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This paper deals with the precision control of tumbling multibody systems with uncertainties present in the

descriptions of theirmathematicalmodels. A generic tumblingmultibody system consisting of a rigid bodywith internal

degrees of freedom is used. A two-step control methodology is developed. First, a nominal system is conceived that best

approximates the actual physical system. An analytical dynamics-based control methodology is used to obtain the

nominal control force that ensures that this nominal system satisfies the control requirements. This is done using the

controlmethodologyproposedbyUdwadia (“OptimalTrackingControl ofNonlinearDynamical Systems,”Proceedings

of the Royal Society of London, Series A:Mathematical and Physical Sciences, Vol. 464, 2008, pp. 2341–2363). Second, an

additional compensating generalized control force is designed to ensure that the actual controlled (uncertain) system

tracks the trajectories of the nominal system so that the control requirements are also met by the actual system. This

paper deals primarily with the second step and its combinationwith the first. Uncertainties in both the description of the

system as well as the forces acting on it are considered. No linearizations or approximations are made in either of the

steps, and the full nonlinear dynamical system is considered. The efficacy of the controlmethodology is demonstrated by

applying it to two tumbling uncertain multibody dynamical systems.

I. Introduction

T HIS paper deals with the dynamics and precision control of a
generic multibody tumbling system with internal degrees of

freedom when uncertainty is present in its description. It extends the
control methodology developed in [1] in which a closed-form control
was provided to accurately control a tumbling multibody dynamical
system forwhich themathematical model is assumed to be accurately
known (i.e., the nominal system). Here, it is assumed that both the
description of and the given forces acting on the actual tumbling
multibody system are only imprecisely known; an estimate of the
extent of the uncertainties involved is available. In real-life situations,
uncertainty estimates can themselves be unreliable and prone to
considerable error. To circumvent this problem, it is further shown
that the control methodology developed herein to compensate for
these uncertainties is relatively insensitive to errors in the uncertainty
estimates.
Although the research reported on tumbling bodies is limited,

there is a significant body of research available in the literature for
the uncertain attitude control problem for which various methods
ranging from simple proportional, integral, derivative (PID) control
techniques to sophisticated higher-order sliding-mode control
techniques have been investigated. In the following, we present a
few representative results. Reference [2] uses a passivity approach
to control the attitude of a rigid body when angular velocity is
unknown. Reference [3] investigates the use of PID control
approaches for robust tracking of spacecraft attitude. Reference [4]
introduces an adaptive variable-structure control approach for
attitude control of a flexible spacecraft with dead-zone and
saturation nonlinearity in input. Reference [5] investigates the
tracking control problem of unmanned aerial vehicles, and control
is obtained that can track both the attitude angles and angular
velocities using a two-loop sliding-mode control scheme in which
the scaling factor is obtained using fuzzy rules to avoid chattering

problems. Reference [6] employs a radial basis function neural
network (RBFNN) to approximate the system uncertainty, and
control is designed to control the attitude of a near-space vehicle
based on the output of the RBFNN and sliding-mode observers.
Reference [7] provides a robust nonlinear attitude control method
for quadrotors with uncertain parameters. The control consists of a
nominal control that is linear in nature and a compensating control
obtained using robust filters. Reference [8] uses model reference
adaptive control in which the parameters describing the system are
assumed to be uncertain; the approach ensures that the control
requirements are met asymptotically. Reference [9] investigates the
use of the Kalman filter for estimating the uncertain dynamics of
tumbling bodies, and optimal trajectories are generated for a service
robot to capture a tumbling body.
This paper develops a completely different control philosophy

from those cited previously. As in [1], the central idea is to frame the
modeling constraints and the control requirements that are placed
on themultibody tumbling system as a set of constraints imposed on
it. Control of the uncertain multibody tumbling system is achieved
in two steps. In the first step, a nominal system, which is the best
available description of the uncertain system, is conceived. This
nominal system is then controlled using the analytical dynamics
approach developed and demonstrated in [1]. The methodology
yields, in closed form, the exact (generalized) control force required
to enforce the modeling and control constraints that ensure that the
nominal system asymptotically satisfies the control requirements.
The nominal control force simultaneously minimizes a quadratic
control cost at each instant of time [10–14].
Next, a closed-form expression for an additional compensating

