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ABSTRACT 

This paper investigates the behavior of coupled nonlinear dynamical systems. We 
take two such dynamical systems (or units), couple them together, and study the 
effect of coupling on the dynamics. We demonstrate that coupling two chaotic units 
can indeed stabilize both of them. Several results describing the global dynamics of 
the coupled nonlinear system are established. Using them, we show that, by-and-large, 
the presence of coupling appears to increase the orderliness of the coupled system's 
response, producing periodicity, synchronicity, and quasi-symmetry. Using exponen- 
tial maps which are commonly used to simulate-population dynamics, we establish 
the applicability of our results to population dynamics. © Elsevier Science Inc., 
1997 

1. INTRODUCTION 

Before Henri Poincar~'s (1892) discovery of holonomic orbits, most people 
were not even aware of chaos. With the increasingly easier accessto faster 
computation, we are now finding chaos in many computer simulations of 
natural processes. We come across chaos in the trajectories of planets. We 
find chaos in different classes of chemical reactions, not to mention turbu- 
lence in fluids. We encounter chaos in population dynamics. The number 
of systems which seem to behave chaotically indeed appears to be over- 
whelming. 
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If this tremendous amount of chaos were to grow unchecked, nothing in 
this world could be orderly. Yet, even untutored experience indicates that 
by and large there is considerable order in the physical world. This stark 
difference raises several questions. Why is there such stability despite all the 
reported chaos? What are the factors that contribute to such stability? How 
can stability be enhanced/destroyed? 

There may be many reasons for the observed stability of physical systems 
present amidst all this reported chaos. In a given system there are several 
parameters and chaos may evince for only certain ranges of these parame- 
ters. If the probability that the system attains these ranges of parameters is 
small, then the probability of this system being chaotic is also small. 
However, estimating such probabilities may be difficult. 

Further, in reality, most physical systems are coupled. To render them 
easy to study, many of the couplings present in physical systems are either 
eliminated or approximated. Therefore, another possibility is that a chaotic 
system becomes stable when coupled with other chaotic systems. Cast 
differently, can adding a "jug" of chaos to another "jug" of chaos lead to 
stability? For example, if one group (or species) that displays chaotic growth 
(in isolation) is coupled with another chaotically evolving group, could the 
resulting system exhibit orderly dynamical behavior? Could, for example, 
migratory coupling of two chaotically evolving insect populations stabilize 
these populations? In short, can the collective behavior of a system tran- 
scend that of its chaotic components? Our investigation demonstrates the 
possibility of such stabilization, Where complete stabilization is not poSsi- 
ble, we find that there could be diagonal-attraction or synchronicity--the 
'count' of both systems may eventually become identical even though they 
&ere different initially. 

The nonlinear model used here to study the role of coupling in stabilizing 
and synchronizing nonlinear systems is derived from population dynamics. 

The study of population dynamics in ecological systems has several 
applications. For example, it is of great concern whether fishermen can get a 
fairly uniform catch throughout the year. If the population trend of fish is 
erratic in a particular region, the fishermen may not be able catch any 
significant amount during some seasons, and it is important to analyze the 
factors contributing to such erratic behavior. Further, studying if the 
current population of a particular species is sufficient enough to sustain it, 
may play a crucial role in avoiding species extinction. In short, population 
bursts and population collapse have significant implications in understand- 
ing ecological systems. 

Several mathematical models have been employed by different re- 
searchers to simulate population dynamics. The most common models 
employ nonlinear difference maps. These models describe the evolution of a 
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single species at a particular habitat. They assume that emigration and 
immigration are negligible. On the other hand, there are systems in which 
migration is significant enough to alter the population dynamics at the 
particular habitat [1]. However, there axe not that many studies that 
analyze the effect of migration on population dynamics. 

We analyze the effect of migration by studying the interactive dynamics 
of two subcolonies of a single species. The growth of a single subcolony is 
often modeled as a difference equation of the type 

x.+ 1 = p(x~). (1) 

Here x n is the population size at time Q, and the map p gives the size 
the population at the next update in time, Q+ 1. Exponential maps, wherein 
the function p is defined as 

p ( z )  = (2)  

are used extensively in the biological literature [2] to describe a population 
with a propensity to grow exponentially at low population densities and a 
tendency to decrease at high density. The nature of the nonlinear behavior is 
regulated by the growth parameter r. Ricker [2], based on empirical data, 
has postulated that exponential maps govern the population of a prey 
species if the predators, at any given abundance, consume a fixed fraction of 
the prey species, as though they were captured at random encounters. The 
same model also governs the population dynamics of a single species of 
organisms which is regulated by an epidemic disease at high population 
densities. 

The system described by equations (1) and (2) shows complicated dynam- 
ics. May [3] provides some of the salient features of this map as the 
parameter r is gradually varied. Starting from a low value of the growth 
parameter r, the fixed point of the map becomes unstable when r reaches a 
value of 2 (Figure 1). The point of accumulation of cycles of period 2 ~ occurs 
when r -- 2.6924, and the 3-period cycle appears at r ~ 3.1024. Beyond this 
value of r, the system exhibits chaotic behavior interspersed by thin 
periodic bands. The chaotic or periodic behavior of the system is reflected 
in the positive or negative values for the Lyapunov exponent plotted in 
Figure 1. 

In this paper we consider two interacting populations (colonies) of biolog- 
ical organisms, each of whose population dynamics is described by (1) and 
(2). The interaction between these colonies may be thought of as being 
brought about by migration between the two populations. We shall deal 
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(a) Bifurcation diagram and (b) Lyapunov exponent plotted against r for an 
uncoupled exponential map. The accumulation point occurs at r = 2.6924. 

with two separate situations: the first when each populat ion has the same 
growth parameter  and the second when the two populat ions have different 
growth parameters.  The  first si tuation is likely to arise, when the two 
populat ions occupy environmental  niches of habi ta t  which are equal in most  
respects. 

The  similar case of coupled logistic maps has been analyzed by 
Gyllenberg et al. [4] to s tudy  the effect of migrat ion on populat ion dynamics.  
They  have presented a detailed analysis of fixed points and two-periodic 
orbits. Coupled logistic equations with different forms of coupling have been 
investigated by, among  others, Chowdhury  and Chowdhury  [5] and Kaneko 
[6]. 

Our  aim is to investigate the stable and chaotic dynamics  of the coupled 
system. The effect of coupling on the system dynamics  is investigated in 
detail. It is demonstrated that coupling has a stabilizing effect. Wherever  
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possible we present analytical results. Where such analytical results could 
not be obtained we show numerical computations to understand the behav- 
ior of the coupled system. The model is introduced in Section 2. Section 3 
analyzes the interactive dynamics that  transpires in the system. And our 
conclusions and discussions are presented in Section 4. 

