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Pr';e'ssfr'mlgg:q?d?cg Since its inception about 200 years ago, Lagrangian mechanics has been based upon the
Engineering, Electrical Principle of D’Alembert. There are, however, many physical situations where this con-
Engineering, and Economics fining principle is not suitable, and the constraint forcde work. To date, such situations
are excluded from general Lagrangian formulations. This paper releases Lagrangian
University of Southern California, mechanics from this confinement, by generalizing D’Alembert’s principle, and presents
Los Angeles, CA 90089-1453 the explicit equations of motion for constrained mechanical systems in which the con-
straints are nonideal. These equations lead to a simple and new fundamental view of
Lagrangian mechanics. They provide a geometrical understanding of constrained motion,
and they highlight the simplicity with which Nature seems to operate.
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1 Introduction D’Alembert’s principle, and each of these mathematical formal-

isms is equivalent to the other. Despite the continuous and vigor-

_On(_e of the central problems in classical mechanlcs is the detg[}s attention that this problem has received, the inclusion of situ-
mination of the equations of motion for constrained systems. TI&

. fions where the physically generated forces of constraint in a
importance of the problem stems from the fact that what make chanical systerSoynotsa);is?‘y D’Alembert’s principle has so
set of point masses and r'g'd bodies, a “system,” Is the Presents evaded Lagrangian dynamics. Yet, such forces of constraint
of constraints. When physmal constraints are |_mposed on an Uiy among those quite commonly found in nature. As stated by
constrained set of particles, forces of constraint are engende@

. i A . . dstein([9], p. 17, “This [total work done by forces of con-
which ensure the satisfaction of the constraints. The equations f i equal to zeds no longer true if sliding friction is present,

motion developed to date for such constrained systems are baggq\\ o must exclude such svstems from fduagrangia formu-
on a principle fir_st enunciated _by D'Alemb_ert, an_d later elaboratq tion” ([9]). And Pars in his %/reatisés]) on analyti(?al dynamics
by Lagrangd 1] in his Mechanique Analytiquahich dates back (1979, p. 14 writes, “There are in fact systems for which the

to 1787. Today the principle is referred to as D’Alembert’s prin: rinciple enunciate@D’Alembert's principld . .. does not hold.
ciple, and it is the centerpiece of classical analytical dynamics.g{,; such systems will not be considered in this book.”

states, simply, that the total work done by the forces of constraint), this paper we obtain the equations of motion for constrained
under virtual dis_pla_ceme_nts is always zero. Constraints_forwhig@stems where the forces of constraint indeed do not satisfy
D'Alembert's principle is applicable are referred to &®al 5 alembert’s principle, and the sum total of the work done by
constraints. _ them under virtual displacements no longer need be zero.

Since its initial formulation by Lagrange more than 200 years rhe oytline of the paper is as follows. In Section 2.1 we gen-
ago, the problem of constrained motion has been vigorously agghjize p'Alembert’s Principle to include constraint forces that
continuously worked on by numerous scientists including Volfyork. This leads us to a deeper understanding of the specification
erra, Boltzmann, Hamel, Whittaker, and Synge, to name a few. ¢ constraints in mechanical systems. This we discuss in Section
1829, Gaus$2] provided a new general principle for the motion 5 gection 3 deals with the mathematical statement of the prob-
of constrained mechanical systems in what is today referred t0)gg, of constrained motion. Section 4 states and verifies the ex-
Gauss's Principle. About 100 years after Lagrange, GiBband  pjicit equation of motion for constrained systems with nonideal
Appell [4] independently discovered what are known today as theality constraints. This equation leads to a new and fundamental
Gibbs-Appell equations of motiof3,4). Pars([5], p. 202 refers — principle of Lagrangian mechanics. The proof we give here is
to the Gibbs-Appell equations 45]) ... probably the MOSt simpler than the one given if10]), and it yields an important
comprehensive equations of motion so far discovered.” Dirageometrical interpretation that we discuss later. Section 5 gives an
because of his interest in constrained systems that arise in qUaRample of a nonholonomically constrained system for which the
tum mechanics, in a series of papers from 1951 to 1969 developgghstraints are nonideal. We show here the ease of applicability of
an approach for determining the Lagrange multipliers for cofpe explicit equation of motion obtained in the previous section
strained Hamiltonian systenig6]). More recently, Udwadia and gng point out the insights it provides into understanding con-
Kalaba[7] presented a simple, explicit, set of equations, applisrained motion where the constraint forces do work. Lastly, Sec-
cable to general mechanical systems, with holonomic and nqgsp 6 deals with the geometry of constrained motion and exhibits