control force is obtained so that the actual uncertain system tracks
(mimics) the behavior of the tumbling nominal system towithin user-
specified tolerances, thereby making the actual system behave as
though there were no uncertainty in the description of the nominal
system. The development of this compensating controller and its use
in conjunction with the closed-form control obtained for the nominal
system are the primary contributions of this paper.
The general idea behind the methodology for the second step,

which uses a generalized sliding-mode surface, was first proposed in
[15], and it has been used in various forms suitably adapted for
different problems [16,17].With the use of a smooth function in place
of a signum function, the approach avoids chattering and other
problems associated with sliding-mode control reported in the
literature [18–21]. The approach proposed in [15] can use any user-
prescribed continuous, odd, monotonic increasing function in lieu of
the signum function; this paper uses a function that is linear in the
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sliding variable. The approach presented in [15], though more
flexible, has the drawback that the maximum allowed uncertainty in
the generalized mass matrix is a function of the number of degrees of
freedom; hence, the methodology is limited in handling large
uncertainties (in generalized mass) in large-scale systems with many
degrees of freedom. The approach developed herein does not have
this limitation and is suitable for larger systems. The sliding-mode
control presented in [16] also takes any user-prescribed smooth, odd,
monotonic increasing function as a control design input but is
applicable only for dynamical systems that do not have uncertainty in
the generalizedmass. Though the current approach does not have this
added flexibility (of being able to choose a user-prescribed function
of the sliding variable) as in [15,16], it is applicable to larger systems
that have significant uncertainties in both the generalizedmassmatrix
and the generalized forces. More important, it has a significant
practical advantage: the closed-form additional compensating
(generalized) control force is relatively insensitive to errors in the
estimated uncertainties.
No approximation and/or linearizations are made throughout,

and the exact nonlinear tumbling dynamics of the uncertain
multibody system is used. For purposes of comparison, the two
illustrative examples of tumbling–vibrating multibody systems
previously considered in [1] are revisited: now with uncertain
descriptions of both the parameters involved in specifying the
system and the forces acting on it. The efficacy, simplicity, and ease
of use of the control methodology are demonstrated through these
examples.

II. Nominal System and its Precision Control

The generic uncertain multibody tumbling system with internal
moving parts under consideration is depicted in Fig. 1. It is assumed
to comprise the following two components (see Fig. 1a).
1) The first component is a rigid body B of massmB and a (rigid)

rod R of mass mR that is fixed to the body B. The center of mass of
the composite rigid body (denoted hereafter as BR) is located at C
(see Fig. 1a). The coordinate axes of the body-fixed coordinate
frame xyz, for which the origin is chosen to coincide with C, lie
along the principal axes of inertia ofBR. The direction of the axis of
the rod R is specified by the unit vector a for which the components
in the body-fixed coordinate frame are the constants a1, a2, and a3,
respectively. The coordinates of C in the inertial coordinate frame
XYZ are denoted by (Xc, Yc, Zc). The vector from C to a suitable
point O 0 on the rod R is the three-vector d, for which the
components in the xyz frame are the constants d1, d2, and d3,
respectively (see Fig. 1a).

2) The second component is a set of n discrete masses mi,
i � 1; 2; : : : ; n, that slide along the rod, with eachmass connected to
its nearest neighbor by linear and nonlinear spring elements (see
Fig. 1b). The position of the masses measured fromO 0 along the rod
R are denoted by pi, i � 1; 2; : : : ; n. As shown in Fig. 1b, the spring
element ki�1 connecting mass mi to mass mi�1 is assumed, for
simplicity, to consist of a linear elastic spring element with stiffness
kli�1 in parallel with a cubically nonlinear elastic spring element with
stiffness kni�1. The equilibrium positions of the discrete masses are
given by pi

e, i � 1; 2; : : : ; n, as measured along the rod R from O 0.
The generic uncertain multibody tumbling system with internal

degrees of freedom described previously has practical significance in
studying phenomena like liquid sloshing in rockets, capture and
refurbishing of space debris, and control of tumbling microrobots. In
this paper, for simplicity, we assume that the multibody tumbling
systemmoves in a constant gravity field with a downward (uncertain
but constant) acceleration g.
The rigid body BR has six degrees of freedom, and each point