2. THE MODEL 

We consider two interacting populations denoted by x and y of two 
colonies of the same species of organisms. Assuming that  the populations 
grow as per the exponential map, the population in the first location at the 
end of one time period (say, one year) is xexp[G(1 - x)] while that  at 
the second location is y exp[ r~(1 - y)]. Further, if only fraction d of the 
population remains at the same location while the rest emigrate to the other 
location, we can arrive at the following equation governing the two popula- 
tions x and y 

X.+l=dx.  exp[rx(1--x.)  ] + ( 1 - d )  y. exp[ry(1-y . )]  (3) 

yn+ ,  = (1  - d)  e x p [  rx(1  - + e x p [  r (1 - 

where, as usual, the subscript n denotes the time t n. The growth rates for 
the two subcolonies are given by r x and ry. The parameter d describes the 
extent of coupling between the two populations. When d = 1, the two 
populations evolve in time independently of each other; we have two 
uncoupled maps each describing the population count of one colony at any 
time t,. On the other hand, when d = 0, the populations are most intensely 
coupled, the entire population produced at one location migrates to the 
other. When 0 ~< d < 1, the two colonies interact with each other. The 
coupling used here is symmetric, i.e., the percentage migrating from one 
location is the same as that migrating from the other. Such a symmetry 
reduces the number of parameters in the problem. We shall sometimes 
denote the mapping described by equation (3), for brevity, as 

( x , + l ,  Yn+l) = M(rz, r~, d)o( x,, y~), (4) 

to explicitly indicate the dependence on the triplet of parameters (G,  ry, d). 
Before describing the dynamical behavior of the coupled map in the ensuing 
sections, we would like to point out that many of the following results are 
independent of the functional form of the map M. 
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3. DYNAMICAL B E H A V I O R  

In subsection 3.1 several analytical results, some dealing with the global 
dynamics, are presented. Fur ther  dynamical  characteristics of the system 
are explored numerically in subsections 3.2 and 3.3. Subsection 3.2 focuses 
on the symmetrical  case r e = ry = 9. Subsection 3.3 aims at investigating 
the asymmetr ic  case r~ ¢ r y .  

3.1. Analytical Results 

RESULT 1. Consider the orbits of the map (4) for a specific set of 
^ ^ 

parameters  r~ = r~, ry = ~y, and d = d. For  each orbit of the map (4) 
described by { ( ~ ,  ~ )  I n = 0, 1, 2 , . , . . .  } for a given tr iplet  ( ~ ,  ~ ,  d ~) of 
parameter  values, there corresponds an orbit  described by {( ~n, ~ )  I n = 
0, 1, 2 , . , . . .  } for the parameter  tr iplet  (~y, ~ ,  d~). 

PROOF. This result is obvious from equations (3) since the interchanges 

I x n --) Yn I ( 
Xn ==} ~Y^n-'~'^ Xn+ l --') Yn+ l ) 

Yn+ l --* Xn+ l " 
[] 

RESULT 2. When  r~ = r~ = ~, for each orbit  {( ~ ,  ~ )  [ n = 0, 1, 2,. . . . .  }, 
corresponding to  the parameter  values (~, d~ corresponds an orbit  {( ~ ,  xn)[ 
n = 0 ,1 ,2 , . , . . . } .  

PROOF. The  result follows directly from Result 1 by setting r x = r~ -- 9. 
[] 

COROLLARY 1. When r~ = ry = ~, for each n-periodic orbit of the map 
(3) described by {( ~:,, Yn) I n = 0, 1, 2,. . . . .  } corresponding to a set of param- 
eters ( ~, d'), there exists another n-periodic orbit described by {( Yn, ~:~) I n -- 
0, 1, 2 , . , . . .} .  



Coupled Nonlinear Maps 143 

PROOF. The result is a special case of Result 2 when the orbits are 
periodic. [] 

RESULT 3. Consider the orbit {(}~, Yn) I n = 0, 1, 2, . , . . .  } corresponding 
to a certain value of the parameter d =  1 / / 2 -  d o , 0 ~  d o ~< 1/2, with 
r x = ry = 9. For each such orbit, there corresponds an orbit given by 
{(x0, Y0), ( 91, xl), (x2, Y2), ( 93, x3) . . . .  }, corresponding to the parameter 
d = 1//2 + do, with r x = ry = 9, i.e., each alternate point of the second 
orbit has its x- and y-coordinate switched with respect to the corresponding 
point of the first orbit. 

PROOF. 
($. ,  Y.), if 

The result follows from the observation that for an initial point 

(~Tn+l, Yn+l) = M(~, 9, 1 / 2 -  do)o(~ ~, ~ ) ,  (5) 

then, 

 o.1) =  ,1/2 + 9 3 - -  ( 9n÷1, (6) 

Furthermore, denoting, 

( : ~ n + z , 9 . ~ + 2 ) = M ( ~ ' , ~ , l / 2 - d o ) o ( ~ c , , + l , 9 . + l ) ,  (7) 

we find that  

(x~+2, Y.+2) = M(~, 9 ,1 /2  + d0)o ( xn+l, Yn+X) -~- ( Xn+2, Yn+2) (S) 

and hence, the result. 

COROLLARY 2. If the map M(9, 9, 1/2 - do), 0 ~< d o ~< 1/2  has a 2 n- 
period orbit starting from some (xo, Y0), n = 1 ,2 , . . . ,  then the map 
M(~, 9, 1 /2  + d 0) must have a 2n-period starting from the same point 

(x0, Yo), n = 1 , 2 , . . . .  

PROOF. This again is obvious from Result 3. [] 
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COROLLARY 3. If the map M(7, 7, 1 /2  - do), 0 ~ d o ~< 1 /2  has a (2 n 
- 1)-period orbit starting some ( x  o, Y0), n = 1, 2 , . . . ,  with x o ~ Y0, then 
the map M(7, 7, 1 /2  + d o) must have a 2(2n - 1)-period starting from the 
samepoint  (Xo, Y0), n = 1 , 2 , . . . .  

PROOF. This again is obvious from Result 3. [] 

As we shall see from numerical simulations, this property of the map 
yields a sort of quasi-symmetry to the bifurcation plots of the orbits with 
respect to the parameter d. 

RESULT 4. For rx -- ry = 7 the orbit of map (4) starting with (x0, x 0) 
will always consist of points of the form (xn, x~). In other words, orbits 
which begin on the diagonal in the (x, y) phase space lie entirely on the 
diagonal. 

PROOF. This follows from the observation that  

( xn+l, xn÷l) = U( 7, 7, d)o(x , zJ. (9) 

[] 

The above result indicates that  for orbits that  begin on the diagonal in 
the phase space, each state of the dynamical system behaves as if it were 
governed by a single exponential map of the form of (2). 

R~SULT 5. For d -- 1 /2  the orbit of the map (4) starting with (x0, Y0) 
will consist of points of the form ( xn, xn) for all values of r x and ry after the 
first iteration. 

PROOF. This result is obvious from the observation that  the map (4) 
redistributes the total population equally among the two locations. [] 
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We now consider the fixed points of the map (4). It is easily seen that the 
points (0, O) and (1, 1) are fLxed points. 

RESULT 6. The fixed point (0, 0) of the map M(r~, r~, d) is unstable for 
all r ~ , r y > 0 a n d 0 ~ <  d~< 1. 

PaOOF. The Jacobian matrix of the map M(r~, r~, d) evaluated at 
(x, y) is given by 

J( x, y) 

= [ d(1 - xr~)exp[ r~(1 - x)] 

[ (1 - d)(1 - xr~)exp[ r~(1 - x)] 

(1 - d)(1 - yr~)exp[ ry(1 - y) ] ]  

d(1 - y%)exp[ ry(1 - y)] J" 

(10) 

Hence, 

dexp(r~) 

J(O,O) = (1 - d)exp(r~) 

(1 - d)exp(r~) ] 

dexp(ry)  J ' 
(11) 

and thus, for (0, 0) to be stable we require, using the usual determinant-trace 
criterion of the Jacobian matrix, that 

( 2 d -  1)exp(rx + %) < 1, (12) 

and 

(2d  - 1)exp(r~ + ry) +_ d[exp(rx) + exp(ry)]  + 1 > O. (13) 

For condition (12) to be true 

1 1 
d < - +  

2 2 exp( r x + r~) " 

Let 

1 1 
d = - +  

2 2exp( r x + r~) 
- - E .  
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To satisfy condition (13), 

2 -  2Eexp(r~ + ry) - [exp(rx) + exp(ry)] > 0 

which cannot be satisfied for any positive values for r~ and ry. Hence the 

result. [] 

RESULT 7. 

and 

The fixed point (1, 1) is stable when 

(1 - r~)(1 - r ~ ) ( 2 d -  1) < 1, (14) 

(1 - r~)(1 - r y ) ( 2 d -  1) _ d(2 - r x - ry) + 1 > 0. (15) 

PROOF. The result is obvious by evaluating the Jacobian matrix given 
by equation (10) at (1, 1). [] 

Figure (2) shows the region in the parameter space r~, r~, and d in which 
the fixed point (1, 1) is stable. The region enclosed by the surface plots show 
the stable regime in both the subplots. When r~ = ry = ~, equations (14) 
and (15) simplify and it can be shown that  for ~ < 2, the fixed point (1, 1) is 
stable for all 0 ~< d ~< 1. 

