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Abstract

We present an explicit form for the construction of approximate inertial man-
ifolds (AIMs) for a class of nonlinear dissipative partial differential equations by
using a perturbation technique. We investigate two numerical examples of the re-
action diffusion equation with polynomial nonlinearity and non-polynomial non-
linearity to show comparison of accuracy for our perturbation method with other
well-known nonlinear Galerkin methods such as Foias-Manley-Temam and Euler-
Galerkin methods. The proposed method for obtaining approximate inertial man-
ifolds, though computationally more expensive, provides superior accuracy when
compared with other AIM methods currently in use.
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1. Introduction

The aim of this paper is to present an explicit form for the construction of approxi-
mate inertial manifolds (AIMs) for a class of nonlinear dissipative partial differential
equations by using a perturbation technique.

An inertial manifold is a finite-dimensional, exponentially attracting, positively in-
variant Lipschitz manifold. Partial differential equations can be treated as infinite-
dimensional dynamical systems on a suitable Hilbert space. For certain classes of dis-
sipative dynamical systems [1] (see examples therein) inertial manifold theory allows
for the reduction of the infinite-dimensional dynamics to a finite-dimensional system of
ordinary differential equations referred to as inertial form which shares all the long term
dynamics of the original problem [2], [3].

Existence results of inertial manifolds can be found in Foias, Sell, and Temam [3]
and Mallet-Paret and Sell [4] (see the references therein). However, there are still many
dissipative partial differential equations for which the existence of inertial manifolds is
not known [5]. Foias, Manly and Temam [6] have introduced the concept of approxi-
mate inertial manifolds in the case of the two-dimensional Navier-Stokes equations for
which the existence of an inertial manifold is not known.

¿From a practical point of view, approximate inertial manifolds can be applied re-
gardless of the existence of an actual inertial manifold. They are useful because detailed
simulations, stability and bifurcation calculations can be performed on the inertial form
at a small fraction of the computational effort required to perform them on large-scale
discretizations of the original equations. And systems for which such calculations could
be prohibitively expensive may become tractable by using approximate inertial mani-
folds. [7]

The nonlinear evolutionary equation which we will study has the form

du

dt
+ Au + F (u) = 0, (1.1)

where A, with the appropriate boundary condition (Dirichlet, Neumann, periodic), is a
suitable linear, unbounded, self-adjoint and positive operator on a suitable Hilbert space
H with dense domain D(A) ⊂ H , while F is nonlinear operator and the nonlinear
term F (u) can be approximated by Taylor’s series (detail is later). Suppose further that
A−1 is compact. As a result, eigenfunctions of the operator A, {ej}∞j=1, with corre-
sponding eigenvalues 0 < λ1 ≤ λ2 ≤ · · · , form a complete orthonormal basis in H .
Let us denote P the orthogonal projection onto the span of the first Np eigenfunctions
{e1, e2, · · · , eNp} and let Q = I − P .

If u = u(x, t) is a solution of (1.1) we define p = p(x, t) and q = q(x, t) by p = Pu
and q = Qu. By projection of (1.1) on PH and QH , we find that p and q are solutions
of the coupled system of equations

dp

dt
+ Ap + PF (p + q) = 0, (1.2)

dq

dt
+ Aq + QF (p + q) = 0, (1.3)
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where Ap = APu = PAu and Aq = AQu = QAu.
The standard Galerkin approximation of (1.1) using Np modes can be expressed by

setting q = 0 in (1.2), i.e.,

dp

dt
+ Ap + PF (p) = 0. (1.4)

Instead, nonlinear Galerkin methods which are based on approximate inertial manifolds
(AIM) such as those introduced by Foias, Manley, and Temam [6], the Euler-Galerkin
AIM introduced by Foias, Sell, and Titi [8] approximate u = p+Φapp, where p satisfies
the inertial form

dp

dt
+ Ap + PF (p + Φapp) = 0, (1.5)

and each Φapp is defined by

Φapp(p) =

{ −A−1QF (p) FMT AIM
−τ(I + τAQ)−1QF (p) Euler-Galerkin AIM (1.6)

choosing τ comparable to λ−1
Np

[8]. Several functions Φapp have been introduced in [3],
[5], [9], [10].

In this paper we will be looking for a better approximate inertial manifold by using
a perturbation technique. Our approximate inertial manifold will be constructed by a
modification of the perturbation result for numerical purposes. The perturbation result
is expressed explicitly as a finite sum which is an approximate solution of the perturbed
equation obtained from the equation (1.3).