holonomic constraint§7,8]). o ) the simplicity and aesthetics with which Nature seems to operate.
However, all these alternative descriptions of the motion of

constrained systems discovered so far, as well as the numerous
articles that have subsequently dealt with them, rely on
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tem at any timet, equals the number of degrees-of-freedom of themple, sliding frictional forcegsare in fact commonplace, and
system. The Lagrangian equation of motion for such a system daave to date defied5,9]) inclusion in a simple way within the
be written in the form general framework of analytical mechanics. The main reason for
G - — - _¢ this difficulty is that three obstacles need to be simultaneously
M(@.0a=Q(a.a.).  a(0)=do. A(0)=0o @ surmounted. Firstly, we require the specification of such con-
where q(t) is the n-vector (i.e., n by 1 vectoj of generalized straint forces to be general enough so that they encompass prob-
coordinatesM is ann by n symmetric, positive-definite matriQQ  lems of practical utility. Secondly, this specification must, in order
is the “known” n-vector of impressed forces, and the dots refer t& comply with physical observations, yield the accelerations of
differentiation with respect to time. By “known,” we shall meanthe constrained systemmiquelywhen using the accepted math-
thatQ is a known function of its arguments. The accelerat@n, ware of analytical dynamics that has been developed over the last
of the unconstrained system at any tinés then given by the 250 years. And lastly, when the constraint forces do no work, we

relationa(q,q,t)=M ~*(q,t)Q(q,q.t). must obtain the usual formalisms/equations that have thus far
We shall assume that this system is subjected to a set ofbeen obtainede.g., by Lagrange, Gibbs, Appell, and Gaussd
=h+s consistent equality constraints of the form are known to be of practical value.
(q.1)=0 @) Clearly, the work done by such a constraint force under virtual
®La, displacements at each instant of time needs to be known, and
and must therefore be specified using some knawrectorC(q,q,t),
S asv'C. Such an additional specification calls for a generalization
#(a.q,)=0, ®) of D’Alembert’'s principle. We make this generalization in the

where ¢ is anh-vector andy an s-vector. Furthermore, we shall following manner:

assume that the initial conditiorg, and q, satisfy these con-  For any virtual displacement at time t, the constraint force
straint equations at time=0. Assuming that Eqg2) and(3) are n-vector ( at time t does a prescribed amount of work given by
sufficiently smooth, we differentiate E(R) twice with respect to

time, and Eq(3) once with respect to time, to obtain the equation vTQ%(t)=v"C(q,q,t). (6)

A(a,0,1)9=b(a,q.1), (4) HereC(q,q,t) is a knownn-vector(i.e., a known function of, q,
where the matrixA is m by n, andb is a suitably definedhvector ~andt) that needs to be specified and depends on the physics of the
that results from carrying out the differentiations. situation, as discussed in the example below. The work done by

This set of constraint equations includes among others, tHee constraint force in a virtual displacement may thupdsitive,
usual holonomic, nonholonomic, scleronomic, rheonomic, catGEQHtIV?, or zero o ' o .
static, and acatastatic varieties of constraints; combinations ofRelation(6) constitutes a new principle. This principle requires
such constraints may also be permitted in Ej. It is important @ description of the nature of the nonideal constraint force at time
to note that Eq(4), together with the initial conditions, is equiva-t through a specification of the work it does during a virtual dis-
lent to Egs.(2) and (3). placement at that time. It generalizes D’Alembert’s principle, and

Consider now any instant of time When the equality con- whenC=0, it reduces to it. In what follows we shall often refer to
straints(Egs.(2) and(3)) are imposed at that instant of time on thghe constraint forca-vector,Q°, as the constraint force.
unconstrained system, the motion of the unconstrained system i