Besides these two fixed points which occur for all values of the triplet 
(r~, ry, d) there are other fixed points whose coordinates depend on specific 
values of the triplet. 

RESULT 8. A fixed point (xi, Yi) of the map M(r~, ry, d) must satisfy 
the condition 

r ~ -  ln(1 - dq) + l n [ d +  (1 - 2d)] d + (1 - 2 d ) q  

r~[ r~ - ln( q)] ry(1 - d) 
(16) 

d + (1 - 2 d ) q  
q = e%(1-Y~)  and x i = y~ 

1 - d  
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FIG. 2. The stability of the fLxed point at  (1, 1). If the point marked by the triplet 
(r~, r~, d) falls inside the volume under the shaded surface, then the fixed point (1, 1) is stable. 
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When r= = ry --- ~, this equation simplifies to 

F -  ln(1 - dq) + I n [ d +  (1 - 2d)]  d +  (1 - 2d)q 
= ( 1 7 )  

F[ ~ - In( q)] F(1 - d) 

PROOF. The result follows directly from the definition of the map. [] 

Figure (3) shows both the stable and the unstable fixed points for three 
values of F. Notice that  the stable fLxed points arise for values of d < 0.18, 
indicating that  one period orbits of the coupled system occur only in the 
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presence of strong coupling between the two colonies. In addition to the 
plotted points there are other stable fixed points, which by Corollary 1 can 
be obtained by interchanging the two ordinates x and y. The unstable fixed 
points are also plotted on Figure 3. Again, another set of unstable fixed 
points can be obtained by flipping the two ordinates. 

Next we consider some properties of the Lyapunov Exponents hi, 

log e [I/-til] 
A i =  lim , i = 1 , 2 ,  (18) 

n -''~ t~ n 

where ~i are the two eigenvalues of the matrix produced by multiplying the 
Jacobian matrices at every successive iteration. 

RESULT 9. The Lyapunov exponents of the map M(t ,  t, 1 /2  - do) , 
0 < d o ~< 1 /2  starting from some (x0, Y0) are the same as that of the map 
M(~, ~, 1 /2  + d 0) starting from the same point (x0, Y0). 

PROOF. Let 

M(~, ~, 1 /2  - do)o ( x. ,  y.) = ( xn+l, Yn+l). (19) 

By Result 3, 

M(~,  ~ ,1] /2~-  do)a(Xn, Yn) = (Xn+l,  Yn+l) -- (Yn+l, Xn+l) (20) 

and 

M(~, ~', 1 /2  - d o ) o ( x . + l ,  Y,,+I) = M(~, ~ , 1 / 2  + do)o(~n+l,  Yn+a) 

= ( 2 1 )  
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By (10), the Jacobian matrix for these two system at every iteration is of the 
form 

all a12 ] 
J~[ M( ?, ?, 1 /2  - d0).](xn, y°) = a21 a22 

oTn[ M(~', ?, 1 /2  + do)](~,,,,),,) = o7,~[ M(?,  ?, 1 /2  + do)](~,,, y,,) 

(22) 

= [  a2'a11 °a2]a12 (23) 

bll b12 ] 
Jo+l[ u(~,  ~, 1/2 + ~o)](~,  ~.~1) = b~ b~] (24) 

b12 bn ] 
= b~ b~iJ" (25) 

gn+l gn = Jn+l Jn . (26) 

Therefore, the eigenvalues and the Lyapunov exponents axe symmetric 
about d = 1/2.  [] 

RESULT 10. When d = 1/2,  one Lyapunov exponent tends to -oo. 

PROOF. On setting d = 1 /2  in (10) the determinant vanishes and hence 
the result. [] 

We would like to reiterate that  results 2 to 5, 9, 10, and their corollaries 
are independent of the functional form of the maps chosen. 

Hence, it is seen that  

gn+l[ M(~', ~,1/2 + d0)](~+l, ~,+,)= Jn+l[ M(~, ~ , 1 / 2  + do)]( ~ . . . . . . .  p 
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3.2. Global Characterization of Dynamics and Numerical Results for the 
Symmetric Case 

This section is devoted to studying the effect of migration (or coupling) 
when the growth rates of the two interacting colonies are identical i.e., 
r x = ry = ~. Now t h e  governing system expressed by (3) has only two 
parameters,  ~, and d. The parameter  d can vary from zero to unity. The 
parameter  ~ can be any positive real number. We consider cases in which 

~< 5 because for higher values of ~ the exponential term can cause 
unrealistically large fluctuations. We shall refer to the state (chaotic or 
periodic) of each of the maps in isolation as their base state. Because the two 
maps are identical ( r  x = ry) they are characterized by the same base state. 
First we consider values of ~ for which the base state plotted in Figure 1 is 
chaotic say, r = 3. 

We begin with a description of the bifurcation plots. To arrive at the 
bifurcation plots of the coupled system we first apply the map 5000 times 
iteratively on an initial condition not on the diagonal ( x 0 ¢ Y0). The x and 
y coordinates are then obtained by iterating another hundred times. This 
procedure is repeated for several values of d and ~. The resulting values of x 
and y at every iteration for three representative values of ~ ( =  3, 4, 5) are 
plotted against d in Figures (4) and (5), respectively. For the three values of 

chosen, the underlying single map described by (2) is chaotic (Figure 1). 
Upon coupling two such maps, a variety of dynamical behaviors emerge 
depending on the extent of coupling. Yet the gross dynamics can broadly be 
described as follows. 

(1) There is a quasi-symmetry about d = 1//2, i.e., the dynamical behav- 
ior when d = 1//2 + k is very similar to that  when d = 1//2 - k, 0 < k 
1//2. As a result, the dynamics in zones V, VI, and VII are similar to those 
of zones III, II, and I, respectively. (2) The behavior can be categorized into 
seven zones. (3) Zone I is a region of complex dynamics. This mostly chaotic 
region does have several periodic orbits. Similar behavior is observed in zone 
VII, the symmetric equivalent of zone I. (4) Zone II is characterized by 
periodic behavior. Similarly, its symmetric equivalent, zone VI, is periodic. 
(5) Completely chaotic behavior is observed in both zone III and zone V. 
(6) Zone IV is chaotic but synchronous i.e., both the populations are 
identical in size. This synchronicity is not readily visible in Figure 4 and 5. 
We need to perform a coordinate transformation, to identify the synchronic- 
ity as discussed later in Figure 9. First we consider zone I. 