This paper is organized as follows: In section 2, we present a finite series for an
approximate solution of q in (1.3) by using a perturbation technique. And we construct
a sequence of approximate inertial manifolds by modification of this perturbation result.
In section 3, we investigate two numerical examples of the reaction diffusion equation
with polynomial and non-polynomial nonlinearities. We show better accuracy of our
perturbation method compared with other well-known nonlinear Galerkin methods. In
section 4, we summarize the advantages and disadvantages of our perturbation method
for the construction of approximate inertial manifolds.

2. Approximate inertial manifold with perturbation technique

This section has two parts. In the first part we introduce the perturbed equation from the
q-equation (1.3) by defining a small positive parameter ε. Then we obtain the approxi-
mate solution of q in the form of an explicit finite sum by using a perturbation technique.
In the second part we modify the previous result for numerical purposes to construct a
sequence of approximate inertial manifolds.
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2.1. Perturbation technique

Let us define a small positive number ε = 1/λNp+1 and the operator εA on QD(A) as
the linear operator L. Then the linear operator L is constant order with respect to ε, that
is,

Lq = εAq ∼ O(1).

This is because

Lq = L

∞∑
i=Np+1

(q, ei)ei

= εA

∞∑
i=Np+1

(q, ei)ei

=
1

λNp+1

∞∑
i=Np+1

λi(q, ei)ei

=
∞∑

i=Np+1

λ̃i(q, ei)ei, λ̃i = λi/λNp+1 ≥ 1

and

|Lq| =
∣∣∣∣∣∣

∞∑
i=Np+1

λ̃i(q, ei)ei

∣∣∣∣∣∣
≥

∣∣∣∣∣∣

∞∑
i=Np+1

(q, ei)ei

∣∣∣∣∣∣
= |q|.

Multiplying equation (1.3) by ε we obtain a perturbed equation

εq̇ + Lq + εQF (p + q) = 0, (2.1)

where operators L and Q are linear and the overdot denotes a derivative with respect to
the independent variable t.

Here, we apply the perturbation technique for the perturbed equation (2.1) for q.
This perturbed equation (2.1) is a regular perturbation problem because its solution , say
q(x, t, ε), converges as ε → 0, (i.e., Np →∞ uniformly with respect to the independent
variables x and t) to the zero function which is the solution of the limiting problem
Lq = 0.

So the idea is to expand the solution q(x, t, ε) in a power series in ε,

q(x, t, ε) = φ0(x, t) + εφ1(x, t) + ε2φ2(x, t) + · · · (2.2)

and use a partial sum of the infinite series (2.2) as an approximation of the exact q(x, t, ε)

qk(t) =
k∑

i=0

εiφi(t) (2.3)
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where the spatial index is suppressed to simplify the notation. (Hereafter we suppress
the spatial index, i.e., qk(t) = qk(x, t) and φi(t) = φi(x, t).) And the unknown functions
φi(t) are solved recursively, i.e., in the order φ0, φ1, · · · , φk.

By substituting the finite series expansion (2.3) into our perturbed equation (2.1) and
doing a derivative with respect to t we obtain

ε
[
φ̇0 + εφ̇1 + · · ·+ εkφ̇k

]
+ L

(
φ0 + εφ1 + · · ·+ εkφk

)

+ εQF
(
p + φ0 + εφ1 + · · ·+ εkφk

)
= 0, (2.4)

where φi’s are functions of x and t.
Collecting coefficients of equal powers of ε in equation (2.4) gives

Lφ0 + ε
[
φ̇0 + Lφ1 + QF (p + φ0)

]
+ · · · = 0, (2.5)

where only terms up to O(ε) have been retained. Here, we assume that QF (p + φ0) is
constant order with respect to ε, i.e.,

QF (p + φ0) = O(1). (2.6)

Equating the coefficient of ε0 to zero in (2.5) yields

φ0 = 0,

φ̇0 = 0.

And equating the coefficient of ε1 to zero in (2.5), we obtain

Lφ1 + QF (p) = 0,

i.e.,

φ1 = −L−1QF (p). (2.7)

Moreover, our assumption (2.6) can be rewritten as

QF (p) = O(1). (2.8)

To obtain the higher-order terms up to O(εk) in the power series solution (2.3), the
nonlinear term F satisfies the condition for Taylor’s theorem to use Taylor’s formula for

QF

(
p +

k∑
i=1

εiφi

)
about p. If F : R → R be of class Ck, we can consider Taylor’s
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formula for F

(
p +

k∑
i=1

εiφi

)
:

F
(
p +

k∑
i=1

εiφi

)

= F (p) + F ′(p)

[ k∑
i=1

εiφi

]
+ · · ·+ 1

j!
F (j)(p)

[
k∑

i=1

εiφi

]j

+ · · ·+ 1

k!
F (k)(p̃)

[
k∑

i=1

εiφi

]k

, (2.9)

where the prime denotes the derivative with respect to p and the value of p̃ lies between

p and p +
k∑

i=1

εiφi.