S I . . .
in general, altered from what it would have bdanthat instant of 2.2  Specification of Constraints. The equations of motion

gﬁovide a mathematical model for describing the motion of any

time) in the absence of these constraints. We view this alterati en physical mechanical system. The constraints specify the
in the motion of the unconstrained system as being caused bygé\ﬁ | PNy System. P e
onditions that the generalized displacements and/or velocities

additional set of forces, called the “forces of constraint,” actin%“ust satisfy at each instant of time as the motion of the system
on the system at that instant of time. The equation of motion . . Y
ensues under the action of the impressed forces. However, the

the constrained system can then be expressed as equations that state these conditidifisgs. (2) and (3)) do not
M(g,1)g=Q(q,q,t)+ Q%(q,q,t), q(0)=q,.,q(0)=qo (5) completely specify the influence of these constraints on the motion
iy B . , o of the mechanical systerfor short, we shall say that E¢) and
where the additional “constraint force’h-vector, Q%(q.d.t), (3) do not completely specify the constraints on the mechanical
arises by virtue of the constraint?) and (3) imposed on the system. This is what the generalized D’Alembert’s principle tells
unconstrained system, which is described by &y.Our aimisto ;g
determineQ° explicitly at timet in terms of the known quantities  There is a second part to the specification of the constraints, and
M, Q, A b, and information about the nonideal nature of thenis deals with thenature of the forces that are created by virtue
constraint force, at timé¢. The latter comes from looking at the of the presence of the constrainfor this, the mechanician who
physics of the system. o is modeling a specific mechanical system needs to study the sys-
A virtual displacement[8]) at timet is any nonzera-vectorv  tem, possibly through experimentation, or otherwise. It is this in-
such thatA(g,q,t)v =0. When the constraint foraevector does formation regarding the nonideahture of the force of constraint
nowork under virtual displacements we havev TQ®=0. Thisis that is encapsulated in the vec®(q,q,t).
also referred to as D’Alembert’s principle, and it is the basis that For example, consider a rigid block that is confined to move on
underliesall the different formalism¢[1-8]) hereto developed of a horizontal surface=0. The specification of this relatiofi.e.,
the equations of motion for mechanical systems subjected to the 0) doesnot constitute a complete specification of the con-
constraints described by Eq®) and(3). straint. For, the presence of this constraint creates a constraint
As demonstrated elsewhef§7,8]), one formalism that yields force, and this force influences the motion of the block. So to
an explicit equation describing the motion of such a constrainegjequately model the motion of the block on the surface, one
system that abides by D’Alembert’'s principle is given Mg needs to prescribe theatureof this constraint force. Such a pre-
=Q+MYB*(b—Aa)=Q+Q°, where them by n matrix B scription is situation-specific and must be specified by the mecha-
=AM~%2 andB™ stands for the Moore-Penrose generalized imician either by experimentation with the system, by observation,
verse([11]) of the matrixB. by analogy with other systems)he has experience with, or by
The central question that arises now is how to incorporate intfmme other means. For example, if the mechanician finds that the
the equation of motiongonstraintsthat do do work under virtual surfaces in contact are rougehe may want to perform some
displacements, thereby bringing such constraints within the Laxperiments to understand the nature of the forces created by the
grangian framework. Such nonideal constraint for¢es ex- presence of this constraint. For a specific sefgfhe may find
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that the work done by the constraint force under virtual displace-We require to find then-vectorQ°(q,q,t) such that
ments is proportional to the speed of the block, or perhaps to the . . o ) .
square of its speed. Thus, depending on the situation at iand, 1 M(4.)9=Q(a,a,)+Q%(q.q.t), with q(0)=qo, q(0)

. a% ik . =0, andQ a known function ofg, g, andt; (S)
would then be spemf.led asao[qy] or ao\q|[qy] respectively, 2 (1) =0, #(q,8,) =0, with ¢(00,0)=0; b(qo,t) =0, and
wherea, may be a suitable constant whose value would also need y(q,,00,0)=0; and, (S2

to be prescribedperhaps by performing more experiments, 3 for all vectorsv such thatA(qg,q,t)v=0, we require
further, the roughness of the surface changes from location to ,,7Q°(t)=y"C(q,q,t), where then-vector C(q,q,t) is a
location, additional experimentation may be warranted, and a fur-  known function of its arguments. It specifies thature of

ther refinement may be required in specifying the ve€toOr, in the constraint forces. (S3
some other situation,C may perhaps be modeled as ) ) ) )
—a,Q%q,q.t) (see Eq(11) below). We remind the reader that ite(82) above is equivalent to Eq.