The dynamical behavior in zone I is complicated. This region is mostly 
chaotic with a few periodic orbits embedded in between. Similarly, by virtue 
of the quasi-symmetry about d = 1//2, zone VII is mostly chaotic although 
some multiperiod trajectories are observed. There are however, some differ- 
ences between zones I and VII, for instance, the periodicity of some periodic 
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FIG. 4. Bifurcation diagrams depicting the x-ordinates against d. (a) ~ = 3; (b) ~ = 4; 
(c) F = 5. The underlying single map is chaotic for all these three values of r. Zone II and zone 
VI are periodic. Thus, by choosing an appropriate coupling one can stabilize chaotic systems. 
Zone markings refer to regimes in b. Similar qualitative zones are present for Figures a and c. 

orbits may be different. Let us consider an odd period orbit in zone I (Figure 
6a). The equivalent orbit in zone VII can be obtained by reflecting d about 
one-half. The periodicity of this equivalent orbit is doubled in agreement 
with Corollary 3. The five-period orbit in zone I (Figure 6a) becomes a 
ten-period orbit in zone VII (Figure 6b). The five additional points on this 
ten-period orbit can be obtained by transposing the x and y coordinates of 
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FIG. 5. Bifurcation diagrams depicting the y-ordinates against d. (a) ~ ~ 3; (b) ~ = 4; 
(c) ~ = 5. Zone markings refer to regimes in Figure b. Similar qualitative zones are present for 
Figures a and c. 

the  five po in ts  in the  f ive-period orb i t  of zone I. On  the  o the r  hand,  even 
per iod  orb i t s  have  the  same per iod ic i ty  in bo th  these  zones are  requi red  by  
corol lary  2. The  t en -per iod  orb i t  in zone I remains  as a t en -per iod  orb i t  in 
zone VII  (shown la te r  in F igures  6c and  d). However,  the  x and y 
coordinates  of  a l t e rna t e  po in t s  on an  even-per iod orb i t  in zone VII  are 
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FIG. 6. (a) A five-period orbit in zone 1. The corresponding orbit in zone VII (obtained by 
reflecting d about 1/2) has a period of ten as in (b). (c) A ten-period orbit in zone I. The 
corresponding orbit in zone VII remains ten-periodic as in (d). Thus, odd-period orbits in zone I 
double in periodicity when reflected about d = 1/2 while even-period orbits maintain the same 
period when reflected about' d = 1/2. ~ = 4. 

different  from those  of the  equivalent  orbi t  in zone I; in fact,  these  differing 
poin ts  in zone VII  can be ob ta ined  by  in te rchanging  the  x and  y values  of 
the  cor responding  poin ts  in zone I. Such a t r anspos i t ion  of coordinates  is 
fu r the rmore  in agreement  wi th  Resul t  3. Thus ,  the  dynamica l  behavior  is 
quas i - symmet r ic  abou t  d = 1 / 2 .  

The  per iodic  zone II can be fur ther  d iv ided  into two subzones I IA and  IIB 
(see F igure  7). Subzone I IA is charac te r ized  by  s tab le  l -pe r iod  orbi ts  
cor responding to  the  s tab le  fixed po in ts  of F igure  (3). Fo r  a first look, the  
t ra jec tor ies  on the  b i furca t ion  plots  (4) and  (5) m a y  appea r  to  be 2-period 
orbits .  Bu t  they  are ac tual ly ,  in agreement  wi th  Corol la ry  1, two separa te  
1-period orbi ts ,  Both  these  1-period orbi ts ,  ob ta inab le  from (17), are sym- 
met r ic  abou t  the  d iagonal  x = y, i.e., one 1-period orb i t  can be ob t a ined  by  
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FIG. 7. (a) Zone II of Figure 4b enlarged. (b) Zone II of Figure 5b enlarged. The one-period 
orbits bifurcate into two-period orbits via a pitchfork bifurcation. The transition from the 
two-period orbits to chaos is sudden. 

in te rchanging  the  coordina tes  of the  other .  A 1-period orbi t  means  t h a t  the  
dynamics  is in complete equilibrium. In o ther  words,  by coupling two chaotic 
units one can arrive at a system which is in equilibrium. The  second subzone 
IIB is charac te r ized  by  two d is t inc t  2-period orbits .  Fo r  r = 5 one of these  
2-period orb i t s  is c lear ly visible in F igures  4 and 5. Fo r  r = 4, bo th  the  
2-period orb i t s  can be observed by  enlarging the  region a round  d = 0.13 
(F igure  7). The  t r ans i t i on  from subzone I IA to subzone IIB is ma rked  by  a 
p i tchfork  bifurcat ion.  
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The dynamics in zone VI is also periodic and can be further divided into 
subzones VIC and VID (see Figure 8). Subzone VID, the symmetric equiva- 
lent of subzone IIA, is actually characterized by a single two-period orbit 
instead of the two 1-period orbits in subzone IIA (Figure 8). Cast differently, 
in zone VI the equivalent orbit of an odd-period orbit in zone II doubles its 
periodicity (as analytically proved in Corollary 3). Subzone VIC has two 
2-period orbits similar to the orbits in subzone IIB. But the points traced by 
each of the two branches in subzone VIC (marked on Figure 8) are different 
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FIG. 8. (a) Zone VI of Figure 4b enlarged. (b) Zone VI of Figure 5b enlarged. The 
two-period orbit in subzone D bifurcates into a pair of two-period orbits. The transition from 
the two-period orbit to chaos is sudden. 
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from those in subzone IIB (marked on Figure 7). Overall, the behavior of 
one- and two-period orbits in zones II and VII are similar to the behavior of 
odd- and even-period orbits in zones I and VII. 

Zone III is characterized by chaotic behavior. There is no visible structure 
in the dynamics of this zone. The same trend is observed in zone V as well. 

Zone IV is chaotic but synchronous. Two populations are synchronous if 
their size are the same at every iteration. Therefore, their difference plotted 
in Figure 9 should be identically zero. Thus, we need to perform a coordinate 
transformation to s c = x - y and 77 - x + y. As seen in Figure 9, the range 
of d over which the populations are synchronous decreases as r is increased 
from 3 to 4 but increases as r is increased from 4 to 5. For all values r, this 
range of d is quite large. Hence, there is a significant probability that  
coupling can synchronize two units which in isolation behave chaotically. 
Similar synchronized motion has been observed in [7-9]. 

We next consider the transition from periodic behavior in zone II to 
chaotic behavior in either zone I or zone III. The boundary between zone I 
and II is marked by a Hopf bifurcation. This Hopf-bifurcation route to chaos 
is similar to that  proposed by Ruelle and Takens [10]. Accordingly, the 
eigenvalues approach the unit circle as a pair of complex conjugates. The 
resulting closed loop trajectory is plotted in Figure 10a. The transition from 
zone VI to VII is also through a Hopf-bifurcation of the 2-period orbit. The 
resulting trajectory has two closed loops (Fig. 10b), and the orbit alternates 
between these two loops at every successive iteration. 

The transition from Zone II to III is sudden. We investigated this region 
in fine detail with increments of d ranging from 10 -9 to 10 -2 and found no 
period-doubling process for all the three values of 7. For the  particular value 
of ~ = 4, explosive chaos occurs when d = 0.13777076. This transition is 
similar to the intermittency discussed by Pomean and Manneville [11] and 
Udwadia and Gut ta lu  [12]. 

In short, there are several interesting dynamics present in the coupled 
system. In particular there is a large range of the coupling parameter  d over 
which dynamics of both units are synchronous. There is also a significant 
range over which the behavior is periodic. 