We now expand (2.9) in the form of a power series in ε. Since we are only interested
in terms up toO(εk), we only keep terms up toO(εk) inside the square brackets in (2.9),
that is,

[
k∑

i=1

εiφi

]j

=

[
k−j+1∑

i=1

εiφi

]j

+O(εk+1), for j = 1, 2, · · · , k. (2.10)

Thus by using the relationship (2.10) we can rewrite Taylor’s formula (2.9) in the
form of power series in ε as follows:

F
(
p +

k∑
i=1

εiφi

)

= F (p) + F ′(p)

[ k∑
i=1

εiφi

]
+ · · ·+ 1

j!
F (j)(p)

[
k−j+1∑

i=1

εiφi

]j

+ · · ·+ 1

k!
F (k)(p̃)

[
εφ1

]k

+O(εk+1)

:= F0 + εF1 + · · ·+ εjFj + · · ·+ εkFk +O(εk+1), (2.11)

F0 = F (p), for j = 1, 2, · · · , k − 1,

Fj = F ′(p)φj +
1

2!
F ′′(p)

[ ∑
i1+i2=j

φi1φi2

]
+

1

3!
F (3)(p)

[ ∑
i1+i2+i3=j

φi1φi2φi3

]

+ · · · +
1

j!
F (j)(p)


 ∑

i1+i2+···+ij=j

φi1φi2 · · ·φij


 , (2.12)
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for 0 < i1, i2, · · · , ij < j < k, and

Fk = F ′(p)φk +
1

2!
F ′′(p)

[ ∑

i1+i2=k

φi1φi2

]
+

1

3!
F (3)(p)

[ ∑

i1+i2+i3=k

φi1φi2φi3

]

+ · · · +
1

k!
F (k)(p̃)φk

1

where the value of p̃ lies between p and p +
k∑

i=1

εiφi.

For instance, the first three terms F1, F2 and F3 are

F1 = F ′(p)φ1,

F2 = F ′(p)φ2 +
1

2!
F ′′(p)

[ ∑
i1+i2=2

φi1φi2

]

= F ′(p)φ2 +
1

2!
F ′′(p) [φ1φ1]

= F ′(p)φ2 +
1

2!
F ′′(p)φ2

1,

F3 = F ′(p)φ3 +
1

2!
F ′′(p)

[ ∑
i1+i2=3

φi1φi2

]
+

1

3!
F (3)(p)

[ ∑
i1+i2+i3=3

φi1φi2φi3

]

= F ′(p)φ3 +
1

2!
F ′′(p) [φ1φ2 + φ2φ1] +

1

3!
F (3)(p) [φ1φ1φ1]

= F ′(p)φ3 + F ′′(p)φ1φ2 +
1

3!
F (3)(p)φ3

1.

Since the operator Q is linear, Taylor’s formula for F defined by (2.11) can be used
directly to induce a Taylor expansion for QF

(
p + εφ1 + · · ·+ εkφk

)
about p :

QF

(
p +

k∑
i=1

εiφi

)
= QF0 + εQF1 + ε2QF2 + · · ·+ εkQFk +O(εk+1). (2.13)

Using (2.13), we can rewrite equation (2.4) as
[
ε2φ̇1 + ε3φ̇2 + · · ·+ εkφ̇k−1

]
+

[
εLφ1 + ε2Lφ2 + · · ·+ εkLφk

]

+

[
εQF0 + ε2QF1 + · · ·+ εkQFk−1

]
= 0. (2.14)

Only if each QFi, i = 0, 1, 2, · · · , k, is constant order with respect to ε, i.e.,

QFi = O(1) i = 0, 1, 2, · · · , k − 1, (2.15)
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collecting coefficients of equal powers of ε in equation (2.14) gives

ε

[
Lφ1 + QF0

]
+ ε2

[
φ̇1 + Lφ2 + QF1

]
+ · · ·+ εk

[
φ̇k−1 + Lφk + QFk−1

]
= 0,

where terms up to O(εk) have been retained.
Equating the coefficient of each power of ε to zero, we obtain the explicit formula

for each φi as follows:

φ1 = −L−1QF0 = −L−1QF (p),

φ2 = −L−1
(
QF1 + φ̇1

)
= −L−1

(
QF ′(p)φ1 + φ̇1

)
,

φ3 = −L−1
(
QF2 + φ̇2

)
= −L−1

(
QF ′(p)φ2 +

1

2!
QF ′′(p)φ2

1 + φ̇2

)
,

...
φk = −L−1

(
QFk−1 + φ̇k−1

)

= −L−1

(
QF ′(p)φk−1 +

1

2!
QF ′′(p)

∑

i1+i2=k−1

[φi1φi2 ] +

1

3!
QF (3)(p)

∑

i1+i2+i3=k−1

[φi1φi2φi3 ] + · · ·+ 1

(k − 1)!
QF (k−1)(p)φk−1

1 + φ̇k−1

)
.

