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Since its inception about 200 years ago, Lagrangian mechanics has been based up
Principle of D’Alembert. There are, however, many physical situations where this
fining principle is not suitable, and the constraint forcesdowork. To date, such situation
are excluded from general Lagrangian formulations. This paper releases Lagran
mechanics from this confinement, by generalizing D’Alembert’s principle, and pres
the explicit equations of motion for constrained mechanical systems in which the
straints are nonideal. These equations lead to a simple and new fundamental vi
Lagrangian mechanics. They provide a geometrical understanding of constrained m
and they highlight the simplicity with which Nature seems to operate.
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1 Introduction
One of the central problems in classical mechanics is the de

mination of the equations of motion for constrained systems.
importance of the problem stems from the fact that what make
set of point masses and rigid bodies, a ‘‘system,’’ is the prese
of constraints. When physical constraints are imposed on an
constrained set of particles, forces of constraint are engend
which ensure the satisfaction of the constraints. The equation
motion developed to date for such constrained systems are b
on a principle first enunciated by D’Alembert, and later elabora
by Lagrange@1# in his Mechanique Analytiquewhich dates back
to 1787. Today the principle is referred to as D’Alembert’s pr
ciple, and it is the centerpiece of classical analytical dynamics
states, simply, that the total work done by the forces of constr
under virtual displacements is always zero. Constraints for wh
D’Alembert’s principle is applicable are referred to asideal
constraints.

Since its initial formulation by Lagrange more than 200 ye
ago, the problem of constrained motion has been vigorously
continuously worked on by numerous scientists including Vo
erra, Boltzmann, Hamel, Whittaker, and Synge, to name a few
1829, Gauss@2# provided a new general principle for the motio
of constrained mechanical systems in what is today referred t
Gauss’s Principle. About 100 years after Lagrange, Gibbs@3# and
Appell @4# independently discovered what are known today as
Gibbs-Appell equations of motion~@3,4#!. Pars~@5#, p. 202! refers
to the Gibbs-Appell equations as~@5#! ‘‘ . . . probably the most
comprehensive equations of motion so far discovered.’’ Dir
because of his interest in constrained systems that arise in q
tum mechanics, in a series of papers from 1951 to 1969 develo
an approach for determining the Lagrange multipliers for c
strained Hamiltonian systems~@6#!. More recently, Udwadia and
Kalaba @7# presented a simple, explicit, set of equations, ap
cable to general mechanical systems, with holonomic and n
holonomic constraints~@7,8#!.

However, all these alternative descriptions of the motion
constrained systems discovered so far, as well as the nume
articles that have subsequently dealt with them, rely
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D’Alembert’s principle, and each of these mathematical form
isms is equivalent to the other. Despite the continuous and vig
ous attention that this problem has received, the inclusion of s
ations where the physically generated forces of constraint i
mechanical systemdo not satisfy D’Alembert’s principle has so
far evaded Lagrangian dynamics. Yet, such forces of constr
are among those quite commonly found in nature. As stated
Goldstein~@9#, p. 17!, ‘‘This @total work done by forces of con
straint equal to zero# is no longer true if sliding friction is present
and we must exclude such systems from our@Lagrangian# formu-
lation’’ ~@9#!. And Pars in his treatise~@5#! on analytical dynamics
~1979, p. 14! writes, ‘‘There are in fact systems for which th
principle enunciated@D’Alembert’s principle# . . . does not hold.
But such systems will not be considered in this book.’’

In this paper we obtain the equations of motion for constrain
systems where the forces of constraint indeed do not sa
D’Alembert’s principle, and the sum total of the work done b
them under virtual displacements no longer need be zero.