So far we have investigated the dynamical behavior arising from one 
particular initial condition. It  is of interest to investigate the effect of the 
particular initial conditions on the periodic, synchronous, and asynchronous 
trajectories produced. For initial conditions on the diagonal, by result 4, the 
orbit remains on the diagonal but is chaotic. However, for most of the other 
initial conditions the trajectories remains qualitatively the same as the ones 
described in figures (4) to (8). In particular, an n-periodic orbit remains 
n-periodic and a synchronous orbit remains synchronous for almost all 
initial conditions not on the diagonal. Recall that  by Corollary 1, every 
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FIG. 9. The difference between x and y plotted against d for three values of r. (a) ~ = 3; 

(b) ~ = 4; (c) ~ = 5. Synchronicity is observed in zone IV. Such a trend corresponds to a drop in 
the dimension of the attractor. Zone markings refer to regimes in Figure b. Similar qualitative 
zones are present for Figures a and c. 

n-periodic orbit has two distinct branches and, therefore, the branch the 
periodic orbits follow may be different depending on the initial conditions. 

Consequently, we study the 1-period orbit for different initial conditions. 
As can be seen from Figure 11, orbits start ing from dark regions are 
at t racted to the fixed point located below the diagonal while those starting 
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F~c. 10. The transition from zone II to zone I and that  from zone VI to zone VII are 
marked by Hopf bifurcations. (a) The closed loop trajectory caused by the Hopf bifurcation of 
the one-period orbit in zone II. (b) The closed loop trajectory caused by the Hopf bifurcation of 
the two-period orbit in zone VI. The orbit alternates between the two closed loops. Further,  the 
two loops are symmetric about the diagonal. ~ = 4. 

from grey regions are attracted to the fixed point located above the 
diagonal. These two basins of attraction for the two fixed points are 
furthermore symmetric about the diagonal. Orbits emanating from near the 
diagonal (shown in Figure 11 by the small white regions) are attracted to 
the diagonal. These white regions also possess a symmetry about the 
diagonal." Overall, though, most of the orbits are attracted to either one of 
the fixed points while very few are attracted to the chaotic diagonal. 

For values of d for which 2-period cycles are observed, similar basins of 
attraction exist. And orbits emanating from most initial conditions barring 
a few close to the diagonal appear to be attracted to these 2-period cycles. 

In the same way, for values of d in zone IV, trajectories emanating from 
most initial conditions are attracted to these synchronous orbits as in Figure 
12d. However, for values of d in zone III, the trajectories are scattered over 
a region of the xy-plane (Figure 12a). Thus, the dimension of the chaotic 
attractor decreases as d is increased from zone III to zone IV. 

Notice also that it is possible to have an orbit that  is both synchronous 
and periodic. The fixed point at (1, 1) is a lucid example. This fixed point, 
however, is unstable for ~ ~> 2 as demonstrated in the domain-of-stability 
diagram (Figure 2) and as a result, this synchronous and periodic orbit is 
not computationally observed. 

Over a large range of d the orbits are synchronous (Figure 9). Such a high 
synchronicity or diagonal attraction is striking. Further, there is also a 
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'~ = 4.0, d = 0.05 

2 4 6 8 10 
X 

FIG. 11. Basins of attraction for the two fixed points in zone II. The dark regions are 
attracted to the fixed point below the diagonal ( x  = y), grey regions to the fixed point point 
above the diagonal and white regions to the chaotic diagonal. 

significant range of d over which the dynamical behavior is periodic and one 
may wonder, given a random coupling (a value of d chosen randomly 
between 0 and 1), what is the probability of finding periodic or synchronous 
trajectories. The probability of periodicity, synchronicity, and their total are 
plotted in Figure 13 for cases in which the base state (state of the underlying 
single map) is chaotic. For every value of ~ chosen, the probabilities are 
obtained by investigating the orbits for 5000 values of d ranging from zero 
to unity. The number of periodic orbits produced divided by 5000 yields the 
probability of periodic orbits and so on. This procedure is repeated over 
three initial conditions to obtain an average probability. Because the compu- 
tational time is high we use only a few different initial conditions. Further, 
the kinks in the probability of synchronicity are related to the chaotic 



Coupled  N o n l i n e a r  M a p s  161 

5 

4 

3 

2 

1 

0 
0 

5 

4 

3 

d = O A 6  
• . . . :  :-..~:: 

- -~ -  " t  o . . .  1 . .  ,.'" ":', : " . ,  ,': : -~.:s!'..: 

; .  . "  . . . - .  " : ; ' .  : , . ' : . .~ 

t: =" : ..'-:'.'.'..'." ". ~ .¢ 
!...,'.'.... -. .  : - . . . . -  , .. 
;" ."e  : ' - "  " - ;  

L t-~ ~ ' .  . ' .  . . . .  . . ¢ . "  
~.4:%.:~'- ".. ".:'." :' "" 

5 
X 

(a) 

d = 0.20 

:. / 2  

/ 
.,.o 

. . • / / . :  

S: 

d =  0.18 

. . . . .  . * " . . . . ~ , : - ~ :  

4~ " • ~:".'. 

I 
: • . .  - / . " ~  • . . . . "  

• . - ,,t ~ . % . .  
. .  ~ ..: . . .  

3 . . . .  • . :  : . S :  . ; 

21 :" . :..~:" ' : .  • " .  " ' a ' :  ' - ' . 
• , . .  • % : -  . 

1 /i:!i~'~ ")'" "" . , - - ' "  
• ~;'::;, . . . . .  

0 ( . : :  -. ~. . . '  • . . .  • 

3 

2 

1 

0 
0 

5 
X 

(b) 

d- -  0.21 

/ 

/ 

r 

/ *  

j , , "  

/ 
/ 

0 5 5 
X X 

(e) (d) 

Fic. 12. ~ = 4. Plots depicting the diagonal attraction by which orbits emanating from 
different locations on the x - y plane collapse on to the diagonal. (a) d = 0.16; (b) d = 0.18; 
(c) d = 0.20; (d) d = 0.21. 

na tu re  of the  t ra jec tor ies  and  hence difficult  to  remove.  As ~ is increased 
from 2.694 to 3.75, the  p robab i l i t y  of f inding per iodic  orb i t s  increases. But  
th is  p robab i l i t y  decreases for even higher  values of ~. Such a t r end  is 
consis tent  wi th  the  per iodic  orb i t s  of F igures  4 - 8  where the  range  of d for 
per iodic  orb i t s  increases as 9 is increased from 3 to  4 bu t  decreases as ~ is 
increased to  5. On the  o ther  hand,  the  p robab i l i t y  of synchronic i ty ,  on an 
average,  decreases as ~ is increased from 2.694 to abou t  4.0 bu t  increases for 
even higher  values  of ~. These  t r ends  are  again  consis tent  wi th  those  
observed in F igure  7. T h a t  the  p robab i l i t y  of f inding e i ther  a per iodic  orb i t  
or a synchronous  orb i t  is more  t han  0.8 indica tes  t h a t  from a probabi l i s t i c  
s t andpo in t ,  the  r a n d o m  coupl ing of two such chaot ic  uni ts  will most  l ikely 
resul t  in e i ther  a quasi-  or comple te  s tabi l iza t ion .  
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FI¢. 13. The probability of obtaining (i) periodic behavior (dashed lines), (ii) synchronous 
behavior (dash-dot) and (iii) their total, plotted against ~. The probability of finding either 
periodicity or synchronicity is always more than 0.8. 

So fax we have considered cases in which the base state (the periodic or 
chaotic state of the two maps in isolation) is chaotic. And these trends in the 
probabilities of finding either periodic or synchronous orbits are drastically 
altered when we change the base state to a periodic state. For values ~ such 
that  the base state is 2 ~-periodic i.e., ~ < 2.694, the probability of finding a 
periodic orbit in the coupled system is unity. There are other periodic 
windows in the single map, for instance, in the vicinity of ~ = 3.13 there is a 
3-period orbit (Figure 1). The bifurcation plot for the coupled system is 
shown in Figure 14 for this value of ~. 