Thus we can get approximate solutions qk(t)’s as finite sums of φi(t)’s

qk(t) =
k∑

i=1

εiφi(t), k = 1, 2, · · · . (2.16)

Our approximate inertial manifolds Mk are closely related to these approximations, qk.

2.2. Construction of approximate inertial manifolds

The aim of this subsection is to present the construction of the sequence (Mk)k∈Z+ of
approximate inertial manifolds in detail. That is, the approximate inertial manifoldsMk

are constructed as the graphs of the functions Φk : PD(A) → QD(A) which will be
suitable approximations of the previous perturbation results under the assumption that
the nonlinear operator F has the Taylor expansion given by (2.9).

Considering k = 1 in equation (2.16) gives the first manifold M1 when F is a
differentiable function satisfying the condition (2.15). In practice, we assume that F is
a C1 function which satisfies

F (p) = O(1) with |F ′| ≤ K11 (2.17)

where the positive constant K11 is constant order with respect to ε.
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The approximate solution of q(x, t) in (1.3), say q1(t), is

q1(t) = εφ1(t) = −εL−1QF (p(t)) = −A−1QF (p(t)). (2.18)

Since q1 is a function of t through p(t), the related function Φ1, the function of p, can
be defined by q1 itself, i.e.,

Φ1(p) = −A−1QF (p). (2.19)

The graph of the function Φ1 is the approximate inertial manifold defined in C.
Foias, O. Manley and R. Temam [6] in the context of the Navier-Stokes equation and
subsequently used in many other articles, both theoretical and numerical. (see [5], [9],
[11])

Next we construct another manifoldM2 if the nonlinear operator F is a C2 function
which satisfies the sufficient conditions of (2.15):

F (p) = O(1), with |F ′| ≤ K21 and |F ′′| ≤ K22, (2.20)

where positive constants K21 and K22 are constant order with respect to ε.
In (2.16), q2(t) is rewritten as follows:

q2(t) = εφ1(t) + ε2φ2(t)

= −εL−1

(
QF (p(t)) + QF ′(p(t))εφ1(t) + εφ̇1(t)

)

= −A−1

(
QF (p(t)) + QF ′(p(t))q1(t) + q̇1(t)

)
(2.21)

where the overdot and the prime denote the derivative with respect to time and p, re-
spectively.

Here, at the second step k = 2, we will update q̇1 in (2.21) using Φ1, the best
approximation of q that we have so far obtained. That is, the nonlinear term F (p) in
(2.19) is replaced by F (p + Φ1(p)). And we can rewrite q̇1(t) as follows:

q̇1(t) = − ∂

∂t
A−1QF (p + Φ1(p))

= −A−1QF ′(p + Φ1(p))(ṗ + Φ̇1(p)) (2.22)

where the second equality (2.22) comes from the chain rule and the overdot denotes the
derivative with respect to time.

In (2.22) ṗ + Φ̇1(p) can be approximated by ṗ, and ṗ is better approximated using
equation (1.2) by

ṗ = −Ap− PF (p + Φ1(p)).

Hence, we can derive a better value for q̇1 in (2.21) and denote it by Φ̇1

Φ̇1(p) = A−1QF ′(p + Φ1(p))

(
Ap + PF (p + Φ1(p))

)
. (2.23)
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Thus the function Φ2 is defined by

Φ2(p) = −A−1

(
QF (p) + QF ′(p)Φ1(p) + Φ̇1(p)

)
, (2.24)

where Φ̇1 is given by (2.23).
Now we aim to generalize this idea to construct Mk, (k ≥ 3), recursively under

the assumption that the nonlinear operator F is a Ck function which satisfies the corre-
sponding sufficient conditions of (2.15).