The invocation of D’Alembert's principle when modeling a me{4): and item(S3) is our generalized D'Alembert's principle as
chanical system is then clear. D'’Alembert's principle specifies tiiated in Section 2. . . .
nature of the constraint forces by simply sett@g:0. It points to Xt we shall provide the explicit equation of motion that
the genius of Lagrange, for this specification accomplishes tRg'€rges from the above mathematical statement, and furthermore
following three things simultaneously. show that the accelerations provided by it are unique. From _here
on, for clarity, we shall suppress the arguments of the various
1 It provides a condition that enables the accelerations of theantities.
constrained system to h#niquely determined, something desir-
able when dealing with mechanical systems. 4. Equation of Motion for Constrained System With
2 It specifies the nature of the constraint force through the

hoc specification o€=0. This allows the mechanician to model onideal Constraints
a given mechanical systemithout having to explicitly provide  Resylt 1. An equation of motion of the constrained mechani-

further information(beyond that contained in the constraint Eqs;q| system that satisfies conditio81)—(S3 given in the previ-
(2) and/or (3)) on the nature of the constraint forces that areqys section is explicitly given by

created by the presence of the constraints. Most importantly, it o 1 y
therefore obviates the need for situation-specific experimentationMd=Q+Q°=Q+M*B*(b—Aa)+M 1 -B*B}M1C.
observation, etc., that would have been otherwise necessary to (7

specify C when modeling a specific mechanical system. Proof. We shall prove that the constraint foneerector,Q°, given
3 This specification o€=0 works well(or at least sufficiently by Eq.(7) satisfies(S)—(S3.

well) in many practical situations. This is perhaps the most re- (S1) The form of Eq.(7) shows tha(S1) is satisfied.
markable attribute of D’Alembert’s principle, and it points to the (S2 Using g from Eq. (7) in Eq. (4) gives
genius of Lagrange.

. . . . _ Ag=Aa+BB*(b—Aa)+B(I-BTB)M~YC
All this becomes quite obvious, especially when modeling the

problem of sliding friction where we immediately recognize that =Aa+BB"b—BB'BMY%a
the equation that describes the motion of the block on a horizontal N 2 N

surface must depend not only of the constraint equatier), but =Aa+BB b—BM™a=BB"b, (®)
indeed also on theature of the constraint force engendered byyhere we have used the relatioas M ~1Q, BB*B=B, andB

this constraint. And the latter depends on the physics of the spea \-12 Equation(4) can be expressed &MY2j)=b, and
cific situation—the materials in contact, the surface roughnesnging consistent, implie§8]) that BB*b=b. Using this }n the

etc., and, of course, the intended use that the mechanician W3l hand side ir(11) proves that the acceleratidnsatisfies Eq.

° gﬂ: |trr1] erlg(l);i[ieclatlodynamics we may have got so used to invol£4)' Hence(S2) is satisfied.
i) - B Cc . .
ing D’Alembert’s principle, which obviates the explicit need to (S3 As seen from(7), the constraint forceQ”, is given by

specify thenatureof the constraint force for any given mechanical  Q°=Q°+Q%=MB*(b—Aa)+M¥¥|1-B*BIM~V2C.

system by implicitly takingC=0, that it is tempting to think that (9)
such a specification may be wholly unnecessary, even in general.
One perhaps may then get the impression that the equations
specify the constraintéEqgs. (2) and/or(3)) are all that is neces-
sary for properly posing the problem of constrained motibinis {u|Bu=0u#0}}=u"™M ¥2Q= "M~ Y2C, (10)
indeed is not soSpecification of the nature of the constraint o - ) o Toa

forces isalways necessary. The generalized D’Alembert’s prinBut Bu=0 implies "B™=0, and this([8]) implies . B =0.
ciple stated in Section 2.1 reminds us that, D'Alembert's principlBY Ed. (9) we then haveu™ ~Y2Q°=u"B* (b—Aa)+ u'{I
provides, in factpne particularspecification for the nature of the —B*B}M~Y2C= "M ~2C, which is the required resul63.0]

constraint force. As in the case of sliding frictiod,may not be Result 2. The equation of motion for the constrained system

zero, and its explicit specification is necessary, in general. Sucréieen by (7) is unique
specification, as mentioned before, is situation-specific and rel SProof. Assume there exists another set of solution vectprs

on the discernment and discretion of the mechanician who is mod-. c -
eling the system. +e and Q°+R such that(S1)—(S3) are also satisfied. We must