The outline of the paper is as follows. In Section 2.1 we ge
eralize D’Alembert’s Principle to include constraint forces thatdo
work. This leads us to a deeper understanding of the specifica
of constraints in mechanical systems. This we discuss in Sec
2.2. Section 3 deals with the mathematical statement of the p
lem of constrained motion. Section 4 states and verifies the
plicit equation of motion for constrained systems with nonide
equality constraints. This equation leads to a new and fundame
principle of Lagrangian mechanics. The proof we give here
simpler than the one given in~@10#!, and it yields an important
geometrical interpretation that we discuss later. Section 5 give
example of a nonholonomically constrained system for which
constraints are nonideal. We show here the ease of applicabili
the explicit equation of motion obtained in the previous sect
and point out the insights it provides into understanding c
strained motion where the constraint forces do work. Lastly, S
tion 6 deals with the geometry of constrained motion and exhi
the simplicity and aesthetics with which Nature seems to oper

2 Generalization of D’Alembert’s Principle, Con-
straint Forces That Do Work, and Their Specification

2.1 Generalized D’Alembert’s Principle. Consider an un-
constrained system of particles, each particle having a cons
mass. By ‘‘unconstrained’’ we mean that the number of gene
ized coordinates,n, used to describe the configuration of the sy
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tem at any time,t, equals the number of degrees-of-freedom of
system. The Lagrangian equation of motion for such a system
be written in the form

M ~q,t !q̈5Q~q,q̇,t !, q~0!5q0 , q̇~0!5q̇0 (1)

where q(t) is the n-vector ~i.e., n by 1 vector! of generalized
coordinates,M is ann by n symmetric, positive-definite matrix,Q
is the ‘‘known’’ n-vector of impressed forces, and the dots refer
differentiation with respect to time. By ‘‘known,’’ we shall mea
that Q is a known function of its arguments. The acceleration,a,
of the unconstrained system at any timet is then given by the
relationa(q,q̇,t)5M 21(q,t)Q(q,q̇,t).

We shall assume that this system is subjected to a set om
5h1s consistent equality constraints of the form

w~q,t !50 (2)

and

c~q,q̇,t !50, (3)

wherew is anh-vector andc an s-vector. Furthermore, we sha
assume that the initial conditionsq0 and q̇0 satisfy these con-
straint equations at timet50. Assuming that Eqs.~2! and~3! are
sufficiently smooth, we differentiate Eq.~2! twice with respect to
time, and Eq.~3! once with respect to time, to obtain the equati

A~q,q̇,t !q̈5b~q,q̇,t !, (4)

where the matrixA is m by n, andb is a suitably definedm-vector
that results from carrying out the differentiations.

This set of constraint equations includes among others,
usual holonomic, nonholonomic, scleronomic, rheonomic, ca
static, and acatastatic varieties of constraints; combination
such constraints may also be permitted in Eq.~4!. It is important
to note that Eq.~4!, together with the initial conditions, is equiva
lent to Eqs.~2! and ~3!.

Consider now any instant of timet. When the equality con-
straints~Eqs.~2! and~3!! are imposed at that instant of time on th
unconstrained system, the motion of the unconstrained syste
in general, altered from what it would have been~at that instant of
time! in the absence of these constraints. We view this altera
in the motion of the unconstrained system as being caused b
additional set of forces, called the ‘‘forces of constraint,’’ acti
on the system at that instant of time. The equation of motion
the constrained system can then be expressed as

M ~q,t !q̈5Q~q,q̇,t !1Qc~q,q̇,t !, q~0!5q0 ,q̇~0!5q̇0 (5)

where the additional ‘‘constraint force’’n-vector, Qc(q,q̇,t),
arises by virtue of the constraints~2! and ~3! imposed on the
unconstrained system, which is described by Eq.~1!. Our aim is to
determineQc explicitly at timet in terms of the known quantities
M, Q, A, b, and information about the nonideal nature of th
constraint force, at timet. The latter comes from looking at th
physics of the system.

A virtual displacement~@8#! at timet is any nonzeron-vectorv
such thatA(q,q̇,t)v50. When the constraint forcen-vector does
no work under virtual displacementsv, we havevTQc50. This is
also referred to as D’Alembert’s principle, and it is the basis t
underliesall the different formalisms~@1–8#! hereto developed o
the equations of motion for mechanical systems subjected to
constraints described by Eqs.~2! and ~3!.

As demonstrated elsewhere~@7,8#!, one formalism that yields
an explicit equation describing the motion of such a constrain
system that abides by D’Alembert’s principle is given byMq̈
5Q1M1/2B1(b2Aa)5Q1Qc, where them by n matrix B
5AM21/2, andB1 stands for the Moore-Penrose generalized
verse~@11#! of the matrixB.