Again, the dynamical behavior of the coupled system can be categorized 
into seven zones. In zone I, the 3-period orbit of the base state (or the state 
of the underlying single map) is reproduced. This is similar to the case of 
chaotic base state (Figures 4, 5, 9), where zone I was also chaotic. This 
3-period orbit in zone I is furthermore synchronous unlike the zone I of the 
chaotic base state (Figures 4, 5, 9). Zone II is chaotic and asynchronous. 
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FIG. 14. Behavior  of the  coupled sys t em when  the  base  s t a t e  is periodic. For  the  present  
va lue  of ~ = 3.13, the  under ly ing  s ingle  m a p  exhib i t s  three-per iod orbits.  Upon  coupl ing  two  

such periodic m a p s  we can  ob ta in  chaot ic  behavior  as in zones II and  VI. (a) x~ordinate; (b) 
y-ordinate;  (c) x - y p lo t ted  as a funct ion of d. Zone mark ings  refer to  regimes in al l  the  three  
subplots .  

T h a t  coup l ing  two " s t a b l e "  m a p s  p roduces  chaot ic  t ra jec tor ies ,  is also 
in te res t ing .  Recal l  t h a t  t h e  zone II of  t h e  chaot ic  base  s t a t e  p lo t t ed  in  
F igures  4, 5 a n d  9 was  periodic.  Therefore ,  t h e  zone II d y n a m i c s  is j u s t  t he  
oppos i t e  of t h a t  in  t h e  base  s ta te .  Zone  III  i s p e r i o d i c  a n d  b o t h  1-period a n d  
3-per iod o rb i t s  coexist .  Zone  IV is cha rac te r i zed  b y  3-per iod orb i t s  t h a t  are 
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synchronous. Zones V, VI, and VII are, in agreement with Result 3, similar 
to zones III, II, and I, respectively. 

Thus two conclusions can be arrived at. (i) Whether the dynamics in any 
zone is periodic or not depends on the base state. If the base state is chaotic 
and periodic orbits are produced in a particular zone of the coupled system, 
then chaotic orbits are likely to be produced in the same zone if the base 
state is periodic and vice versa. (ii) Irrespective of whether the base state is 
chaotic or periodic, zone IV is always synchronous. The range of d over 
which the diagonal attracts orbits to produce synchronous orbits is large. 

Such a large diagonal attraction is striking and should be analyzed in 
detail. A coordinate transformation can be used to analyze the global basin 
of diagonal attraction. Let 

~n = Xn ÷ Yn; ~n = Xn -- Y~" 

Then, the governing equations (3) reduce to 

~ n + l = ( 2 d  - 1) ee(1-~n/2)[~ncosh(~-~)-  ~ s i n h ( - ~ ) ] .  

The diagonal is now given by the equation y = 0 (or x = y). A necessary 
condition for the diagonal to attract  the point (~,,  ~?~) or (xn, y~) is 

~%+1 I~/n < 1 

o r  

nn / 2 / ]  

For orbits starting at a location close to the diagonal such that x n -- Y0 ÷ e 
and Yn = Y0, the above condition reduces to 

(1 - ~y0)2(2 d -  1)2exp(2~(1 - Y0)) < 1. 
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Regions attracted to the diagonal for different values of 9. (a) ~ = 3; (b) ~ = 4; 

Notice tha t  this condition need not be satisfied at each and every point 
along the line x = y. Instead,  it is sufficient, if this condition is satisfied on 
an average along the t ra jectory traced by the orbit of this map i.e., let us 
assume tha t  I*/n+ 1/7/hi = 1.1 at  the first point of the orbit, the diagonal can 
still be stable provided at the next point  of the orbit  t~/n+2/7/,+ ii < 1/1.1.  
Thus,  this synchronici ty  condit ion should be satisfied on an average along 
the entire trajectory.  

The  values of Y0 for which this condition holds is plot ted as a function of 
the coupling parameter  d for three values of ~ in Figure 15. F rom these 
plots it is clear tha t  for a given value of d, the range of Y0 satisfying the 
diagonal a t t rac t ion  condition decreases as ~ is increased. Consequently, 
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the probability of diagonal attraction should decrease as ~ is increased. On 
the other hand, from Figure 5 it is clear that  as ~ is increased, the orbit 
reaches larger values of y. This tends to increase the probability of diagonal 
attraction. Thus we have two competing effects on the probability of 
diagonal attraction which together produce a minimum probability when 

--- 4 as observed in Figure 9. 
We next analyze the orbits using Lyapunov exponents. There are two 

such exponents for this two-dimensional map and both are calculated using 
the method outlined by Benettin, et al. [13, 14]. Two sets of initial 
conditions are considered in obtaining these exponents: for one set the initial 
conditions are not on the diagonal while for the other they are on the 
diagonal. A typical distribution of the exponents for these two cases is 
plotted in Figure 16 against d when ~ = 4. In both cases, the exponents are 
symmetric about d = 1 /2  in agreement with Result 9. Further, in accor- 
dance with Result 10, one Lyapunov exponent tends to infinity when 
d = 1/2 .  When the initial conditions are on the diagonal, the orbit remains 
on the diagonal (result 4) and chaotic trajectories are generated for all values 
of d. Consequently, one exponent is always positive. However, when the 
initial condition is off the diagonal, there are periodic orbits and for the 
ranges of d in which periodic orbits are found both the Lyapunov exponents 
are negative. Throughout the chaotic and synchronous regions (0.2 < d < 
0.8), the larger exponent remains almost a constant with a value of 0.5. The 
Lyapunov exponents can thus be used to distinguish between periodic and 
chaotic orbits. However, they cannot be used to distinguish between the 
different periodic orbits because the values of the exponents characterizing 
the 1-period orbit for d = 0.1 are exactly the same as tha t  characterizing the 
2-period orbit for d = 0.9. Consequently, one cannot distinguish these two 
solutions using only the values of the Lyapunov exponents. The Lyapunov 
exponent plot is enlarged in the range of d for which periodic solutions exist 
(Figure 17). As d is increased from zero, there is a small range of d in which 
the two exponents are exactly equal. In this region the 1-period solution has 
just begun to form and as discussed earlier, the eigenvalues of the Jacobian 
matrix are complex conjugates. The Lyapunov exponents depend only on 
the magnitude of the eigenvalues and hence are equal. 

3.3. Dynamics and Numerical Results for the Asymmetric Case 
Having analyzed the dynamical behavior of the symmetric case, we now 

focus on the asymmetric case, i.e., r~ ¢ r y .  We first consider cases in which 
the asymmetry  is very small so that  r x -- ry ÷ e. The values of r~ and ry 
are such that  both the base states are chaotic. 

Again the dynamics is characterized using bifurcation plots that  are 
obtained in the same manner described earlier. The x and y ordinates are 
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(b) 

The spectrum of Lyapunov exponents for different initial conditions. (a) The I.C.s 
do not fall on the diagonal ( x 0 :~ Y0). If both the exponents are negative, periodic behavior is 
observed as in zones II and VI. The values of both the Lyapunov exponents characterizing a 
one-period orbit in zone II are the same as those characterizing the corresponding two-period 
orbit in zone VI. Therefore, the spectrum of Lyapunov exponents alone cannot describe the 
state of the system completely. (b) The I.C.s fall on the diagonal (x  0 = Y0)" At least one 
exponent is always positive indicating that the diagonal is chaotic. 

p l o t t e d  in F i g u r e s  18 a n d  19 for t h r e e  r e p r e s e n t a t i v e  va lues  of  ry( = 3, 4, 5). 

