatial
pattern following game 217, when
the percentage of defectors reaches
a minimum of 15.5%.

10% (a) Regions of defectors expand about
the initial defectors, until reach-
ing a steady-state solution (shown)
with 89.5% defectors. The attract-
ing state is a single 6 × 7 cluster of
cooperators, which is reached after
the 6th game.

2
5
6
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50% (a) The attracting state consists of all
defectors, and is reached after 2
games. The results of game 1 are
shown. Initial defectors are in red;
yellow players turned defector after
1 game; blue players are coopera-
tors. In this case, the two remain-
ing cooperators will defect after the
next game, while the rest of the
players will continue to defect.

10% (b) The percentage of defectors fluctu-
ates “chaotically” about an aver-
age of 67.1% until the 212th game.,
when a 9-period solution forms as
the attracting state. The 2 symmet-
ric regions of cooperators shown in
Fig. 9 expand and then contract,
forming the 9-period solution.

10% (b) Regions of defectors expand about
the initial defectors, until reach-
ing a steady-state solution (shown)
with 88.5% defectors. The attract-
ing state is reached after the 5th
game, and consists of 3 clusters of
cooperators. The cluster sizes are
3 × 3, 4 × 3, and 5 × 5.

50% (b) The attracting state is reached af-
ter 2 games, and consists of a travel-
ing wave. The traveling wave moves
from right to left through the lat-
tice. The wave pattern is 2-period as
players alternate states; the global
pattern is 20 period as the wave cir-
cles the 20 × 20 lattice of the torus.

10% (c) The percentage of defectors fluctu-
ates about an average of 69.41%, un-
til a 100-period solution forms after
game 1196. The 100-period solution
has large variations about an aver-
age of 50.60% defectors.

10% (c) Regions of defectors expand about
the initial defectors, until reach-
ing a steady-state solution (shown)
with 84.0% defectors. The attract-
ing state is reached after the 8th
game, and consists of 3 clusters of
cooperators. The cluster sizes are
3 × 3, 5 × 5, and 6 × 5.

50% (c) After the first game, the lattice con-
sists of 98% defectors. A 2 × 2 clus-
ter of cooperators begins expanding,
resulting in a 2-period solution after
24 games. In this case, the players
shown in green alternate between
cooperating (green) and defecting
(yellow).

50% The attracting state (shown) is
100% defectors, and is reached after
just 2 games.

50% The attracting state (shown) is
100% defectors, and is reached after
just 1 game.2

5
6
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Figure 8.  The percentage of defectors vs. the number of completed games for b = 1.55, 1.63 and 1.70 for various random initial distributions of defectors. The 

results are shown for a 20 x 20 lattice with periodic boundary conditions and without self-interaction, and correspond to the results in Table 4 and Figure 9.  

Similar results seem to occur regardless of lattice size.  (Note that the vertical and horizontal scales change from chart to chart to optimize the clarity of the 

information provided.) 

Fig. 8. The percentage of defectors versus the number of completed games for b = 1.55, 1.63 and 1.70 for various random
initial distributions of defectors. The results are shown for a 20 × 20 lattice with periodic boundary conditions and without
self-interaction, and correspond to the results in Table 4 and Fig. 9. Similar results seem to occur regardless of lattice size.
(Note that the vertical and horizontal scales change from chart to chart to optimize the clarity of the information provided.)
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Figure 9.  Representative spatial patterns for b = 1.55, 1.63 and 1.70 for various random initial distributions of defectors. The results are shown for a 20 x 20 

lattice with periodic boundary conditions and without self-interaction, and correspond to the results in Table 4 and Figure 8.  Green cells show the 

advancement of cooperators (blue), and yellow cells show the advancement of defectors (red).  For variety, some of the spatial patterns presented are the 

steady-state attracting state, some are a part of a periodic solution, and some are representative of the dynamics (see Table 4 for a detailed description). 