The central question that arises now is how to incorporate
the equation of motion,constraintsthat do do work under virtual
displacements, thereby bringing such constraints within the
grangian framework. Such nonideal constraint forces~for ex-
Journal of Applied Mechanics
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ample, sliding frictional forces! are in fact commonplace, an
have to date defied~@5,9#! inclusion in a simple way within the
general framework of analytical mechanics. The main reason
this difficulty is that three obstacles need to be simultaneou
surmounted. Firstly, we require the specification of such c
straint forces to be general enough so that they encompass p
lems of practical utility. Secondly, this specification must, in ord
to comply with physical observations, yield the accelerations
the constrained systemuniquelywhen using the accepted math
ware of analytical dynamics that has been developed over the
250 years. And lastly, when the constraint forces do no work,
must obtain the usual formalisms/equations that have thus
been obtained~e.g., by Lagrange, Gibbs, Appell, and Gauss!, and
are known to be of practical value.

Clearly, the work done by such a constraint force under virt
displacementsv at each instant of time needs to be known, a
must therefore be specified using some knownn-vectorC(q,q̇,t),
asvTC. Such an additional specification calls for a generalizat
of D’Alembert’s principle. We make this generalization in th
following manner:

For any virtual displacementv at time t, the constraint force
n-vector Qc at time t does a prescribed amount of work given

vTQc~ t !5vTC~q,q̇,t !. (6)

HereC(q,q̇,t) is a knownn-vector~i.e., a known function ofq, q̇,
andt! that needs to be specified and depends on the physics o
situation, as discussed in the example below. The work done
the constraint force in a virtual displacement may thus bepositive,
negative, or zero.

Relation~6! constitutes a new principle. This principle require
a description of the nature of the nonideal constraint force at t
t through a specification of the work it does during a virtual d
placement at that time. It generalizes D’Alembert’s principle, a
whenC[0, it reduces to it. In what follows we shall often refer
the constraint forcen-vector,Qc, as the constraint force.

2.2 Specification of Constraints. The equations of motion
provide a mathematical model for describing the motion of a
given physical mechanical system. The constraints specify
conditions that the generalized displacements and/or veloc
must satisfy at each instant of time as the motion of the sys
ensues under the action of the impressed forces. However
equations that state these conditions~Eqs. ~2! and ~3!! do not
completely specify the influence of these constraints on the mo
of the mechanical system. For short, we shall say that Eqs.~2! and
~3! do not completely specify the constraints on the mechan
system. This is what the generalized D’Alembert’s principle te
us.

There is a second part to the specification of the constraints,
this deals with thenature of the forces that are created by virtu
of the presence of the constraints. For this, the mechanician who
is modeling a specific mechanical system needs to study the
tem, possibly through experimentation, or otherwise. It is this
formation regarding the nonidealnatureof the force of constraint
that is encapsulated in the vectorC(q,q̇,t).

For example, consider a rigid block that is confined to move
a horizontal surfacez50. The specification of this relation~i.e.,
z50) doesnot constitute a complete specification of the co
straint. For, the presence of this constraint creates a const
force, and this force influences the motion of the block. So
adequately model the motion of the block on the surface,
needs to prescribe thenatureof this constraint force. Such a pre
scription is situation-specific and must be specified by the mec
nician either by experimentation with the system, by observat
by analogy with other systems~s!he has experience with, or b
some other means. For example, if the mechanician finds tha
surfaces in contact are rough~s!he may want to perform some
experiments to understand the nature of the forces created b
presence of this constraint. For a specific setup,~s!he may find
MAY 2001, Vol. 68 Õ 463
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that the work done by the constraint force under virtual displa
ments is proportional to the speed of the block, or perhaps to
square of its speed. Thus, depending on the situation at hanC

would then be specified as2a0@
q̇y

q̇x # or 2a0uq̇u@
q̇y

q̇x # respectively,

wherea0 may be a suitable constant whose value would also n
to be prescribed~perhaps by performing more experiments!. If,
further, the roughness of the surface changes from locatio
location, additional experimentation may be warranted, and a
ther refinement may be required in specifying the vectorC. Or, in
some other situation, C may perhaps be modeled a
2a0Qi

c(q,q̇,t) ~see Eq.~11! below!.
The invocation of D’Alembert’s principle when modeling a m

chanical system is then clear. D’Alembert’s principle specifies
nature of the constraint forces by simply settingC[0. It points to
the genius of Lagrange, for this specification accomplishes
following three things simultaneously.