We start by rewriting qk in (2.16)

qk = εφ1 + ε2φ2 + · · ·+ εkφk

= −εL−1

(
QF0 + εQF1 + ε2QF2 + · · ·+ εk−1QFk−1 + ε1φ̇1 + ε2φ̇2 + · · · εk−1φ̇k−1

)

= −A−1

(
QF (p) + QF ′(p)

[k−1∑
i=1

εiφi

]
+

1

2!
QF ′′(p)

[k−2∑
i=1

εiφi

]2

+ · · ·

+
1

(k − 1)!
QF (k−1)(p)

[
εφ1

]k−1

+ q̇k−1

)
+O(εk+1)

= −A−1

(
QF (p) + QF ′(p)qk−1 +

1

2!
QF ′′(p)q2

k−2 + · · ·

+
1

(k − 1)!
QF (k−1)(p)qk−1

1 + q̇k−1

)
+O(εk+1). (2.25)

We need to obtain better approximation for q̇k−1 by using the known best approxi-
mation Φk−1 of q up to this stage. That is, we define Φ̇k−1 by

Φ̇k−1(p) = A−1QF ′(p + Φk−1(p))

(
Ap + PF (p + Φk−1(p))

)
. (2.26)

Thus we can construct the manifold Mk with the equation

q = Φk(p), Φk : PD(A) → QD(A).

Here, Φk(p) can be defined recursively as

Φk(p)

= −A−1

(
QF (p) + QF ′(p)Φk−1 +

1

2!
QF ′′(p)Φ2

k−2 + · · ·+
1

(k − 1)!
QF (k−1)(p)Φk−1

1 + Φ̇k−1

)
, (2.27)

where Φ̇k−1(p) is defined in (2.26).
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3. Numerical experiments

In this section we present some numerical experiments to support the results of the pre-
vious section. We will show that the higher order approximate inertial manifold Φ2(p)
gives more accurate results than Φ1(p) and the Euler-Galerkin method. We investi-
gate two numerical examples of the reaction diffusion equation subject to homogeneous
Dirichlet boundary conditions with different nonlinear terms: 1. non-polynomial non-
linearity and 2. polynomial nonlinearity.

For the purpose of computational demonstrations, we consider the reaction diffusion
equation

ut − νuxx + F (u) = 0, x ∈ (0, π), t > 0 (3.1)

subject to homogeneous Dirichlet boundary conditions,

u(0, t) = u(π, t) = 0, t ≥ 0 (3.2)

where the diffusivity ν is a positive constant. The function F (u) is nonlinear. We note
that the 1-D Laplacian operator −∂xx with the Dirichlet boundary condition (3.2) is a
linear, unbounded, self-adjoint and positive operator possessing a compact inverse.

We apply semi-finite difference method to obtain a system of ordinary differential
equations. A continuous function u = u(x, t) is discretized on an equidistant spatial
grid xj = jh, 1 ≤ j ≤ M , where h =

π

M + 1
is the step size in spatial direction.

Discretizing the boundary valued problem (3.1), (3.2) in the spatial variable it can be
reduced to a system of ordinary differential equations: for j = 1, 2, · · · , M

duj

dt
− ν

h2
(uj+1 − 2uj + uj−1) + F (uj) = 0 (3.3)

u0 = uM+1 = 0

where M is the number of unknowns and indices 0 and M + 1 denote the boundary
values.

Let us consider a column vector u :

u(t) = (u1, · · · , uM)T

whose components are real valued functions of t. In matrix form the ODE system (3.3)
can be written as

du

dt
+ Au + F (u) = 0, (3.4)

where A is a tridiagonal matrix of order M :

A = tridiag
(
− ν

h2
, 2

ν

h2
,− ν

h2

)
,
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and F (u) is a column vector of the length M with the contribution from the homoge-
neous boundary condition (3.2) :

F (u) =




F (u1)− ν

h2
u0

F (u2)
...

F (uM−1)

F (uM)− ν

h2
uM+1




=




F (u1)
...
...

F (uM).


 (3.5)

This ODE system (3.4) can be solved using spectral methods by projecting the set
of equations in (3.4) onto the eigenbasis of A (see [1]). Let E be the matrices whose
columns are the eigenvectors of A, ordered in terms of increasing eigenvalues 0 < λ1 ≤
λ2 ≤ · · · ≤ λM .

Let U = ET u, i.e., u = EU . Substituting EU into u and multiplying (3.4) by ET ,
we obtain

dU

dt
+ ΛU + G(U) = 0, (3.6)

where

Λ = ET AE

= diag(λ1, λ2, · · · , λM)

G(U) = ET F (EU)

:= (G1, G2, · · · , GM)T .