Fig. 9. Representative spatial patterns for b = 1.55, 1.63 and 1.70 for various random initial distributions of defectors. The
results are shown for a 20 × 20 lattice with periodic boundary conditions and without self-interaction, and correspond to the
results in Table 4 and Fig. 8. Green cells show the advancement of cooperators (blue), and yellow cells show the advancement
of defectors (red). For variety, some of the spatial patterns presented are the steady-state attracting state, some are a part of
a periodic solution, and some are representative of the dynamics (see Table 4 for a detailed description).
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The attracting state is reached after 1757 games, and consists of 

a traveling wave.  The traveling wave moves vertically upward 

through the lattice.  The wave pattern is 2-period as players 

alternated states; the global pattern is 20 period as the wave 

circles the entire torus.  The attracting state has a constant 

97.25% defectors, even though the wave pattern is 2-period. 
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The spatial pattern appears to chaotically fluctuate with an 

average of 68.62% defectors, and then suddenly, and 

unexpectedly, converges to an attracting state of all cooperators 

(0% defectors) after 11,633 games. 
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Figure 10.  Typical results with b = 1.85 for a 20 x 20 lattice with periodic boundary conditions, with self-interaction, and with a 10% initial distribution of 

defectors are shown.  When self-interaction is included, this highly dynamic region occurs for 9/5 < b < 2. 
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Spatial patterns appear to 

chaotically fluctuate, with an 

average of 68.03% defectors, 

until suddenly and 

unexpectedly, they converge 
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defectors after 1703 games. 
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Figure 11.  The spatial development for a 20 x 20 lattice, with periodic boundary conditions and with self-interaction is shown for b = 1.85 and a 10% random 

initial distribution of defectors.  In this particular case, the attracting state is 100% defectors and is reached suddenly after 1703 games.  The evolution of 

several games is shown to give a sense of the complicated dynamics that occur. 

 

b = 1.55 b = 1.63 b = 1.70 

Result of Game 17 Result of Game 17 Result of Game 11 

   
 

Figure 12.  Typical results for a 20 x 20 lattice, with periodic boundary conditions and without self-interaction, are shown for b=1.55, 1.63 and 1.70.  The 

initial condition is a 10% random distribution of defectors, and a 10% random distribution of ideal cooperators. The color scheme is the same as used 

previously, except that the ideal cooperators are shown as magenta colored asterisks.  The attracting state is shown for b = 1.55, and contains 3 different 2-

period solutions.  It has 40.25% defectors, and is reached after the 14th game.  The dynamic state after game 17 is shown for b = 1.63.  The ideal cooperators 

limit the growth of the clusters of cooperators.  This attracting state is reached after the 23rd game and consists of all defectors except for the ideal cooperators 

Fig. 10. Typical results with b = 1.85 for a 20 × 20 lattice with periodic boundary conditions, with self-interaction, and
with a 10% initial distribution of defectors are shown. When self-interaction is included, this highly dynamic region occurs for
9/5 < b < 2.
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Figure 10.  Typical results with b = 1.85 for a 20 x 20 lattice with periodic boundary conditions, with self-interaction, and with a 10% initial distribution of 

defectors are shown.  When self-interaction is included, this highly dynamic region occurs for 9/5 < b < 2. 
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Figure 12.  Typical results for a 20 x 20 lattice, with periodic boundary conditions and without self-interaction, are shown for b=1.55, 1.63 and 1.70.  The 

initial condition is a 10% random distribution of defectors, and a 10% random distribution of ideal cooperators. The color scheme is the same as used 

previously, except that the ideal cooperators are shown as magenta colored asterisks.  The attracting state is shown for b = 1.55, and contains 3 different 2-

period solutions.  It has 40.25% defectors, and is reached after the 14th game.  The dynamic state after game 17 is shown for b = 1.63.  The ideal cooperators 

limit the growth of the clusters of cooperators.  This attracting state is reached after the 23rd game and consists of all defectors except for the ideal cooperators 

Fig. 11. The spatial development for a 20 × 20 lattice, with periodic boundary conditions and with self-interaction is shown
for b = 1.85 and a 10% random initial distribution of defectors. In this particular case, the attracting state is 100% defectors
and is reached suddenly after 1703 games. The evolution of several games is shown to give a sense of the complicated dynamics
that occur.

b = 1.55, b = 1.63 and b = 1.70 to represent the
three different regions. Descriptions of typical re-
sults for different initial percentages of defectors are
given in Table 4, and graphically displayed in Figs. 8
and 9. Though most of the results presented below
are for a 20 by 20 lattice, similar results are gener-
ally obtained for 29 by 29 and 59 by 59 lattices.