1 It provides a condition that enables the accelerations of
constrained system to beuniquelydetermined, something desir
able when dealing with mechanical systems.

2 It specifies the nature of the constraint force through the
hoc specification ofC[0. This allows the mechanician to mod
a given mechanical systemwithout having to explicitly provide
further information~beyond that contained in the constraint Eq
~2! and/or ~3!! on the nature of the constraint forces that ar
created by the presence of the constraints. Most importantl
therefore obviates the need for situation-specific experimenta
observation, etc., that would have been otherwise necessa
specifyC when modeling a specific mechanical system.

3 This specification ofC[0 works well~or at least sufficiently
well! in many practical situations. This is perhaps the most
markable attribute of D’Alembert’s principle, and it points to th
genius of Lagrange.

All this becomes quite obvious, especially when modeling
problem of sliding friction where we immediately recognize th
the equation that describes the motion of the block on a horizo
surface must depend not only of the constraint equation,z50, but
indeed also on thenature of the constraint force engendered b
this constraint. And the latter depends on the physics of the
cific situation—the materials in contact, the surface roughnes
etc., and, of course, the intended use that the mechanician w
to put the model to.

But in analytical dynamics, we may have got so used to inv
ing D’Alembert’s principle, which obviates the explicit need
specify thenatureof the constraint force for any given mechanic
system by implicitly takingC[0, that it is tempting to think that
such a specification may be wholly unnecessary, even in gen
One perhaps may then get the impression that the equations
specify the constraints~Eqs. ~2! and/or~3!! are all that is neces
sary for properly posing the problem of constrained motion.This
indeed is not so. Specification of the nature of the constrai
forces isalways necessary. The generalized D’Alembert’s pri
ciple stated in Section 2.1 reminds us that, D’Alembert’s princi
provides, in fact,one particularspecification for the nature of th
constraint force. As in the case of sliding friction,C may not be
zero, and its explicit specification is necessary, in general. Su
specification, as mentioned before, is situation-specific and re
on the discernment and discretion of the mechanician who is m
eling the system.

Having explained what we mean by ‘‘specification of co
straints’’ for a given, constrained mechanical system at hand,
now need to explicitly determine its equation of motion. We st
by providing a statement of the problem of constrained motio

3 General Statement of the Problem of Constrained
Motion With Constraints That Do Work

In the notation that we have thus far developed, the problem
constrained motion can now be mathematically stated as follo
464 Õ Vol. 68, MAY 2001
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We require to find then-vectorQc(q,q̇,t) such that

1 M (q,t)q̈5Q(q,q̇,t)1Qc(q,q̇,t), with q(0)5q0 , q̇(0)
5q̇0 , andQ a known function ofq, q̇, andt; ~S1!

2 w(q,t)50, c(q,q̇,t)50, with w(q0,0)50; ḟ(q0,t)50, and
c(q0 ,q̇0,0)50; and, ~S2!

3 for all vectors v such that A(q,q̇,t)v50, we require
vTQc(t)5vTC(q,q̇,t), where then-vector C(q,q̇,t) is a
known function of its arguments. It specifies thenature of
the constraint forces. ~S3!

We remind the reader that item~S2! above is equivalent to Eq
~4!, and item~S3! is our generalized D’Alembert’s principle a
stated in Section 2.

Next we shall provide the explicit equation of motion th
emerges from the above mathematical statement, and furtherm
show that the accelerations provided by it are unique. From h
on, for clarity, we shall suppress the arguments of the vari
quantities.