mass has one degree of freedom. Thus, a total of n� 6 coordinates
are required to describe the configuration of the system.However, in
what follows, an additional coordinate will be used to describe the
composite system’s configuration, and its rotational motion will be
described by four quaternions. The mass of BR (bodies B and R) is
denoted bymBR, and its mass moment of inertia matrix with respect
to the body-fixed frame located at C (for which the directions are
along the principal axes of inertia of BR) is denoted
by J � diag�Jx; Jy; Jz�.
As mentioned previously, the nominal system is a description of

the system (the parameters involved, the forces acting, etc.) based
on the best available knowledge of the actual (physical) system in
which the parameters (and the forces acting) are only known
imprecisely. The equation of motion of the controlled nominal
system is given by

M�n� �q�n� � Q�n� �QC (1)

where q�n� � �Xc; Yc; Zc; u
T; pT �T is the generalized displacement

vector consisting of the three coordinates of the center of mass of the
tumbling body BR with respect to an inertial frame XYZ, the
quaternion u � �u0; u1; u2; u3�T represents the attitude of the body
BR, and the vector p � �p1; p2; : : : ; pn� gives the positions of the
masses along the rod R relative to reference pointO 0 (see Fig. 1). In
the preceding, the subscript �n� on various quantities indicates the
nominal system.M�n� andQ�n� are the generalized mass matrix and
the generalized force vector acting on the unconstrained dynamical
system. They are explicitly given in [1] by

Fig. 1 Representations of a) generic uncertain multibody tumbling system, and b) schematic of the rod R.
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M�n� �

2
64
fmBR �mT1ngI3 fmTpgLa � fmT1ngLd �Sa�mT

fmTpgLT
a � fmT1ngLT

d HTJH � f�p ∘ m�TpgLT
aLa � Ad LT

aSa�p ∘ m�T � LT
dSam

T

m�Sa�T �p ∘ m��Sa�TLa �m�Sa�TLd f�Sa�TSagdiag�m�

3
75 (2)

where

Ad � fmTpg�LT
aLd � LT

dLa� � fmT1ngLT
dLd

Q�n� �

2
6664
−2fmT _pgLa _u − �fmTpg _La � fmT1ng _Ld� _u − g�mBR � fmT1ng�e3
−2 _HTJH _u − 2f�p ∘ m�T _pgLT

aLa _u − f�p ∘ m�TpgLT
a
_La _u − gfpTmgLT

ae3 � Bd

−f�Sa�T _La _ug�p ∘ m� − 2f�Sa�TLa _ug� _p ∘ m� − f�Sa�T _Ld _ugm� FS − gf�Sa�Te3gm

3
7775

(3)

where

Bd � −�2fmT _pgLT
dLa � fmTpgLT

a
_Ld � fmTpgLT

d
_La

� fmT1ngLT
d
_Ld� _u − gfmT1ngLT

de3

and

FS
i �−kli�pi−pi−1−pi

e�pi−1
e �−kni �pi−pi−1−pi

e�pi−1
e �3

�kli�1�pi�1−pi−pi�1
e �pi−1

e � �kni�1�pi�1−pi−pi�1
e �pi−1

e �3
(4)

For convenience, scalars are shown in curly brackets. In Eqs. (2)
and (3), m � �m1; m2; : : : ; mn�T , 1n is the n vector each of whose
elements is unity, e3 � �0; 0; 1�T , and p ∘ m is the Hadamard
product of vectors p and m defined as

p ∘ m � �p1m1; p2m2; : : : ; pnmn�T (5)

The matrix S is the active rotation matrix given by

S�u�≔ �S1 S2 S3 �

�

2
64

2u20−1�2u21 2u1u2−2u0u3 2u1u3�2u0u2
2u1u2�2u0u3 2u20−1�2u22 2u2u3−2u0u1

2u1u3−2u0u2 2u2u3�2u0u1 2u20−1�2u23

3
75 (6)