With b = 1.55, a 1% random initial distribu-
tion of defectors results in attracting states that
include local steady-state and periodic solutions

in the regions surrounding the initial defectors. A
5% and a 10% random initial distribution of de-
fectors results in “lines of defectors” partitioning
the lattice. Along these lines, or boundaries, local
steady-state and periodic solutions exist. Observed
periodicities include 2, 3, 4 and 6-period solutions
at various locations along the lines of defectors.
The global periods are multiples of the local pe-
riods. While the attracting states for 1%, 5% and
10% initial distribution of defectors are somewhat
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Fig. 12. Typical results for a 20 × 20 lattice, with periodic boundary conditions and without self-interaction, are shown for
b = 1.55, 1.63 and 1.70. The initial condition is a 10% random distribution of defectors, and a 10% random distribution of ideal
cooperators. The color scheme is the same as used previously, except that the ideal cooperators are shown as magenta colored
asterisks. The attracting state is shown for b = 1.55, and contains three different 2-period solutions. It has 40.25% defectors,
and is reached after the 14th game. The dynamic state after game 17 is shown for b = 1.63. The ideal cooperators limit the
growth of the clusters of cooperators. This attracting state is reached after the 23rd game and consists of all defectors except
for the ideal cooperators and a small, localized 2-period solution. The attracting state is shown for b = 1.70. It is reached after
the 11th game and is all defectors, except for a 3 × 4 and a 3 × 3 cluster of cooperators and the ideal cooperators.

predictable, the attracting states for a 50% random
initial distribution of defectors are not. The sen-
sitivity to initial conditions now becomes strongly
manifest. For, while starting with a 50% random
initial distribution of defectors, numerous different
periodic solutions asymptotically result for differ-
ent initial distributions of defectors. Three very
different attracting states for a 50% initial dis-
tribution of defectors are illustrated in Table 4,
and shown in Figs. 8 and 9. These include an
attracting state that is 100% defectors and is
reached after just two games, see (a) in Table 4;
an attracting state that is a “traveling wave” that
moves from right to left throughout the lattice,
see (b) in Table 4; and an attracting state that
is a 2-period solution that forms a straight line
through the lattice, see (c) in Table 4. Notice the
wide difference in the percentage of cooperators in
the attracting states (a) and (c) as seen in Figs. 8
and 9.

Similar results are obtained for a b value of 1.45
using a lattice size of 29 by 29. Again, sensitivity of
the global pattern to local patterns of distribution
of defectors is observed. Depending on the nature
of the “local” distribution of cooperators in small
neighborhoods of the lattice, within a few rounds of
play, a self-organization into small regions (nuclei)
of cooperators can result; these nuclei then expand,
collide, and along their lines of collision usually
generate defectors that then asymptotically result
in lines, blocks and islands of defectors. Depend-

ing on the number and location of nuclei gen-
erated, numerous different asymptotic states can
result. Where the local distribution is not con-
ducive to the creation of these nuclei of coopera-
tors, steady-state (1-period) asymptotic solutions
are often generated.

Sensitive dependence on the “local” initial dis-
tribution of cooperators also shows its influence on
lattice size. Increasing the lattice size results in a
greater propensity for periodic solutions, there be-
ing greater opportunities for local distributions to
engender nuclei of cooperators which then expand,
collide, etc. Simulations for a lattice size of 59 by
59 confirm these observations. Also, though the na-
ture of the asymptotic states differs widely, they are
achieved relatively rapidly, in a few 10’s of games.

Based on these results and also our sim-
ulations with 10% to 90% of defectors ran-
domly placed initially on larger lattice sizes of
29 by 29 and 59 by 59, the dynamical be-
havior observed in this regime has three basic
characteristics: (1) the percentage of cooperators
can fluctuate widely during the evolution of the
dynamics; (2) numerous different periodic solu-
tions with lines and islands of defectors separat-
ing zones of cooperators can asymptotically result;
(3) there is very sensitive dependence on initial
conditions, leading to wide diversity of asymptotic
states — that range from all cooperators to all
defectors — for any given percentage of the initial
random distribution of defectors.
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The unpredictability of the final asymptotic
state, and sensitivity to initial conditions, is high-
lighted by the fact that with an initial random dis-
tribution of defectors of as high as 90%, asymptotic
states with all cooperators might still be generated.

With b = 1.63, the attracting state is generally
either steady-state or periodic, but the number of
games required to reach the attracting state varies
significantly, for any given initial percentage of de-
fectors. Typical examples are described in Table 4,
and shown in Figs. 8 and 9. In the given example
for a 1% random initial distribution of defectors,
the spatial pattern ultimately reaches an attracting
state with 100% defectors, but it takes 1,007 games
to get there. Periodic solutions are also possible
within this region of b values.