4 Equation of Motion for Constrained System With
Nonideal Constraints

Result 1. An equation of motion of the constrained mechan
cal system that satisfies conditions~S1!–~S3! given in the previ-
ous section is explicitly given by

Mq̈5Q1Qc5Q1M1/2B1~b2Aa!1M1/2$I 2B1B%M 21/2C.
(7)

Proof. We shall prove that the constraint forcen-vector,Qc, given
by Eq. ~7! satisfies~S1!–~S3!.

~S1! The form of Eq.~7! shows that~S1! is satisfied.
~S2! Using q̈ from Eq. ~7! in Eq. ~4! gives

Aq̈5Aa1BB1~b2Aa!1B~ I 2B1B!M 21/2C

5Aa1BB1b2BB1BM1/2a

5Aa1BB1b2BM1/2a5BB1b, (8)

where we have used the relationsa5M 21Q, BB1B5B, andB
5AM21/2. Equation~4! can be expressed asB(M1/2q̈)5b, and
being consistent, implies~@8#! that BB1b5b. Using this in the
right-hand side in~11! proves that the accelerationq̈ satisfies Eq.
~4!. Hence~S2! is satisfied.

~S3! As seen from~7!, the constraint force,Qc, is given by

Qc5Qi
c1Qni

c 5M1/2B1~b2Aa!1M1/2$I 2B1B%M 21/2C.
(9)

SinceB5AM21/2, after settingv5M 21/2m, ~S3! is equivalent to
proving that

$muBm50,mÞ0%%⇒mTM 21/2Qc5mTM 21/2C. (10)

But Bm50 implies m1B150, and this~@8#! implies mTB150.
By Eq. ~9! we then havemTM 21/2Qc5mTB1(b2Aa)1mT$I
2B1B%M 21/2C5mTM 21/2C, which is the required result~S3!.h

Result 2. The equation of motion for the constrained syste
given by ~7! is unique.

Proof. Assume there exists another set of solution vectorq̈
1ë and Qc1R such that~S1!–~S3! are also satisfied. We mus
then haveM (q̈1ë)5Q1Qc1R, and by~5!, Më5R. Similarly,
A(q̈1ë)5b, and by Eq.~4!, Aë50. So then-vectorë qualifies as
a virtual displacement. Also, for all virtual displacementsv, we
must havevT(Qc1R)5vTC, so thatvTR50. ThusëTR5ëTMë
50, and henceë50 becauseM is positive definite. SinceR
5Më50, uniqueness follows. h

Thus Eq.~7! gives theuniqueequation of motion describing the
acceleration of a constrained mechanical system where the
straints are nonideal and the constraint forces do an amoun
work ~under the virtual displacement,v) given by vTC(q,q̇,t),
Transactions of the ASME
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with the n-vectorC being known. We explain the salient featur
of Eqs.~7! and ~9! in the following series of remarks.

Remark 1. The equation of motion,~7!, for the constrained
system does not contain any ‘‘multipliers’’ that need to be solv
for, as found in Lagrange’s equations that describe constra
motion with ideal constraints. h

Remark 2. No elimination of coordinates~or velocities! is done;
therefore, no set of coordinates~or velocities! is singled out for
special treatment, as in the Gibbs-Appell approach that is ap
cable for ideal constraints. The equation of motion is stated in
samecoordinates as those describing theunconstrainedsystem.
This makes it simple to directly assess the influence that the p
ence of the constraints have on the accelerations of the un
strained system. The next remarks deal with this. h

Remark 3. The total constraint forcen-vector,Qc, is given by
Qc5Qi

c1Qni
c , and it is seen to be made up oftwo additivecon-

tributions. The first member on the right-hand side of Eq.~9!
given by

Qi
c5M1/2B1~b2Aa! (11)

is the constraint forcethat would have been engendered were
the constraints ideal, andC[0. This contribution is ever presen
no matter whether the constraints are ideal or not.