T h e  v a l u e  of  E for al l  t h e  t h r e e  cases  is 0.1. T h e  overa l l  d y n a m i c s  of  t he se  

s y s t e m s  a p p e a r s  v e r y  s imi la r  t o  t h a t  of  t h e  s y m m e t r i c  case. 

T h e  g loba l  d y n a m i c s  c a n  be  c lass i f ied aga in  in to  s even  zones  m a r k e d  on  

F i g u r e  18. T h e s e  zones  a re  v e r y  s imi la r  t o  t h e  c o r r e s p o n d i n g  zones  for t h e  
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FIG. 17. Enlarged version of Figure 16. Both the exponents are equal at the boundary 
between zone I and zone II. Recall that the transition from zone II to zone I is via a Hopf 
bifurcation, and, consequently, the eigenvalues of the Jacobian matrix are complex conjugates. 
The Lyapunov exponents, being dependent on the absolute value of the eigenvalues, are equal 
at this boundary. 

symmet r i c  case. Zone 1 consists  of mos t ly -chao t ic  t ra jec tor ies  be tween  which 
there  are  several  mul t i -pe r iod  orbi ts .  Zone II is periodic.  This  per iodic  zone 
exhibi ts  bo th  one-per iod and two-per iod  orbi ts .  These  per iodic  orb i t s  can be 
observed in de ta i l  by  enlarging this  zone as in F igure  20. In i t ia l ly  there  are 
two separa te  one-per iod t ra jec tor ies  (marked  on F igure  20 as A and B) 
which are  near ly  bu t  not  exac t ly  symmet r i c  abou t  the  d iagonal  x = y. In  
o ther  words,  the  coordina tes  of one orb i t  are a lmost  equal  to  the  t ransposed  
coord ina tes  of the  o ther  orbi t .  As d is increased,  one of these  one-per iod 
orb i t s  b i furcates  in to  a two-per iod  orbi t .  This  two-per iod  orb i t  ceases to  
exist  for larger  values  of d. Upon  fur ther  increasing d the  second one-per iod 
orbi t  also bi furcates  in to  a two-per iod  orbi t .  

Zone III is chaot ic  and  there  is no visible s t ruc tu re  to  the  t ra jec tor ies  in 
this  region. Zone IV is near ly  synchronous,  i.e., the  value  of the  x o rd ina te  is 
near ly  the  same as t h a t  of the  y ordinate .  Therefore,  a p lot  of x - y should 
be near ly  zero in this  region as in F igure  21. Notice  t h a t  th is  difference is 
an t i symmet r i c  abou t  d = 1 /2 .  In  zone 4, the  values  of th is  difference for 
d = 1 / 2  - k is jus t  the  nega t ive  of the  difference for d = 1 / 2  + k. This  
a n t i - s y m m e t r y  is due to  the  a s y m m e t r y  in the  g rowth  ra tes  r x and  ry as 
expla ined  below. 

Assume t h a t  a t  one ins t an t  the  popu la t ion  a t  si te A (popu la t ion  x n 
governed by  the  growth  p a r a m e t e r  r~) is the  same as t h a t  in s i te  B 
(popula t ion  Yn governed by  the  g rowth  p a r a m e t e r  r~) i.e., xn = yn. Fo r  the  
next  uni t  of t ime  a specific count  of th is  species is p roduced  a t  each of the  
two si tes which are  then  red i s t r ibu ted  by  the  migra t ion  p a r a m e t e r  & The  
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FIC. 18. A s y m m e t r i c  case.  T h e  a s y m m e t r y  is s m a l l  s u c h  t h a t  r= = ry + 0.1. x - o r d i n a t e s  
p l o t t e d  a g a i n s t  & (a)  ry  = 3; (b)  r v = 4; (c)  r~ = 5. T h e  t r e n d s  a r e  s i m i l a r  t o  t h e  s y m m e t r i c  
case  F i g u r e  5. A g a i n ,  t h e r e  is a s i g n i f i c a n t  r eg ion  of  p e r i o d i c  b e h a v i o r .  Z o n e  m a r k i n g s  re fe r  t o  
r e g i m e s  in  F i g u r e  b. S i m i l a r  q u a l i t a t i v e  zones  a r e  p r e s e n t  for F i g u r e s  a a n d  c. 
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FIG. 19. Asymmet r i c  case. The  a s y m m e t r y  is smal l  such t h a t  r= = r~ + 0.1. y-ordinates  
p lo t t ed  aga ins t  d. (a) rv = 3; (b) r~ = 4; (c) r v = 5. Zone mark ings  refer to  regimes in F igure  b. 
Similar  qua l i t a t ive  zones are  present  for Figures  a and  c. 
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Fro. 20. (a) Zone II of Figure 18b enlarged. (b) Zone II of Figure 19b enlarged. Again the 
one-period orbits bifurcate into two-period orbits through a pitchfork bifurcation. 

a m o u n t  p r o d u c e d  at  t he  first site is 

Px = ggn er~(1-xO 

P o p u l a t i o n  p roduced  a t  t he  second site is 

B y =  Yner~ ( l -y")  = Xner~(1-xn) 

No w the  difference be tween  x~+ 1 and  Yn+ 1 is 

x . + l  - Y.+I = ( 2 d -  1 ) P ~ -  ( 2 d -  1) Py. 
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FIG. 21. Asymmetr ic  case. The asymmet ry  is small such that  r e = ry + 0.1. x - y plotted 
against d. (a) r~ = 3; (b) r~ ~ 4; (c) r~ = 5. The synchronici ty observed for the symmetr ic  case 
is broken (compare wi th  Figure 9). Zone markings refer to regimes in Figure b. Similar 
qualitative zones are present  for Figures a and c. 

Thus,  for d = 1 / 2  - k, the difference x~+ 1 - Y~+I is the negative of t ha t  
for d = 1 / 2  + k, and hence, the an t i - symmetry  in zone 4 of Figure 21. If the 
growth parameter  ry is increased from 3 to 5 while maintaining r~ = ry + 
0.1, as in Figures 20 and 21, this difference increases because the number  
produced at each site and their difference increase with ry. 
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Zone V, VI, and VII are similar to those of III, II, and I, respectively. The 
transition from the periodic behavior in zone II to the chaotic behavior in 
zone I is through a Hopf bifurcation of the one-period orbit. The resulting 
closed loop trajectory is plotted in Figure 22a. Similarly, the transition from 
zone VI to zone VII is marked by a Hopf bifurcation of the two-period orbit 
in zone VI. Such a bifurcation of the two-period orbit leads to two closed 
loops as in Figure 22b. The orbit alternates between these two loops. Notice 
that  these two loops are not symmetric about the diagonal unlike those in 
Figure 10. 

We next consider cases in which r~ << ry. As a typical example we let 
r x =  1.75 and r y = 3 .  For r ~ =  1.75 the base state is periodic with a 
one-period orbit while for ry = 3.0 the base state is chaotic. 