Three different representative results are shown
for a 10% initial distribution of defectors with
b = 1.63. One possible attracting state is 100%
defectors. For the case shown, 100% defectors is
reached after 255 games, see (a) in Table 4. A sec-
ond attracting state consists of a 9-period solution
with expanding and contracting regions of coop-
erators. The dynamics appears to be chaotic un-
til the 9-period solution is suddenly formed, see
(b) in Table 4. A third attracting state consists
of a 100-period solution that is formed after 1,196
games. This particular case averaged 69.4% defec-
tors through the game prior to the formation of
the 100-period solution, and 50.6% defectors after
the formation of the 100-period solution, see (c) in
Table 4. Other results include attracting states with
different periods, and attracting states with 100%
cooperators.

This wide variety of steady-state and/or peri-
odic attracting states appears to occur independent
of lattice size, and this was verified for lattices with
dimensions between n = 9 and n = 29. In gen-
eral, the number of games required to reach the
attracting state increases as the size of the lattice
increases, and we presume that similar results will
generally occur for much larger lattices, and that
a very large number of games may be required to
reach the attracting states. For example, for a 10%
random initial distribution of defectors, an increase
in the lattice size from 20 by 20 to 29 by 29 causes
the number of games needed to reach asymptotic
behavior to increase from several hundred to sev-
eral thousands (typically 25–30,000). For a lattice
size of 20 by 20, a 50% initial distribution of defec-
tors seems to consistently result in 100% defectors
after just a few games. Larger lattice sizes lead to

a greater variety of asymptotic solutions, like trav-
eling waves, even when the initial distribution of
defectors exceeds 50%.

With b = 1.70, the attracting state is similar to
the attracting states observed for simple, symmetri-
cal initial conditions. With a 1% initial random dis-
tribution of defectors, the clusters of defectors grow
and combine, until a steady-state attracting state
with a high percentage of defectors is reached. The
steady-state solution includes rectangular clusters
of cooperators. Similar results are observed with a
10% initial distribution of defectors, as indicated
by the three different examples shown in Table 4,
and Figs. 8 and 9. The differences in the attracting
states are simply the size and number of the rectan-
gular clusters of cooperators (even for lattices sizes
of 29 by 29 and 59 by 59). A 50% initial distribution
of defectors typically results in an attracting state
with 100% defectors.

Perhaps the most significant finding when look-
ing at the effect of random initial distributions of
defectors on the system dynamics is the extreme
fluctuations in the percentages of defector popula-
tions as the dynamics evolve, especially for values
of b between 8/5 and 5/3. We see that during the
evolution of the dynamics, population sizes of 98%
defectors can dramatically reduce to populations of
about 10% defectors in the steady state; and, pop-
ulations that may have as low as 15% defectors at
some stage in the evolution of the dynamics can
suddenly explode to have near 100% defectors —
all this while the rules of the game played by each
player remain unchanged!

(f) Consideration of self-interaction, solely for com-
parison purposes, when starting from random initial
distributions of defectors.

The results so far obtained have been for the
situation where a player does not play against him-
self/herself, that is to say, when there is no self-
interaction. For comparison with results that might
arise when self-interaction is included, we present in
this section some results with self-interaction. Thus,
the player is essentially allowed to compete against
himself, and hence adds the gains of his own self-
interaction in order to obtain his cumulative score
in each round, before he decides on his strategy for
the next round.

Perhaps the most pronounced effect of allowing
self-interaction is the shift it causes in the highly dy-
namic transitional region (region F, Table 2) from
the range of b values from 8/5 < b < 5/3 to the
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range 9/5 < b < 2. Within this region, attracting
states with 100% defectors, 100% cooperators, trav-
eling waves, and various periodicities were observed.
Square lattices with dimensions n = 9, 15, 20, 24,
and 29 are studied. Typical results for a 20×20 lat-
tice with b = 1.85 are shown in Figs. 10 and 11. Note
that after what looks like a random fluctuation in
the percentage of defectors, the system enters, quite
abruptly, a basin of attraction. In addition to the
bifurcation values in the gain b presented in Table 1,
when self-interaction is included bifurcation values
may include b = 9/8, 9/7, 9/6, 9/5, 9/4, 9/3, 9/2,
9/1.

(g) Influence of including ideal cooperators — in-
dividuals who will not defect no matter what their
gains — on the global patterns.