H≔

2
6664
−2u1 2u0 2u3 −2u2
−2u2 −2u3 2u0 2u1

−2u3 2u2 −2u1 2u0

3
7775; Li�

∂Si
∂u

; i�1;2;3;

La≔
X3
i�1

aiLi and Ld≔
X3
i�1

diLi (7)

The nominal system has to satisfy the modeling unit-quaternion
constraint (φm ≔ uTu − 1 � 0) that, upon two differentiations with
respect to time, can be expressed as

Am�q�n�; _q�n�; t� �q�n� � bm�q�n�; _q�n�; t� (8)

One could also use the dynamical system

�φm � δ1 _φm � δ2φm � 0; δ1; δ2 > 0 (9)

as a modeling constraint on the unconstrained system. Note that
φm�0� � 0, and this constraint ensures that φm → 0 as t → ∞, thus
attempting to keep φm�t� close to zero. Equation (9) can also be
expressed in the form given in Eq. (8).

The control requirements are cast in the form of constraints on the
nonlinear dynamical system. Two types of constraints generally
arise. They are of the form

φc�q; t� � 0 (10)

where φc is an h vector, and

ψc� _q; q; t� � 0 (11)

where ψc is a j vector.
We differentiate each equation in the set from Eq. (10) twice with

respect to time t and each equation in the set from Eq. (11) once with
respect to time. We then form the dynamical equations

�φc � diag�α1; α2; : : : ; αh� _φc � diag�β1; β2; : : : ; βh�φc � 0 (12)

and

_ψc � diag�γ1; γ2; : : : ; γj�ψc � 0 (13)

in which the parameters in the diagonal matrices are chosen to be
positive. Matrices that are more general than the diagonal matrices
shown can also be used; but, for simplicity, we will use these here.
This choice of parameters ensures that φc, ψc → 0 asymptotically
as t → ∞.
The control requirements given by Eqs. (12) and (13) can always

be expressed as

Ac�q�n�; _q�n�; t� �q�n� � bc�q�n�; _q�n�; t� (14)

Furthermore, both sets of constraints (modeling and control) given
by Eqs. (8) and (14) can combined as

A�n� �q�n� ≔
�
Am

Ac

�
�q�n� �

�
bm
bc

�
≔ b�n� (15)

Thegeneralized forcevectorQC [see Eq. (1)] consisting of both the
constraint force required to enforce the modeling constraint (unit-
quaternion requirement) as well as the control force required to
enforce the control constraints is given by the fundamental equation
of motion in closed form as follows [10,11]:

QC � AT
�n�
�
A�n�M−1

�n�A
T
�n�
���

b�n� − A�n�M−1
�n�Q�n�

�
(16)

The efficacy of this control approach for the nominal system has
been demonstrated in [1] with numerical examples of a tumbling–
vibrating multibody parallelepiped–rod system and a tumbling–
vibrating cylinder–rod system. However, because the correct model
of an actual physical system can substantially deviate from the
nominal system, applying only the nominal (generalized) control
force to the actual systemmay not lead to the controlled actual system
satisfying the desired control objectives. Hence, it is necessary to use
an additional compensating control force with the purpose of
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controlling the actual system so that it tracks the trajectories of the
nominal system. The uncertain system then behaves dynamically as
though it were the nominal system; because the nominal system
satisfies the desired control objectives (asymptotically), the
controlled actual system will satisfy them too.

III. Precision Control of Actual Uncertain System

The equation of motion of the controlled actual (physical)
system is

M�q� �q � Q�q; _q� �QC�q�n�; _q�n�; t� �Qu�q; _q; t� (17)

where M is the positive definite, symmetric generalized (uncertain)
mass matrix; and Q is the (uncertain) generalized impressed force
vector acting on the actual system. QC is the generalized nominal
control force vector that is obtained by considering the nominal
system; and Qu is the generalized additional compensating control
force, yet to be found, which causes the uncertain system to
dynamically behave as though it were the nominal system. The
generalized control force Qu, in a sense, compensates for the
presence of uncertainties and our ignorance of the actual physical
system. It should be noted that the nominal control force does not
explicitly depend on the state of the actual (physical) system.
The tracking error between the controlled actual system and the

nominal system is defined as

e�t� � q�t� − q�n��t� (18)

and the tracking error in generalized velocity is defined as

_e�t� � _q�t� − _q�n��t� (19)