The second member on the right-hand side of Eq.~9! given by

Qni
c 5M1/2$I 2B1B%M 21/2C (12)

gives theadditionalcontribution to the constraint force due to th
presence of nonideal constraints where the constraint forcedo
work under virtual displacements. This breakdown of the to
constraint forcen-vector explicitly shows the way in which
knowledge of the virtual work done by nonideal constraints en
the equation of motion of the constrained system. h

Remark 4. The contribution,Qi
c , to total force of constraint,

Qc, does no work under virtual displacements. For, as in the pr
of Result 1,vTQi

c5vTM1/2B1(b2Aa)5mTB1(b2Aa)50, for
all m such thatBm50. Hence, at each instant of timevTQc

5vTQni
c 5vTC. h

Remark 5. The forceC(q,q̇,t) provides a mathematical spec
fication of the nonideal nature of the constraints by informing
of the work done by the constraint forcen-vector,Qc, under vir-
tual displacements,v. Its specification depends on the physics
any given particular situation. It engenders a contribution,Qni

c , to
the total constraint force,Qc, but in general, this contribution is
such that,Qni

c ÞC. As seen from Eq.~12!, only at those instants o
time whenM 21/2C lies in the null space of the matrixB, does
Qni

c 5C.
Furthermore, at those instants of time whenM 21/2C is such that

it lies in the range space ofBT, thenQni
c 50. For then,M 21/2C

can be expressed asBTw for some suitable vectorw, and by Eq.
~12! we have, M 21/2Qni

c 5(I 2B1B)BTw5@BT2(B1B)TBT#w
5@BT2BT(BT)1BT#w50. Here, in the second and third equa
ties we use the properties of the Moore-Penrose inverse~@8#!. h

Remark 6. When the constraints are ideal,C[0, and the equa-
tion of motion given by Eq.~7! reverts to one that is well known
~@8#!, and has been shown to be equivalent to the usual Lagra
equations with multipliers, and to the Gibbs-Appell equatio
each of which is valid only for ideal constraints. h

5 Example
We illustrate the power of our result by considering a parti

of unit mass moving in an inertial Cartesian frame subjected
set of impressed forcesf x(x,y,z,t), f y(x,y,z,t), f z(x,y,z,t) act-
ing in thex, y, andz-directions, respectively. The particle is su
jected to the nonholonomic, constraintẏ5z2ẋ. The presence o
this nonideal constraint creates a force of constraint. For the
specific system at hand, we assume that this force of const
does work under virtual displacements given byvTQc
Journal of Applied Mechanics
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52vT(a0u
Tu)(u/uuu), where u is the velocity of the particle and

uuu51AuTu. Such a specification of thenatureof the constraint
force is left to the discretion of the mechanician who is model
the system, and it would depend on the physics of any partic
situation~see Section 2.2!. What is the equation of motion of this
nonholonomically constrained system in which the constra
create nonideal forces of constraint?

Using Eq.~7! we can write down an explicit equation for th
motion of the particle as follows.

Differentiating the constraint equationẏ5z2ẋ, we get

A5@2z2 1 0#, (13)

with

b52ẋżz. (14)

We note that it is theexistenceof the constraintẏ5z2ẋ that
createsthe force of constraint. This force of constraint is nonide
It does work under virtual displacements; its magnitude is prop
tional to the square of the speed of the particle, and it opposes
particle’s motion. It isnot an ‘‘impressed force’’ on the particle. I
would disappear in the absence of the constraint.

SinceM5I 3 , B5A. By Eq. ~11! we then obtain

Qi
c5@2z2 1 0#T

~2zẋż1z2f x2 f y!

~11z4!
, (15)

and, by Eq.~12!,

Qni
c 52a0F ẋ1z2ẏ

z2ẋ1z4ẏ
ż~11z4!

G ~ ẋ21 ẏ21 ż2!1/2

~11z4!
. (16)

The equation of motion of the nonholonomically constrain
system with nonideal constraints then becomes

F ẍ
ÿ
z̈
G5Q1Qi

c1Qni
c 5F f x

f y

f z

G1
~2zẋż1z2f x2 f y!

~11z4! F2z2

1
0

G
2a0F ẋ1z2ẏ

z2ẋ1z4ẏ
ż~11z4!