Going back to the context of criminal behavior that
we broached in our introductory section, we exam-
ine the effect of including players who are ideal
cooperators. An ideal cooperator is a player who
will never change to being a defector, no mat-
ter what his/her cumulative gains are compared
to his/her neighbors, and therefore, regardless of
whether his/her most-profitable neighbors are de-
fectors. The ideal cooperators have the same payoff
scheme as a normal cooperator. The ideal cooper-
ator therefore never changes state, and no players
are allowed to become ideal cooperators after the
game is initiated.

A 20 by 20 lattice with periodic boundary con-
ditions and without self-interaction is studied. The
initial condition consists of approximately 10% de-
fectors randomly distributed across the population.
Further, 10% of the players are taken to be “ideal
cooperators” and they too are randomly distributed
in the population. We again consider the regions:
b < 8/5; 8/5 < b < 5/3; and, b > 5/3. Typical
results with no self-interaction and with b = 1.55,
1.63 and 1.70 are shown in Fig. 12. The presence
of ideal cooperators can change the evolutionary
dynamics substantially: it can greatly affect the
transient dynamics and reduce the number of games
needed to reach an attracting state; and, it can to-
tally change the qualitative nature of the asymp-
totic state. Furthermore, ironically, the inclusion of
ideal cooperators tends to increase the percentage of
defectors in the attracting state for b < 8/5. Similar
results are obtained on 29 by 29 lattices.

For b = 1.55, the connecting “lines of defectors”
observed for the same conditions without the “ideal

cooperators” largely disappear (compare Figs. 9
and 12). Periodic solutions still occur, and the
asymptotic state is typically reached in a smaller
number of games. Figure 13 shows a typical result
when varying the percentage of ideal-cooperators,
while always starting with a randomly distributed,
90% cooperator (and 10% defector) population. For
comparison purposes, all the simulations are con-
ducted using the same random seed so that the
random placement of initial defectors is identical
in all cases. As seen from the figure, the asymptotic
state with no ideal cooperators is periodic and the
percentage of defectors is about 30%; as the per-
centage of ideal-cooperators increases, the defector
population in the asymptotic state increases. Note
also the rapid convergence to the asymptotic behav-
ior caused by the constraint imposed by the pres-
ence of the ideal cooperators. Even when 70% of
the cooperators are ideal cooperators, the asymp-
totic percentage of defectors exceeds that which
arises when no ideal cooperators exist! This is be-
cause defectors are “attracted” around the ideal
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Figure 13.  This graph demonstrates that including ideal cooperators, 

ironically, tends to increase the percentage of defectors.  The percentage of 

defectors vs. the number of games completed is plotted for different 

percentages of ideal cooperators.  For comparison, the exact same 10% 

random distribution of initial defectors is used throughout, and the 

percentage of initial cooperators that are ‘ideal’ cooperators is increased 

from 0% to 100%.  The percentage of ideal cooperators is annotated on each 

curve.  This evaluation was conducted for a 20 x 20 lattice with periodic 

boundary conditions and without self-interaction, for b = 1.55. 
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Figure 14.   The percentage of defectors (at the end of 50 games) vs. the 

percentage of ideal cooperators is plotted for the case of 80% total initial 

cooperators (normal cooperators plus ideal cooperators).  For comparison, 

the same distribution of initial cooperators is used, as the percentage of 

ideal cooperators is increased.  The presence of ideal cooperators appears to 

increase the percentage of defectors in the asymptotic state.  This evaluation 

was conducted for a 20 x 20 lattice with periodic boundary conditions and 

without self-interaction, for b = 1.55. 
 

 

 (h) Discussion on the use of periodicities and percentages 

of defectors as metrics for understanding the dynamics 

 

The periodicities and percentage of defectors in the 

attracting state of each region are reasonable indicators of 

the dynamics that take place in each region.  However, there 

are many subtleties that these parameters mask.  A few of 

these subtleties are mentioned here:   

 

1) For the initial condition DCCCCCD and b < 8/5, the 

periodicities were the same as the initial case of a single 

defector (D).  A spacing of five cooperators between 

defectors fully isolates the defectors from each other.  

The center cooperator is essentially unaware that the 

defectors exists.  The specific periodic solutions is the 

same as those shown in Figure 2 for this range of b 

values, except they occur separately around each 

defector.  

 

2) For the initial condition DCCCD, there are two distinct 

3-period solutions adjacent to each other in the 

parameter ranges  6/5 < b < 4/3 and 4/3 < b < 7/5. 