Equation (3.6) is the starting point for the computational analysis of approximate
inertial manifolds since it is suitable for decomposition into dominant and enslaved
modes. We assume that the dominant p-modes are Np. Then we can decompose equa-
tion (3.6) into dominant and enslaved modes, i.e.,

dp

dt
+ Λpp + Gp(p, q) = 0 (3.7)

dq

dt
+ Λqq + Gq(p, q) = 0 (3.8)

where

Λp = diag(λ1, λ2, · · · , λNp),

Λq = diag(λNp+1, λNp+2, · · · , λM),

Gp = (G1, G2, · · · , GNp)
T ,

Gq = (GNp+1, GNp+2, · · · , GM)T ,

p = (U1, U2, · · · , UNp)
T := (p1, p2, · · · , pNp)

T ,

q = (UNp+1, UNp+2, · · · , UM)T := (q1, q2, · · · , qNq)
T ,

(p, q) = (U1, U2, · · · , UM)T = (p1, · · · , pNp , q1, · · · , qNq)
T .
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The construction of the approximate inertial manifold through the result of the pre-
vious section can be given by

Φ1(p) = −Λ−1
q Gq(p) (3.9)

Φ2(p) = −Λ−1
q

(
Gq(p) + G′

q(p)Φ1(p) + Φ̇1(p)

)
(3.10)

Φ̇1(p) = Λ−1
q

(
G′

q(p, Φ1(p))
(
Λpp + Gp(p, Φ1(p))

))
(3.11)

where the overdot and the prime denote the derivative with respect to time and p, re-
spectively.

The approximate inertial manifold (3.9), q = Φ1(p), is nothing but FMT AIM in
(1.6). The Euler-Galerkin AIM in (1.6) (say, Φ(p)) is given by

q = Φ(p) = −τ(I + τΛq)
−1Gq(p) (3.12)

where I is the identity matrix and the time scale τ is equal to 1/λNp+1 for the sake of
simplicity (see [7]). The standard Galerkin approximation of (3.6) using Np modes is

dp

dt
+ Λpp + Gp(p) = 0. (3.13)

We will now compare the accuracy of different methods for solving equation (3.1)
using the solution obtained by the semi-finite difference method with sufficiently fine
discretization as our ”exact” solution. We consider four different methods:

1. the standard Galerkin approximation (denoted by SG in Tables and Figures),

2. the Euler-Galerkin approximation of equation (3.12) (denoted by EG),

3. the perturbation method with the first term only (3.9) which was introduced by
Foias, Manley, and Temam [6] (denoted by P1),

4. the modified perturbation method with two terms (3.10) and (3.11) (denoted by
P2).

We shall compare SG, EG and P1 with our AIM obtained by the modified perturba-
tion method using two terms Φ1 and Φ2 in (3.10) and (3.11). All our algorithms are im-
plemented in Matlab and the numerical simulations are performed with the ODESUITE
stiff stable integrator ODE15s.

We investigate two numerical examples of the reaction diffusion equation subject to
homogeneous Dirichlet boundary conditions

• Example 1.

ut − 1

3
uxx − eu/(1+au) = 0

u(x, 0) = 0, x ∈ (0, π)

u(0, t) = u(π, t) = 0, t ≥ 0
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where a is a positive constant.
• Example 2.

ut − 0.16uxx + u3 − bu = 0

u(x, 0) = sin x, x ∈ (0, π)

u(0, t) = u(π, t) = 0, t ≥ 0,

where b is a positive constant.
The first five figures (Figures 1 through 5) are related to the numerical results of Ex-

ample 1, the non-polynomial nonlinearity example. Figures 1 and 2 show convergence
diagrams with errors measured at time T = 1. Figure 1 is for different values of the
parameter a but for fixed number of unknowns M = 40. Figure 2 is for different M but
fixed a = 1. In these figures, we display the L2-errors as a function of Np. The value Np

is represented on the horizontal axis and the corresponding L2-error is on the vertical
axis. The value of Np grows by 4 in the range [4,16] which corresponds to 10% through
40% of the total number of modes M . In each of Figures 3 and 4, we show four plots in
which the L2-errors are compared for different methods as a function of the parameter
a for different Np’s when M = 40 and 80, respectively. In both Figures 3 and 4, Np

has the same four different values 4, 8, 12, and 16 which correspond to 10% through
40% of M = 40 in Figure 3 and 5% through 20% of M = 80 in Figure 4. In each plot,
the value of a is represented on the horizontal axis and the corresponding L2-error is
on the vertical axis. Here, the parameter a grows in powers of 2 in the range [2−4, 24].
In Figure 5, we show four plots of different nonlinear terms and their first and second
derivatives. Each plot has different values of a = 1/16, 1/2, 2, and 16.