Having explained what we mean by “specification of contlen hav_el\/l(d+é):Q+Q°+_R_, and by(5), Me=R. Similarly,
straints” for a given, constrained mechanical system at hand, @éd+ € =D, and by Eq(4), Ae=0. So then-vectore qualifies as
now need to explicitly determine its equation of motion. We staft Virtual displacement. Also, for all virtual displacementswe

by providing a statement of the problem of constrained motionmMust havev '(Q°+R)=v'C, so thatv'R=0. Thuse'R=¢é'Mé
=0, and hencee=0 becauseM is positive definite. SinceR

; =Me=0, uniqueness follows. O
3 General Statement of the Problem of Constrained Thus Eq.(7) gives theuniqueequation of motion describing the

Motion With Constraints That Do Work acceleration of a constrained mechanical system where the con-
In the notation that we have thus far developed, the problem gifaints are nonideal and the constraint forces do an amount of
constrained motion can now be mathematically stated as followsork (under the virtual displacement) given byvTC(q,q,t),

eB=AM"12 after settingy=M 24, (S3 is equivalent to
proving that
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with the n-vectorC being known. We explain the salient featureszfvT(aOuTu)(u/|u|), whereu is the velocity of the particle and
of Egs.(7) and(9) in the following series of remarks. T e .
Remark 1 The equation of motion(7), for the constrained |Ul=+ Vu'u. Such a specification of theatureof the constraint
system does not contain any “multipliers” that need to be SOlveg{fce is left to the discretion of the mechanician who is modeling
S

for, as found in Lagrange’s equations that describe constrainklf System, and it would depend on the physics of any particular
motion with ideal constraints. ituation(see Section 2)2What is the equation of motion of this

S . e . nonholonomically constrained system in which the constraints
Remark 2No elimination of coordinater velocities is done;  ~raate nonideal forces of constraint?

therefore, no set of coordinatésr velocitieg is singled out for  ysing Eq.(7) we can write down an explicit equation for the
special treatment, as in the Gibbs-Appell approach that is apmiirotion of the particle as follows.

cable for ideal constraints. The equation of motion is stated in theDifferentiating the constraint equatign=z2k, we get
samecoordinates as those describing tineconstrainedsystem.

This makes it simple to directly assess the influence that the pres- A=[-Z%2 1 0], (13)
ence of the constraints have on the accelerations of the uncon-
strained system. The next remarks deal with this. O  with

Remark 3 The total constraint force-vector,Q¢, is given by .
Q°=QF+Q¢,, and it is seen to be made up wio additivecon- b=2xzz. (14)
tributions. The first member on the right-hand side of E9).

We note that it is theexistenceof the constrainty=z?x that
createsthe force of constraint. This force of constraint is nonideal.
Qf=M¥B*(b—Aa) (11) It does work under virtual displacements; its magnitude is propor-
onal to the square of the speed of the particle, and it opposes the
article’s motion. It isnotan “impressed force” on the particle. It
'would disappear in the absence of the constraint.

SinceM =13, B=A. By Eq.(11) we then obtain

given by

is the constraint forcéhat would have been engendered were aﬂ
the constraints idealandC=0. This contribution is ever present
no matter whether the constraints are ideal or not.

The second member on the right-hand side of @ygiven by

Q5 =M¥(1-B B}M (12) Q[-7 1 oL EhT) (15)
gives theadditional contribution to the constraint force due to the (1+29
presence of nonideal constraints where the constraint fatoes and, by Eq.(12),
work under virtual displacements. This breakdown of the total
constraint forcen-vector explicitly shows the way in which X+Z22Y | o i o
knowledge of the virtual work done by nonideal constraints enters Q.= —ay| Z2X+2% Xy +z7) (16)
the equation of motion of the constrained system. a n 0 21+2% (1+2%

Remark 4 The contribution,QiC, to total force of constraint,
Q°, does no work under virtual displacements. For, as in the proofThe equation of motion of the nonholonomically constrained
of Result 1,0TQ =v"™M¥B*(b—Aa)=u"B"(b—Aa)=0, for system with nonideal constraints then becomes
all u such thatBu=0. Hence, at each instant of time'Q°

. 2
—uTQ%,=v'C. _ O X AN eser-ty| 2

Remark 5 The forceC(q,q,t) provides a mathematical speci- Y[=Q+Qi+Qn=|fy|+ T a+A 1
fication of the nonideal nature of the constraints by informing us z f, 0
of the work done by the constraint forcevector,Q°, under vir- VI
tual displacements;. Its specification depends on the physics of e T OB+yR )2