 

3) In some cases, the percentage of defectors is constant, 

although the actual spatial pattern contains periodic 

solutions. 

 

4) The global periodicity may be due to the superposition 

of local periodic solutions of equal or lesser 

periodicities.  For example, local 2-period and 3-period 

solutions can result in a global 6-period solution. 

 

5) An n-period behavior in a graph of percentage of 

defectors versus number of the games completed does 

not necessarily imply an n-periodic dynamical state. The 

periodicity of the dynamical state may be much higher 

because of the fact that it is related to the pattern of 

defectors and not just their numbers. 

 

 

3. Conclusions 

 

In this paper we investigate in some detail the emergence of 

global patterns from local interactions that arise in the 

iterated Prisoner’s Dilemma game with no self-interaction.  

 

Making a very simple assumption on the nature of local 

interactions, i.e. that each player will follow the lead of the 

most ‘successful’ player in his/her immediate neighborhood, 

produces surprisingly complex global patterns with 

complicated dynamics and sometimes unpredictable results. 

We observe steady-state solutions, simple and complex 

periodic solutions, and traveling waves.  None of the 

simulations that we conducted in this study (with, and 

without, self-interaction) gave rise to solutions that were 

truly chaotic, nor did they give rise to states that seemed to 

fluctuate unpredictably without end.  

 

The level of detail in our investigation in this paper appears 

to be greater in many respects than that available hereto.  

This has led to a deeper understanding of the interaction 

dynamics: our ability to categorize the patterns into three 

principal b-regions (we do not simply show various patterns 

of interaction, as has been the usual practice so far); the 

sensitivity of the patterns to perturbations in the initial 

conditions; the presence of ‘perturbulence’ type phenomena 

Fig. 13. This graph demonstrates that including ideal
cooperators, ironically, tends to increase the percentage of
defectors. The percentage of defectors versus the number of
games completed is plotted for different percentages of ideal
cooperators. For comparison, the exact same 10% random
distribution of initial defectors is used throughout, and the
percentage of initial cooperators that are “ideal” cooperators
is increased from 0% to 100%. The percentage of ideal co-
operators is annotated on each curve. This evaluation was
conducted for a 20 × 20 lattice with periodic boundary con-
ditions and without self-interaction, for b = 1.55.
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Figure 13.  This graph demonstrates that including ideal cooperators, 

ironically, tends to increase the percentage of defectors.  The percentage of 

defectors vs. the number of games completed is plotted for different 

percentages of ideal cooperators.  For comparison, the exact same 10% 

random distribution of initial defectors is used throughout, and the 

percentage of initial cooperators that are ‘ideal’ cooperators is increased 

from 0% to 100%.  The percentage of ideal cooperators is annotated on each 

curve.  This evaluation was conducted for a 20 x 20 lattice with periodic 

boundary conditions and without self-interaction, for b = 1.55. 
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Figure 14.   The percentage of defectors (at the end of 50 games) vs. the 

percentage of ideal cooperators is plotted for the case of 80% total initial 

cooperators (normal cooperators plus ideal cooperators).  For comparison, 

the same distribution of initial cooperators is used, as the percentage of 

ideal cooperators is increased.  The presence of ideal cooperators appears to 

increase the percentage of defectors in the asymptotic state.  This evaluation 

was conducted for a 20 x 20 lattice with periodic boundary conditions and 

without self-interaction, for b = 1.55. 
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simulations that we conducted in this study (with, and 

without, self-interaction) gave rise to solutions that were 

truly chaotic, nor did they give rise to states that seemed to 

fluctuate unpredictably without end.  

 

The level of detail in our investigation in this paper appears 

to be greater in many respects than that available hereto.  

This has led to a deeper understanding of the interaction 

dynamics: our ability to categorize the patterns into three 

principal b-regions (we do not simply show various patterns 

of interaction, as has been the usual practice so far); the 

sensitivity of the patterns to perturbations in the initial 

conditions; the presence of ‘perturbulence’ type phenomena 

Fig. 14. The percentage of defectors (at the end of 50 games)
versus the percentage of ideal cooperators is plotted for the
case of 80% total initial cooperators (normal cooperators plus
ideal cooperators). For comparison, the same distribution of
initial cooperators is used, as the percentage of ideal coopera-
tors is increased. The presence of ideal cooperators appears to
increase the percentage of defectors in the asymptotic state.
This evaluation was conducted for a 20 × 20 lattice with
periodic boundary conditions and without self-interaction,
for b = 1.55.

cooperators, for they continue to gain from their
unwavering behavior.