The corresponding bifurcation diagram is depicted in Figure 23. For very 
small values of d, there is a one period orbit which bifurcates into two, as d 
is increased to about 0.015. This bifurcation however, does not appear to be 
a pitchfork bifurcation because we do not observe a pitchfork like structure 
even when the increments of d are reduced to 10 -7. Thus, for a certain value 
of d the one-period orbit loses stability and simultaneously a stable two- 
period solution appears. This phenomenon has some similarity to the 
intermittency: in intermittency periodic behavior suddenly disappears via a 
saddle-node bifurcation [11] and chaos results. Here, the one-period orbit 
bursts suddenly into a two-period orbit. This two-period orbit continues to 
be present for a large range of d and eventually bifurcates into a four-period 
orbit via a pitchfork bifurcation. This period doubling process, more trans- 

d = 1 / 2 - 0 . 4 8 4  d =  1 / 2 + 0 . 4 8 4  
101 101 

10 0 

10 -1 

10 -2 

C> 

lO o 

10 -1 

10  -a 

0 

10- 2 10 o 10 ..= 10 o 
x x 

(a) (b) 

C> 

FIG. 22. r~ = 4.1; ry = 4.0. (a) Closed loop trajectories obtained at the boundary between 
zone I and II. (b) Closed loop trajectories obtained at the boundary between zone VI and VII. 
The two loops are not  symmetric  about the diagonal (compare with Figure 10). 
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FIG. 23. Asymmetric case. The asymmetry is large such that r~ = 1.75 and r~ = 3.0. 
(a) x-ordinate and (b) y-ordinate, plotted against d. For small values of d, there is a one-period 
orbit which bifurcates into two, as d is increased to about 0.015. But this period-doubling is 
not  through a pitchfork bifurcation. The resulting two-period orbit undergoes a series of 
period-doubling pitchfork bifurcations until the point of accumulation at d = 0.94078 . . . .  

p a r e n t  in t h e  e n l a r g e d  p lo t  of  F i g u r e  24, c o n t i n u e s  un t i l  t h e  a c c u m u l a t i o n  

p o i n t  a t  d - 0.94078. B e y o n d  t h e  a c c u m u l a t i o n  p o i n t  t h e  t r a j e c to r i e s  a re  

m o s t l y  chao t i c  b a r r i n g  a few per iod ic  windows .  

T h i s  coup led  m a p  also exh ib i t s  t h e  s a m e  Universa l  c o n s t a n t  8 t h a t  

F e i g e n b a u m  [13, 14] has  ou t l i ned .  

d n - dn+ 1 
8 =  l i m S ~ =  l im (27)  

n~¢¢ n-}oo dn+ 1 - dn+ 2 
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FIG. 24. Enlarged version of Figure 23. 

where n stands for the number of period-doubling bifurcations. The values 
of 8,, listed in Table 1, indicate that 8, appears to converge to 4.66902... 
a s  n -->oo. 

4. DISCUSSION AND APPLICABILITY OF RESULTS TO MORE 
GENERAL SITUATIONS 

It is striking to note that coupling two chaotic systems can produce 
stable behavior (zone II and VI in plots 5, 6, 18, and 19). In particular, for 
very high coupling (zone IIA) the trajectories are completely stabilized and 
stable fuxed points are obtained. Thus, migration tends to impose some sort 
of stability on highly nonlinear systems that are otherwise chaotic. There- 
fore, coupling the adjacent habitats of a particular species may enhance a 
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TABLE 1. 

n d. ~n 

1 0.01869868 13.695 
2 0.8679597 7.157 
3 0.9299679 5.056 
4 0.9386101 4.721 
5 0.9403191 4.641 
6 0.940681170 4.644 
7 0.940759138 
8 0.940775927 

stable pat tern in their population dynamics. Such enhancements may in- 
crease the survivability of rare animals as well. 

More generally, we have demonstrated that  coupling two chaotic units 
can indeed stabilize both the units. Cast differently, a ' jug '  of chaos when 
mixed with another ' jug '  of chaos can stabilize both. This stabilizing 
phenomenon may very well explain why there is so much stability in the 
physical world despite all the reported chaos. It may therefore be appropri- 
ate to posit a hypothesis that highly nonlinear systems which are chaotic can 
be stabilized by coupling and that it may be because of the coupling of 
nonlinear systems in real life that the physical world appears orderly. 

For the case of coupled tent maps Keller et al. [15] have shown that  
stable 2-period trajectories can be obtained by a suitable coupling of two 
tent maps that  are chaotic but sufficiently close to 2-period motion. We 
have, on the other hand, demonstrated that  periodic trajectories can be 
obtained by coupling chaotic exponential maps that  are far away from 
periodic behavior. 

Coupling two nonlinear units introduces a variety of dynamical behavior 
into the coupled system. These trends are dependent on the state of the 
individual nonlinear systems as well as the extent of coupling. The resulting 
dynamics can broadly be categorized into seven zones as outlined in the 
previous sections. Further, all the three routes to chaos are observed in the 
present system. Hopf bifurcation route is observed in the transition from 
zone II to zone I in Figure 5. A phenomenon akin to intermittency is 
observed in the transition from zone II to zone III. The period-doubling 
route to chaos is observed in the asymmetric case of Figure 22. 

In addition, coupling may also serve as the key to controlling chaos in a 
wide spectrum of nonlinear phenomena. Coupling can act as a passive 
control by producing stable behavior as in zones II and VI. Coupling can 
also be used in active control applications. Recall that  coupling produces 
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unstable fLxed points (the dashed line in Figure 3) apart from the stable 
periodic orbits. Control, based on unstable periodic orbits, is a subject of 
active recent research [16, 17]. By applying a sequence of small perturba- 
tions it is possible to track the unstable periodic orbits. 

Our study indicates that bifurcation plots, while extremely useful in 
analyzing nonlinear systems, should be interpreted with some caution. For a 
first look, zone IIA of Figure 5 appears to consist of a two-period orbit. 
Careful observation reveals that  it indeed consists of a set of two one-period 
orbits. 

The Lyapunov exponents cannot be used to distinguish between the 
different periodic states because the entire spectrum may be identical for 
both a one-period orbit (say d = 0.05 in Figures 5 and 16) and a two-period 
orbit (say d = 0.95 in Figures 5 and 16). 

We have furthermore investigated the symmetry properties present in 
the system. There is a quasi-symmetry about d = 1/2, the effects of which 
have been analyzed in detail. Further, over a large range of d the diagonal is 
an attractor when the growth rates of the two adjacent colonies are the 
same. This diagonal attraction, also termed as synchronicity, may have 
applications in neuro-biological systems as well. Recent studies indicate 
synchronized activity in the visual cortex of cats [18] and monkeys [19, 20]. 
Another study indicates that seizures in rats may be related to bursts of 
synchronized neural activity in the hippocampus of the rat brain [21]. 
Understanding synchronized activity is thus important. 

It is interesting to note that when the symmetry in the growth rates r x 
and r~ is altered slightly, the synchronicity is also altered slightly. Thus, 
the match of a system parameter such as the growth parameter may be the 
key to understanding synchronicity. 

There are some limitations to the coupling used in this study. First the 
coupling is symmetric, i.e., the percentage of organisms migrating from 
colony A to colony B is the same as that  migrating from colony B to colony 
A. But in reality, migration is asymmetric with more organisms migrating 
to the better habitat, say the habitat that  has more food. Second, there is 
always a threshold of population beyond which migration can take place. 
That is, the coupling parameter d should depend on the population levels x 
and y. Migration of human beings into the United States is a lucid example 
in this regard. This migration is often higher for people coming from regions 
that  are densely populated. We have ignored such effects to keep the system 
simple. 

Further, instead of just two populations interacting with each other, 
there may be several populations interacting with each other. Such systems 
may also exhibit pattern formations observed in other spatially-extended 
physical systems such as P~yleigh-Ben£rd convection [24]. In such cases, 
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several additional questions arise. How many stable systems are required to 
stabilize the entire system? How should they be distributed? For example, if 
we were to consider a ring of neurons, how many stable neurons should be 
present on this ring? Where should these stable neurons be located so that  
we can stabilize the entire system? How does the number of required stable 
neurons depend upon their locations? Further research along the lines 
described in this paper may provide the answers to some of these questions. 
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