G ~ ẋ21 ẏ21 ż2!1/2

~11z4!
. (17)

The last member on the right-hand side of Eq.~17! exposes ex-
plicitly the contribution that the nonideal character of this no
holonomic constraint provides to the total constraint force,Qc.
The second member on the right informs us of the constraint fo
the particlewould be subjected to, were the nonholonomic co
straint ẏ5z2ẋ ideal. As stated in Remark 5, in this examp
Qni

c ÞC.
Note that whena050, the third member on the right of Eq.~17!

disappears, and we get the correct equation of motion that is v
for ideal constraints. Then, our equation becomes equivalen
Lagrange’s equation with multipliers and the Gibbs-Appell equ
tion, both of which are valid only for ideal constraints.

In Ref. ~@10#! we handle the sliding friction problem of a bea
running down a wire. As expected, Eq.~7! indeed yields the
proper equations of motion, which in this case are easy to ve
using Newtonian mechanics.

Holonomically constrained systems where the constraint for
are nonideal, as in sliding friction, may at times be handled by
Newtonian approach. However, to the best of our knowledge th
is no way to date to obtain the equations of motion for nonho
nomically constrained systems where the constraint forces
nonideal. Thus, seemingly simple problems like the one con
ered in this section have so far been beyond the compass o
Lagrangian formulation~see Refs.@5# and @9# for a more exten-
sive discussion!.
MAY 2001, Vol. 68 Õ 465
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6 The Geometry of Constrained Motion
The geometrical simplicity of the equation of motion~7! devel-

oped herein can perhaps be best captured by using the ‘‘sca
accelerationsq̈s5M1/2q̈, as5M1/2a5M 21/2Q, q̈s

c5M 21/2Qc and
cs5M1/2(M 21C)5M 21/2C. The equation of motion~5! of the
constrained system can then be written in terms of these sc
accelerations as

q̈s~ t !5as~ t !1q̈s
c~ t !, (18)

and the problem of finding the equation of motion of the co
strained system then reduces, as pointed out by Gauss@2#, to
finding thedeviationDq̈s[q̈s

c(t)5q̈s(t)2as(t) of the scaled ac-
celeration of the constrained system,q̈s(t), from its known, un-
constrained, scaled acceleration,as(t). Equation~7!, then takes on
the simple form

q̈s5~ I 2B1B!~as1cs!1B1b, (19)

from which we can explicitly obtain the deviation,Dq̈s , as

Dq̈s5B1~b2Bas!1~ I 2B1B!cs . (20)

Let us denoteN5(I 2B1B), and T5B1B. To understand the
first member on the right-hand side of Eq.~20!, we note that the
extent to which the accelerationa of the unconstrained system
doesnot satisfy the constraint Eq.~4! is given by

e5b2Aa5b2Bas . (21)

Equations~19! and ~20! can now be rewritten as

q̈s5N~as1cs!1B1b (22)

and

Dq̈s5B1b2Tas1Ncs5B1e1Ncs . (23)

Noting the definition ofDq̈s , Eq. ~23! can be expressed alte
natively as

q̈2a5~M 21/2B1!e1~M 21/2NM21/2!C. (24)

This form of our result leads to the following new fundamen
principle of Lagrangian mechanics:

The motion of a discrete mechanical system subjected to
straints that are nonideal evolves, at each instant of time
such a way that the deviation of its accelerations from tho
it would have at that instant if there were no constraints
it, is made up of two components. The first componen
proportional to the extent to which the accelerations corr
sponding to the unconstrained motion, at that instant, do
satisfy the constraints; the matrix of proportionality
M 21/2B1, and the measure of the dissatisfaction of the co
straints is provided by the vector e. The second compone
proportional to the vector C that specifies the work done
the constraint forces under virtual displacements, at that
stant, and the matrix of proportionality is(M 21/2NM21/2).

Now the operatorN, being symmetric and idempotent, is a
orthogonal projection operator on the null space ofB, and the
vector B1b belongs to the range space ofBT. Furthermore, the
two right-hand members of Eq.~22! constitute twon-vectors that
are orthogonal to each other, because

NTB15~ I 2B1B!TB15~ I 2B1B!B15B12B1BB150,
(23)

sinceB1BB15B1. Equation~22! thus informs us that the scale
acceleration of the constrained system is simply the sum of
orthogonalvectors, one belonging to the null space ofB—denoted
N(B), and the other belonging to the range space ofBT—denoted
R(BT). Figure 1 depicts relations~22! and ~23! pictorially, and
reveals the geometrical elegance with which Nature appear
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operate. It generalizes the results obtained in Ref.~@12#! to include
systems in which nonideal forces of constraint exist.