Figure 14 shows similar behavior when start-
ing with an 80% population of cooperators, which
is uniformly distributed across the lattice. The per-
centage of ideal cooperators is varied, as before, in
this cooperator population. The plot shows the per-
centage of defectors (at the end of 50 games) versus
the percentage of ideal cooperators among the ini-
tial 80% of the cooperator population. Again, the
presence of ideal cooperators appears to increase
the percentage of defectors in the asymptotic state.

For b = 1.63, the dynamics are substantially
more constrained than they are without the “ideal
cooperators” (compare Figs. 9 and 12). Defectors
again fill in around the ideal cooperators and tend
to form boundaries that limit the growth of regions
of cooperators. The attracting states are reached in
a substantially smaller number of games with ideal
cooperators than without them. Fluctuations in the
percentage of defectors during the transient dynam-
ics are much attenuated. Steady-state and periodic
solutions still occur. The inclusion of ideal cooper-
ators can still cause the number of defectors in the
asymptotic state to increase as compared to when
they are not present.

When b = 1.70, the results are largely unaf-
fected by the addition of ideal cooperators (compare
Figs. 9 and 12). The attracting state tends to
be a steady-state solution with a few rectangular
clusters of cooperators that may also contain the
ideal-cooperators.

(h) Discussion on the use of periodicities and per-
centages of defectors as metrics for understanding
the dynamics.

The periodicities and percentage of defectors in the
attracting state of each region are reasonable in-
dicators of the dynamics that take place in each
region. However, there are many subtleties that
these parameters mask. A few of these subtleties
are mentioned here:

(1) For the initial condition DCCCCCD and b <
8/5, the periodicities were the same as the ini-
tial case of a single defector (D). A spacing of
five cooperators between defectors fully isolates
the defectors from each other. The center co-
operator is essentially unaware that the defec-
tors exists. The specific periodic solutions is the
same as those shown in Fig. 2 for this range of
b values, except they occur separately around
each defector.

(2) For the initial condition DCCCD, there are
two distinct 3-period solutions adjacent to each
other in the parameter ranges 6/5 < b < 4/3
and 4/3 < b < 7/5.

(3) In some cases, the percentage of defectors is
constant, although the actual spatial pattern
contains periodic solutions.

(4) The global periodicity may be due to the super-
position of local periodic solutions of equal or
lesser periodicities. For example, local 2-period
and 3-period solutions can result in a global 6-
period solution.

(5) An n-period behavior in a graph of percentage
of defectors versus number of the games com-
pleted does not necessarily imply an n-periodic
dynamical state. The periodicity of the dynam-
ical state may be much higher because of the
fact that it is related to the pattern of defectors
and not just their numbers.

3. Conclusions

In this paper we investigate in some detail the emer-
gence of global patterns from local interactions that
arise in the iterated Prisoner’s Dilemma game with
no self-interaction.
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Making a very simple assumption on the na-
ture of local interactions, i.e. that each player will
follow the lead of the most “successful” player in
his/her immediate neighborhood, produces surpris-
ingly complex global patterns with complicated dy-
namics and sometimes unpredictable results. We
observe steady-state solutions, simple and complex
periodic solutions and traveling waves. None of the
simulations we conducted in this study (with, and
without, self-interaction) gave rise to solutions that
were truly chaotic, nor did they give rise to states
that seemed to fluctuate unpredictably without end.

The level of detail in our investigation in this
paper appears to be greater in many respects than
that available hereto. This has led to a deeper
understanding of the interaction dynamics: our
ability to categorize the patterns into three prin-
cipal b-regions (we do not simply show various
patterns of interaction, as has been the usual prac-
tice so far); the sensitivity of the patterns to per-
turbations in the initial conditions; the presence of
“perturbulence” type phenomena similar to that
found in other large-scale coupled dynamical sys-
tems [Udwadia & von Bremen, 2002]; the striking
lack of long term chaotic behavior; and the physical
explanation for the counterintuitive behavior when
ideal cooperators are included.

Several specific regions for the defector’s payoff,
b, exist with predictable bifurcation values. While
the detailed attracting states and dynamics within
each specific region of b values varies, three general
regions appear to dominate.

For b < 8/5, the primary players affected
appear to be largely in the local neighborhood of
the initial defectors. The region of defectors grows
further only when the clusters around the initial
defectors are themselves in contact with each other.