The next six figures (Figures 6 through 11) are related to the numerical results for
Example 2, the polynomial nonlinearity example. Specifically, Figures 6 through 10
correspond to Figures 1 through 5, respectively. Here, the L2-error is measured at time
T = 40. The final time T = 40 was chosen well into the steady state by demanding
that |u(T ) − u(T − 1)| ≤ 10−11. In Figures 8 and 9, the parameter b has four values
of 1, 2, 3, and 4. Figure 11 shows the importance of choosing a sufficiently large value
of Np to achieve better accuracy of our perturbation method with two terms (P2). Here,
the L2-errors for the Euler-Galerkin method (EG) and the perturbation method with two
terms (P2) as a function of b for Example 2 when M = 40 are presented.

In Figures 1 and 6, for both non-polynomial and polynomial nonlinearity examples,
our perturbation method with two terms P2 is superior to the others for all considered
values of Np (10% through 40% of M ). We note that changing the parameter a in
Example 1 and the parameter b in Example 2 contributes to significant changes in the
derivative terms F ′(u) or F ′′(u). This allows us to study their influence on the perfor-
mance of all algorithms. For all a and b values we considered, P2 is superior to the
others when Np = 12 and 16. But for smaller values of Np = 4 and 8, P2 could not
improve the accuracy when a = 1/16 and 16 for Example 1 and b = 4 for Example
2 (see Figures 1 and 6). This is because P2 needs the conditions (2.20) to be satisfied
related to the nonlinear term. When Np = 4, i.e., ε = 1/λ5, the first or the second
derivative of the nonlinear term is increasing too much to satisfy the conditions (2.20)
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Figure 1: Convergence result of Example 1 for the number of unknowns M = 40
: The L2-errors committed by the four different methods with different value of
Np = 4, 8, 12, 16 and the parameter a for the reaction diffusion equation with the non-
polynomial nonlinearity.

as u is increasing (see Figure 5 and 10). This indicates that Np = 4 may be too small
to satisfy the conditions (2.20). We conclude that the conditions (2.20) for P2 must be
satisfied in order to gain improvement in accuracy.

Furthermore, we can see from Figures 2 and 7 that the accuracy depends on ε, i.e.,
on the value of Np and not on the percentage of p-mode (i.e., ratio Np/M ). For example,
Np = 8 is 40% of M = 20, 20% of M = 40 and just 10% of M = 80. All these cases
show very close L2-errors in Figures 2 and 7. This is much clearer in Figures 3, 4, 8,
and 9. We have the same pattern of accuracy when we preserve the same ε for different
values M = 40 and 80 in both Example 1 and Example 2.

Finally, we will compare our perturbation method P2 with the Euler-Galerkin method
EG which has been used in many studies (see [8], [7], [1]). Here, the parameters a and
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Figure 2: Convergence result of Example 1 for the parameter a = 1 : The L2-errors
committed by the four different methods with different Np and the number of unknowns
M . Each Np is corresponding to 10% through 40% of four different M ’s.



A Perturbation Approach for Approximate Inertial Manifolds 31

0.0625 0.25 1 4 16
10

−8

10
−6

10
−4

10
−2

10
0

Np=4 (10%)

L2
−e

rr
or

epsilon=0.1215

SG
EG
P1
P2

0.0625 0.25 1 4 16
10

−8

10
−6

10
−4

10
−2

10
0

Np=8 (20%)

epsilon=0.0385

0.0625 0.25 1 4 16
10

−8

10
−6

10
−4

10
−2

10
0

Np=12 (30%)

a

L2
−e

rr
or

epsilon=0.0193

0.0625 0.25 1 4 16
10

−8

10
−6

10
−4

10
−2

10
0

Np=16 (40%)

a

epsilon=0.0120

M=40 

Figure 3: Accuracy of Example 1 as a function of the parameter a for different Np’s
when M = 40 : The parameter a grows in powers of 2 in the range [2−4, 24] for each
different value of Np = 4, 8, 12, 16 which is corresponding to 10% through 40% of
M = 40. Here, epsilon is ε = 1/λNp+1.
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Figure 4: Accuracy of Example 1 as a function of the parameter a for different Np’s
when M = 80 : The parameter a grows in powers of 2 in the range [2−4, 24] for each
different value of Np = 4, 8, 12, 16 which is corresponding to 5% through 20% of M =
80 . Here, epsilon is ε = 1/λNp+1.
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Figure 5: Nonlinear term and its first and second derivatives of Example 1 : F (u) is
the nonlinear term of Example 1. F, DF and DDF stand for F (u), F ′(u) and F ′′(u),
respectively. This figure helps to see that our AIM P2 needs conditions (2.20).
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Figure 6: Convergence result of Example 2 for the number of unknowns M = 40 :
The L2-errors committed by the four different methods with different value of Np =
4, 8, 12, 16 and the parameter b for the reaction diffusion equation with the polynomial
nonlinearity.
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b are fixed to be unity and the total number of modes M is 40 for both examples.