A sliding surface is defined as

s�t� ≔ _e�t� � Ke�t� (20)

where K > 0 is a (constant) scalar. It is easily seen that, when the
controlled actual system is confined to the hyperplane s � 0, the
tracking error converges to zero asymptotically; hence, the control
objectives are satisfied asymptotically (because the nominal system
satisfies the control objectives asymptotically and the controlled
actual system tracks the trajectory of the nominal system exactly).
However, control methods capable of driving systems to this
hyperplane in finite time are discontinuous and have performance
issues. To avoid the problems associated with discontinuous control
methods, we intend to use a smooth control that will ensure that the
system stays within a region Ωε around this hyper plane, defined as

Ωε ≔ fs ∈ Rnjksk ≤ εg (21)

In the preceding, ε > 0 is a scalar control design parameter that can
be chosen so that the controlled actual system satisfies user-
prescribed bounds on the error in tracking the nominal system.
Throughout the paper, we use k ⋅ k to denote the L2 norm. In what
follows, the arguments of the various quantities are suppressed for
brevity, unless required for clarity.
It should be noted that, at time t � 0, the nominal system and the

actual system have the same generalized displacement and velocity:
e�0� � _e�0� � 0. Hence, at time t � 0, the system is inside the
region Ωε.
Defining

δ �q � M−1�Q�QC� −M−1
�n��Q�n� �QC� (22)

and assuming that the following two estimates

λmin ≤ λi; ∀ i (23)

where λi are eigenvalues of the matrix M−1�q�, and

β >
kδ �qk � Kk _ek

λmin

; ∀ t (24)

are available to us, we have the following result.
Result 1: For a given user-prescribed value of ε, the additional

compensating control force Qu defined by

Qu � −β�s∕ε� (25)

ensures that the controlled actual uncertain (physical) system for
which the equation of motion is described by Eq. (17) always stays
within the region Ωε defined by Eq. (21).
Proof: Considering the Lyapunov function

V � 1

2
sTs (26)

its rate of change along the trajectories of the controlled actual
system is

_V � sT _s (27)

On differentiating Eq. (20) with respect to time, we get

_s � �e� K _e (28)

Noting Eqs. (1), (17), and (19),

�e � M−1�Q�QC �Qu� −M−1
�n��Q�n� �QC� � δ �q�M−1Qu

(29)

On substituting Eq. (29) in Eq. (28), we obtain

_s � δ �q�M−1Qu � K _e (30)

Thus, Eq. (27) is simplified as

_V � sT�δ �q�M−1Qu � K _e� (31)

On substituting Qu from Eq. (25), we obtain

_V � sTδ �q −
β

ε
sTM−1s� KsT _e (32)

Because M−1 is positive definite, all its eigenvalues are real and
because of relation (23), the inequality sTM−1s ≥ λminksk2 holds at
all times. Thus, we can find the upper bound of _V as

_V ≤ kskkδ �qk − β

ε
λminksk2 � Kkskk _ek (33)

We can further simplify the preceding inequality as

_V ≤ ksk
�
kδ �qk − β

ε
λminksk � Kk _ek

�
(34)

outside the region Ωε, ksk∕ε > 1. Rewriting Eq. (34), when
ksk∕ε > 1, we obtain

_V < −kskλmin

�
β −

kδ �qk � Kk _ek
λmin

�
< 0 (35)

where the last inequality follows from relation (24). Applying
Lyapunov’s stability theorem, we conclude that Ωε is an attracting
region for the controlled actual system. Specifically, any trajectory
that starts inside the region Ωε stays inside it for all future time.
Because the actual system starts inside the regionΩε at time t � 0 as
mentioned before, the trajectory of the actual system always stays
inside Ωε. □
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Remark 1:An estimate of β [see relations (23) and (24)] is required
to determine the additional (generalized) compensating control Qu

given in Eq. (25). Its value depends on an estimate of the extent of
uncertainty present in the actual uncertain system as compared with
the nominal system chosen to describe it. However, overestimates of
the value of β do not appear to result in a larger additional control
force Qu (as shown later in Result 3). In fact, the magnitude of Qu,
roughly speaking, remains about the same even if β is overestimated
by a factor of three or more.
Remark 2:Thevalue of ε is user-specified and canbemade arbitrarily