A transitional region exists for payoff values
with 8/5 < b < 5/3. This appeared to be a sort
of “marginally stable” region, similar to pertur-
bulence, with relatively long transients, and at-
tracting states that range from 100% defectors to
100% cooperators, and include steady-state and
long period solutions. Results are extremely sensi-
tive to the initial conditions. Attracting states are
reached suddenly, and without warning, sometimes
after numerous iterations of the game.

For b > 5/3, the attracting state is a steady-
state with a high percentage of defectors. When
cooperators exist in the attracting state, they are
localized in small, sort-of rectangular clusters. The

presence of ideal cooperators tends to constrain the
dynamic expansion of clusters of cooperators when
b < 5/3. For b > 5/3, ideal cooperators tend to have
little effect on the results.

It is interesting to note, as shown in Fig. 4, that
the percentage of defectors in the final steady-state
solution that is generated by a single defector in a
field of cooperators depends not only on the defec-
tor’s gain b, but also on the size of the lattice (the
number of players in the community). Also notewor-
thy, as shown in Fig. 8, are the extreme fluctuations
in the percentage of defectors that can arise as the
dynamical system evolves, and the precipitous man-
ner in which a seemingly chaotic fluctuation in the
percentage of defectors gets attracted to a steady-
state solution.

In general, increasing the lattice size appears
to increase the number of games needed to reach
asymptotic behavior, sometimes very substantially.
Also, the number of qualitatively different asymp-
totic states for a given initial percentage of defec-
tors (when starting with a random distribution of
defectors) appears to increase with lattice size.

The inclusion of ideal-cooperators — individu-
als who refuse to defect no matter what their gains
— leads to some surprising results. They could in-
fluence both the transient dynamics and the qual-
itative nature of the attracting state. Depending
on the region in which b lies, their inclusion could
increase the number of defectors in the asymptotic
state compared to when these ideal cooperators
are absent. Their inclusion generally reduces the
number of games needed to reach the asymptotic
state, as well as the fluctuations in the percentage
of defectors during the evolution of the transient
dynamics.

We have focused on the dynamics and attract-
ing states of the spatial patterns for different initial
conditions and payoffs. Our aim is to see if such
simple models might exhibit characteristics that
could throw some light on the evolution of social,
political and economic development and their pat-
terns. We notice that even with this simple multi-
person dynamical system, the outcome, i.e. the
global patterns generated, are often very complex,
alter drastically as the system dynamically evolves,
and often defy prediction. Thus very complex global
behavior can be engendered by simple local rules of
interaction.

Our model of interaction has four major lim-
itations: first, we assume that all the participants
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play each round in a synchronous manner; second,
we assume that each person’s wealth, and the total
wealth of the “closed” community (in which each in-
dividual is assumed to be statically located on the
torus), is not constrained in any way; third, that
each player plays only against his nearest neigh-
bors, and hence the players have no spatial mobil-
ity; and fourth, that each player is privy to com-
plete and accurate information about the gains and
behavior of his/her neighbors. Real-life situations
of interaction usually are far more complex, and
one may presume that, in general, they could lead
to even greater complexities of dynamical behavior
than those observed here.

Even our simplistic model indicates that the
global patterns generated can be so complex that it
may be difficult to find useful, simple-minded expla-
nations for real-life phenomena like “crime waves”
(wide dynamic fluctuations in crime statistics), and
oscillations in the stock market. Therefore, these
results indicate the challenges in making simple-
minded predictions of the global patterns of social
and economic phenomena by pointing out that even
if they are dependent on just a few, simple, deter-
ministic rules of local interaction, their behavior is
complex and very sensitive to initial conditions. We
note that such predictions appear difficult to make
not because of any inherent uncertainties, or reasons
like bounded rationality of the interacting agents;
they arise because of the inherent nonlinearity —
albeit simple to characterize — in the local interac-
tions among the agents.

Despite the challenges, it seems plausible that
with appropriate assumptions on local interactions,
and proper characterization of the lattice and the
initial conditions, this multidimensional approach
could lead to useful modeling and simulation of
certain social, political and economic phenomena.
The complexity of the dynamics suggests that,
in general, the best way to determine the global
dynamical evolution for different assumptions on
local behavior, is to “run the simulation.” Given
the scarcity of mathematical tools available to-
day for handling such systems, computer simula-
tions appear to be the most reasonable approach
to understanding and predicting their qualitative
global behavior.
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