Table 1: Comparison of the accuracy for Example 1 (non-polynomial nonlinearity)
when a = 1, M = 40, and T = 1

Np ε EG P2 EG/P2
4 .122 9.00e-2 1.82e-4 495
8 .039 1.48e-2 7.64e-6 1,937

12 .019 5.13e-3 8.85e-7 5,797
16 .012 2.41e-3 2.08e-7 11,587

Table 2: Comparison of the accuracy for Example 2 (polynomial nonlinearity) when
b = 1 and M = 40

T=1 T=40
Np ε EG P2 EG/P2 EG P2 EG/P2
4 .253 2.85e-2 6.31e-3 5 5.59e-2 9.33e-3 6
8 .080 7.71e-4 2.33e-5 33 1.76e-3 2.74e-5 64

12 .040 1.83e-5 2.26e-7 81 5.54e-5 2.21e-7 251
16 .025 4.35e-7 2.54e-8 17 1.79e-6 2.84e-9 630

For the non-polynomial nonlinearity example (Example 1), the error of P2 is at least
about 500 times smaller than the error of EG, see Table 1. This Table 1 corresponds to
Figure 3. Furthermore, the ratio of error (EG/P2) is increasing up to 10,000 times as Np

is increasing from 4 to 16. However, for the polynomial nonlinearity example (Example
2), P2 could not improve the accuracy as much as for the Example 1. The ratio of
error (EG/P2) at T = 1 is less than 81, see Table 2. When T = 40, the improvement
in accuracy by using P2 is substantial for Np = 12 and 16. Thus, we can conclude
that P2 gives better accuracy than EG for all reasonable values of Np = 4 through 16.
Moreover, its improvement in accuracy increases as Np increases.

Summarizing the results of our numerical experiments, we see that P2 improves the
accuracy of P1 and that P2 is much more accurate than SG and EG for both polynomial
and non-polynomial nonlinearity whenever the value of Np satisfies conditions (2.20).
If Np is too small to satisfy conditions (2.20), we gain little improvement in accuracy
by using our perturbation method P2 (see Figure 11).
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4. Concluding remarks

In this paper we have presented the construction of a sequence of approximate iner-
tial manifolds (AIMs) by using a perturbation technique. These approximate inertial
manifolds are constructed by modification of our perturbation result depending on the
smoothness and boundedness of the nonlinear term F (u). The perturbation result is ex-
pressed explicitly as a finite sum in ε which is an approximate solution of the q-equation.

Compared with other versions of the nonlinear Galerkin methods such as Foias-
Manley-Temam AIM (elsewhere P1) Euler-Galerkin AIM (EG), our AIM obtained by
the modified perturbation method with two terms (denoted by P2) is far more accu-
rate for both polynomial and non-polynomial nonlinearities whenever the number of
p-modes, Np, satisfies conditions (2.20). With respect to efficiency, however, our P2
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Figure 7: Convergence result of Example 2 for the parameter b = 1 : The L2-errors
committed by the four different methods with different Np and the number of unknowns
M . Each Np is corresponding to 10% through 40% of four different M ’s.
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Figure 8: Accuracy of Example 2 as a function of the parameter b for different Np’s
when M = 40 : The parameter b has four values of 1, 2, 3, and 4 for each different
value of Np = 4, 8, 12, 16 which is corresponding to 10% through 40% of M = 40.
Here, epsilon is ε = 1/λNp+1.
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Figure 9: Accuracy of Example 2 as a function of the parameter b for different Np’s
when M = 80 : The parameter b has four values of 1, 2, 3, and 4 for each different
value of Np = 4, 8, 12, 16 which is corresponding to 5% through 20% of M = 80.
Here, epsilon is ε = 1/λNp+1.
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Figure 10: Nonlinear term and its first and second derivatives of Example 2 : F (u) is
the nonlinear term of Example 2. F, DF and DDF stand for F (u), F ′(u) and F ′′(u),
respectively. This figure helps to see that our AIM P2 needs conditions (2.20).
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is more costly than P1 and EG. Computational cost for our AIM almost doubles. This
is because, when compared with P1 and EG, our AIM P2 includes the derivative of
the nonlinear term as well as the nonlinear term itself. In our new method we can add
more higher-order terms for even better accuracy under restriction of the smoothness
and boundedness of the nonlinear term F (u). But more higher-order terms make for
harder implementation, and higher computation costs.
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