. . L . —ag| ZX+ZY | —————F—— a7)

any given particular situation. It engenders a contribut@f,, to 21+ 29 (1+2%

the total constraint forceQ®, but in general, this contribution is

such thatQp,;# C. As seen from Eq(12), only at those instants of The |ast member on the right-hand side of ELj7) exposes ex-
time whenM ~C lies in the null space of the matri8, does plicitly the contribution that the nonideal character of this non-
Qni=C. holonomic constraint provides to the total constraint foiQ€,
Furthermore, at those instants of time whén Y2C is such that The second member on the right informs us of the constraint force
it lies in the range space @', thenQS,=0. For thenM~Y2C  the particlewould be subjected to, were the nonholonomic con-
can be expressed & w for some suitable vectaw, and by Eq. straint y=z?x ideal. As stated in Remark 5, in this example
(12) we have, M ¥2Q¢ =(I-B*B)B'w=[B"—(B"B)"B"lw  Qpi#C. _ _
=[B"-BT(BT)*BT]w=0. Here, in the second and third equali- Note that whera,=0, the third member on the right of EQL7)
ties we use the properties of the Moore-Penrose invggje ] disappears, and we get the correct equation of motion that is valid
Remark 6 When the constraints are ide@=0, and the equa- for ideal constraints. Then, our equation becomes equivalent to
tion of motion given by Eq(7) reverts to one that is well known Lagrange’s equation with multipliers and the Gibbs-Appell equa-
([8]), and has been shown to be equivalent to the usual Lagrarit, both of which are valid only for ideal constraints.
equations with multipliers, and to the Gibbs-Appell equations, In Ref. (10]) we handle the sliding friction problem of a bead

each of which is valid only for ideal constraints. [ running down a wire. As expected, E7) indeed yields the
proper equations of motion, which in this case are easy to verify

5 Example using Newtonian mechanics. _
Holonomically constrained systems where the constraint forces

We illustrate the power of our result by considering a particlgre nonideal, as in sliding friction, may at times be handled by the
of unit mass moving in an inertial Cartesian frame subjected toNewtonian approach. However, to the best of our knowledge there
set of impressed forcelg(x,y,zt), fy(x,y,z,t), f(x,y,z,t) act- is no way to date to obtain the equations of motion for nonholo-
ing in thex, y, andz-directions, respectively. The particle is subnomically constrained systems where the constraint forces are
jected to the nonholonomic, constraint=z>x. The presence of nonideal. Thus, seemingly simple problems like the one consid-
this nonideal constraint creates a force of constraifbr the ered in this section have so far been beyond the compass of the
specific system at hand, we assume that this force of constrdiaigrangian formulatiorisee Refs[5] and[9] for a more exten-
does work under virtual displacements given hy'Q® sive discussion
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6 The Geometry of Constrained Motion ARB

The geometrical simplicity of the equation of motitf) devel-
oped herein can perhaps be best captured by using the “scaled”
accelerationgjs= M%), a;=M¥2a=M"12Q, §¢=M ~Y2Q° and ’
ce=MY(M~1C)=M~%2C. The equation of motion5) of the
constrained system can then be written in terms of these scaled B'b
accelerations as /

.- / C

as(t) =ay(t) +ag(t), (18) o w

and the problem of finding the equation of motion of the con- - ‘ . » MB)

strained system then reduces, as pointed out by Gilsgo F——N(a, +¢,) —>

finding thedeviationAqs=qg(t) =qgs(t) —ag(t) of the scaled ac-

celeration of the constrained systeqa(t), from its known, un- Fig. 1 The geometry of constrained motion is depicted using

constrained, scaled acceleratiag(t). Equation(7), then takes on projections on A{(B) and R(BT). The projection of ¢§son N(B)

the simple form is the same as that of (a,+c,) because Ng,=N(as+c,). The
vector B b is orthogonal to this projection.

gs=(1—B"B)(as+cs)+B™b, (19)

from which we can explicitly obtain the deviatioAgs, as
operate. It generalizes the results obtained in R&2]) to include

Ags=B"(b—Bay)+(I—B"B)cs. (20)  systems in which nonideal forces of constraint exist.
It should come as no surprise that the vectaysand cg enter
Let us denoteN=(1—B*B), and T=B*B. To understand the ; . T s =
first member on the right-hand side of H@0), we note that the Eqg. (19 in the same way. Though their genesis is vastly different,

extent to which the acceleratiom of the unconstrained s stemthey come, after all, from forces that act on the system. Nofice,
X . L y however, that the sumag+ cg) does not enter directly. The matrix
doesnot satisfy the constraint Eq4) is given by