small. Theoretically, it can be chosen to meet any desired tracking-error
tolerance. However, from a practical standpoint, for extremely small
values of ε, computation times could become large, depending on the
error tolerances used when performing the numerical integration.
Result 2: When the controlled actual system is restricted to stay

within the region Ωε, the errors in tracking the nominal system are
bounded by

jeij ≤
1

K
ε; i � 1; 2; : : : ; n (36)

and

�� _ei�� ≤ 2ε; i � 1; 2; : : : ; n (37)

Proof: Although this result can also be obtained through heavier
mathematical machinery, we prefer to use the following more
elementary approach. Inside the region Ωε, ksk ≤ ε, and hence the
inequality

jsij ≤ ε; i � 1; 2; : : : ; n (38)

holds for at all time. Using Eq. (20), relation (38) can be expanded as

j _ei � Keij ≤ ε; i � 1; 2; : : : ; n (39)

From Eq. (39), we observe that relation (37) follows from relation
(36) as

jj _eij − Kjeijj ≤ j _ei � Keij ≤ ε

and hence

j _eij ≤ ε� Kjeij ≤ 2ε (40)

So, we focus on proving relation (36). Equation (39) can be
alternatively written as

−ε ≤ _ei � Kei ≤ ε; i � 1; 2; : : : ; n (41)

or

−ε − Kei ≤ _ei ≤ ε − Kei; i � 1; 2; : : : ; n (42)

Considering ei as a dynamical system, if we can prove that ei _ei < 0
outside the region defined by relation (36), then we can conclude that
relation (36) holds true because ei _ei is the derivative of �1∕2�e2i ,
which is a Lyapunov function for the ei dynamical system and, at time
t � 0, ei � _ei � 0.
If

ei >
1

K
ε > 0

then

ε − Kei < 0 (43)

Hence, by Eq. (42), _ei < 0; so, ei _ei < 0. If ei < −�1∕K�ε < 0, then

−ε − Kei > 0 (44)

and, byEq. (42), _ei > 0; andagain,ei _ei < 0. Thus,wecanconclude that
relation (36) holds true, and so does relation (37) by extension. □

Remark 3: The total (generalized) control force applied on the
uncertain system is QC �Qu. Because the actual system tracks the
trajectories of the nominal system to any user-prescribed precision
(see Result 2), the actual system also satisfies the constraints, and
hence the control requirements to the corresponding precision.
From Eq. (25), we have the following for 1) any value of β

satisfying relation (24) and 2) any chosen value of ε:

Qu � −β
s

ε
; β > 0 (45)

A value of β that satisfies relation (24) will be referred to as a
permissible value for the control design. The feasibility of the control
methodology proposed here thus depends on the availability of a
permissible β. However, accurate estimates of the right-hand side of
relation (24) might not, and generally speaking would not, be
available. In such cases, the following result shows that conservative
overestimates of (permissible values) of β will do, and they will not
cause the additional compensating control force to be significantly
different.
Result 3:Having chosen 1) a value of ε � ε0, and 2) a permissible

value β � β0 for the design of the compensating control, the norm of
the additional compensating control forceQu is relatively insensitive
to use of a larger value (overestimate) of β � β1 > β0 as long
as β1∕β0 � O�1�.
Proof: For any permissible value of β, ksk∕ε ≤ 1 for any chosen

value of ε. Theworst situation iswhen ksk∕ε � 1, so that ks�t�k∕ε �
O�1� as t → ∞. By Eq. (45), then

kQuk � β
ksk
ε

� O�β� (46)

for any permissible value of β and any given value of ε.
For a permissible value β � β0 and a user-specified value ε � ε0

used in the control design, the additional compensating control Qu
0 ,

from Eq. (46), is such that

kQu
0k � O�β0� (47)

and

ksk∕ε0 � O�1� (48)