It should come as no surprise that the vectorsas and cs enter
Eq. ~19! in the same way. Though their genesis is vastly differe
they come, after all, from forces that act on the system. Not
however, that the sum (as1cs) does not enter directly. The matri
N5(I 2B1B) is a projection on the null space ofB, and hence it
is the sum’s projection on this space that enters the equatio
motion.

Conclusions
We summarize the contribution in this paper as follows.

1 To date, Largangian mechanics has been built upon the P
ciple of D’Alembert. This principle restricts Lagrangian mecha
ics to situations where the work done by the forces of constr
under virtual displacements is zero. In this paper we relax
restriction and thereby release Lagrangian mechanics from
confinement.

2 We have generalized D’Alembert’s principle to include sit
ations in which the constraints are not ideal, and the forces
constraint may do positive, negative, or zero work under virt
displacements. The generalized principle reduces to the u
D’Alembert’s principle when the constraints are ideal.

3 The generalized D’Alembert’s principle highlights the fa
that the description of the motion of a constrained mechan
system requires more than just a statement of the equation
constraint, i.e., Eqs.~2! and/or~3!. It alwaysalso requires a speci
fication of thenature of the forces of constraint that the con
straints engender. This is done in terms of the work done by
forces of constraint under virtual displacements, through a p
scription of then-vectorC(q,q̇,t). D’Alembert’s principle is thus
seen asone particular wayof specifying the nature of the force
of constraint, for it prescribes the vectorC(q,q̇,t) to be identi-
cally zero. In general, one has to rely on the discretion of
mechanician to specify the vectorC(q,q̇,t) upon examination of
the specific system whose motion needs to be modeled. W
D’Alembert’s principle is invoked while dealing with a given con
strained mechanical system—and this is most often the cas
analytical dynamics, to date—the burden of this specificat
‘‘seems’’ lifted from the shoulders of the mechanician, for th
principle simply setsC(q,q̇,t) to the zero vector. However, th
conscientious mechanism needs to examine if, and how well,
forces of constraint~in the given physical system being modele!
exhibit the behavior subsumed by this principle.

4 The framework of Lagragian mechanics is used to show
this generalized D’Alembert’s principle provides just the right e
tent of information to yield the accelerations of the constrain
systemuniquely, as demanded by practical observation. In t
situation that the constraints are ideal, these accelerations a

Fig. 1 The geometry of constrained motion is depicted using
projections on N„B … and R„B T

…. The projection of q̈ s on N„B …

is the same as that of „as¿c s… because Nq̈ sÄN„as¿c s…. The
vector B¿b is orthogonal to this projection.
Transactions of the ASME



s

g
t

i

T

n

v

n-
ich

der

J.

e,’’

ned

ng-

ge

ed
with those determined using formalisms developed by Lagran
Gibbs, and Appell, each of these being applicable only to the c
of ideal constraints.

5 We have presented here the general, explicit, equation
motion for mechanical systems with nonideal, equality, co
straints. They lead to a new and fundamental understandin
constrained motion. To the best of our knowledge, these equa
are arguably the simplest and most comprehensive so far dis
ered. They will aid in understanding the dynamics of mechan
systems in various fields such as biomechanics, robotics,
multibody dynamics, where such nonideal constraints abound

6 Our equations show that the constraint forcen-vector is made
up of two additive contributions:Qc5Qi

c1Qni
c . Explicit expres-

sions for each of these contributions are given in this paper.
contributionQi

c alwaysexists whether or not the constraints a
ideal, and it is dictated by the kinematic nature of the constrai
The contributionQni

c arises from aspecificationby the mechani-
cian of the nonideal nature of the constraints that may be invol
in any particular situation; it prevails when the constraint forc
do work under virtual displacements.
Journal of Applied Mechanics
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7 We have provided an insight into the geometry of co
strained motion revealing the simplicity and elegance with wh
Nature seems to operate.
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