N=(1—B*B) is a projection on the null space Bf and hence it

e=b—Aa=b-Bas. (21) is th_e sum’s projection on this space that enters the equation of
Equations(19) and (20) can now be rewritten as motion.
ds=N(astcy)+B"b (22) Conclusions
and We summarize the contribution in this paper as follows.
A§,=B*b—Ta,+Nc,=B*e+Nc,. (23) 1 To date, Largangian mechanics has been built upon the Prin-

ciple of D’Alembert. This principle restricts Lagrangian mechan-
Noting the definition ofAqs, Eq. (23) can be expressed alter-ics to situations where the work done by the forces of constraint

natively as under virtual displacements is zero. In this paper we relax this
. et i ha— 112 restriction and thereby release Lagrangian mechanics from this
g—a=(M B")e+ (M NM )C. (24) confinement.
This form of our result leads to the following new fundamental 2 We have generalized D’Alembert's principle to include situ-
principle of Lagrangian mechanics: ations in which the constraints are not ideal, and the forces of

] ) . ) constraint may do positive, negative, or zero work under virtual
The motion of a discrete mechanical system subjected to c@fisplacements. The generalized principle reduces to the usual

straints that are nonideal evolves, at each instant of time, i§'Alembert's principle when the constraints are ideal.
_such a way that the d_eviatior_l of its accelerations from those 3 The generalized D’Alembert's principle highlights the fact
it would have at that instant if there were no constraints Ofhat the description of the motion of a constrained mechanical
it, is made up of two components. The first component dgstem requires more than just a statement of the equations of
propor_tlonal to the extent to whlch_the accele_ratlons COreeonstraint, i.e., Eqg2) and/or(3). It alwaysalso requires a speci-
sponding to the unconstrained motion, at that instant, do N@ktation of the nature of the forces of constraint that the con-
safisfy the constraints; the matrix of proportionality iSstraints engender. This is done in terms of the work done by the
M~2B", and the measure of the dissatisfaction of the coforces of constraint under virtual displacements, through a pre-
straints is provided by the vector e. The second componenisigiption of then-vectorC(q,q,t). D’Alembert’s principle is thus
proportional to the vector C that specifies the work done byeen aone particular wayof specifying the nature of the forces
the constraint forces under virtual displacements, at that inuf constraint, for it prescribes the vect6(q,q,t) to be identi-
stant, and the matrix of proportionality &M~ YNM~9).  cally zero. In general, one has to rely on the discretion of the
mechanician to specify the vect@(q,q,t) upon examination of
Nhe specific system whose motion needs to be modeled. When
D’Alembert’s principle is invoked while dealing with a given con-
strained mechanical system—and this is most often the case in
analytical dynamics, to date—the burden of this specification
“seems” lifted from the shoulders of the mechanician, for the
N'B*=(1-B*B)™B*=(1-B*B)B*=B*—B*BB* =0, principle simply setsC(_q,q,t) to the zero vector. However, the
(23) conscientious mechanism needs to examine if, and how well, the
forces of constraintin the given physical system being modeled
sinceB*BB"=B*. Equation(22) thus informs us that the scaledexhibit the behavior subsumed by this principle.
acceleration of the constrained system is simply the sum of two4 The framework of Lagragian mechanics is used to show that
orthogonalvectors, one belonging to the null spaceBef-denoted  this generalized D’Alembert’s principle provides just the right ex-
M(B), and the other belonging to the range spacBf-denoted tent of information to yield the accelerations of the constrained
R(BT). Figure 1 depicts relation€2) and (23) pictorially, and systemuniquely as demanded by practical observation. In the
reveals the geometrical elegance with which Nature appearssituation that the constraints are ideal, these accelerations agree

Now the operatomN, being symmetric and idempotent, is al
orthogonal projection operator on the null spaceBpfand the
vectorB*b belongs to the range space Bf. Furthermore, the
two right-hand members of E¢22) constitute twon-vectors that
are orthogonal to each other, because
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with those determined using formalisms developed by Lagrange,7 We have provided an insight into the geometry of con-

Gibbs, and Appell, each of these being applicable only to the cafained motion revealing the simplicity and elegance with which
of ideal constraints. Nature seems to operate.
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