The value of β0 used in the control design needs to be estimated,
and it depends on our level of knowledge (ignorance) of the actual
physical system. But, for a real-life system, the extent of this
knowledge (ignorance) regarding the actual system (vis-à-vis the
nominal system that is used) is usually difficult to exactly assess, thus
making the value of β0 that is to be used itself uncertain. Hence, if an
overestimate β1 > β0 is used instead of β0 in the control design in
order to be conservative, then from relation (45) (because β1 is a
permissible value of β)

kQu
1k � β1

ksk
ε0

� β0
β1
β0

ksk
ε0

� β0
ksk
ε1

(49)

where ε1 � ε0�β0∕β1� < ε0. Furthermore, if β1∕β0 � O�1� and, by
Eq. (48), ksk∕ε0 � O�1�, we obtain

ksk
ε1

� β1
β0

ksk
ε0

� O�1�

Equation (49) informs us that 1) by increasing the value of β from
β0 to β1 we have effectively reduced the value of ε from ε0 to ε1; and
2) if β1∕β0 � O�1�, then ksk∕ε1 � O�1�, and the additional
compensating control forceQu

1 when using a value of β � β1 > β0 is
such that
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kQu
1k � β0

ksk
ε1

� β0O�1� � O�β0� � O�kQu
0k� (50)

where the first equality follows from Eq. (49) and the last follows
from Eq. (47).
Thus, use of a larger permissible value of β does not significantly

increase the magnitude of the compensating control force. □

IV. Numerical Examples

The first example considered is that of a rectangular parallelepiped
(body B) with a cylindrical rod attached perpendicular to its surface.
Two discrete masses slide smoothly along the rod R. The masses
are connected to one another and to the ends of the rod by linear
spring elements in parallel with nonlinear cubic spring elements.
The second example consists of a hollow cylinder B with a coaxial
rod R. Five discrete masses slide along the rod R. Each mass is
connected to its nearest neighbors (and to the end points of the rod) by
linear and nonlinear spring elements, in parallel. The first example
demonstrates precision control of uncertain asymmetrical multibody
tumbling–vibrating systems; the second demonstrates control of
uncertain symmetrical systems.

A. Example 1

Figure 2 shows the dynamical system under consideration. First,
we describe the properties of the nominal system, which is our best
description (estimate) of the actual system and its parameters. Next,
we imagine that the actual (unknown and uncertain) system is picked
out of an ensemble of systems. To demonstrate themethodology used
in this paper, we proceed to list the parameter values of one such
actual system picked from such an ensemble, followed by the control
objectives imposed on it. Lastly, we give the specifications of the
compensating controller.

1. Nominal System

The dimensions of the rigid aluminum (density of
2.7 × 103 kg∕m3) block B are 10 × 6 × 2 m. A rigid 16-m-long
aluminum cylindrical rod R with a radius of 1 m is erected at one
corner perpendicular to the surface of the parallelepiped. The mass
ofBR (bodyB and rodR) ismBR�n� � 4.597 × 105 kg. TheX axis of
the XYZ inertial frame is pointed along the 10 m edge of the
parallelepiped B, and the Z axis is pointed vertically upward (see
Fig. 2). The xyz body-fixed frame has its origin C at the center of
mass of BR, and the body-fixed coordinates are along the principal
axes of inertia ofBR. Themoment of inertiamatrix ofBR is given by
J�n� � 107 × diag�1.3626; 1.5333; 0.3848� kg ⋅m2. The reference
point O 0 on the rod is located at the center of the circle where the
rod R meets the parallelepiped B. The vector from point C to
the reference point O 0 is d�n� � �3.2616; 1.4196;−0.1623�T m.
The unit vector a in the xyz coordinate frame along the direction of

the rod is a�n� � �−0.3985;−0.1481; 0.9051�T . The nominal value
of the (constant) acceleration due to gravity is taken to be
g�n� � 9.81 m∕s2.
The masses of the sleeves (discrete masses) sliding along the rod

are m1 � 5 × 105 kg and m2 � 4 × 105 kg. The linear spring
elements connecting the masses have stiffnesses kl�n�;1 � 6 mN∕m,

kl�n�;2 � 7.5 mN∕m, and kl�n�;3 � 3 mN∕m; the stiffnesses of the

nonlinear cubic spring elements are kn�n�;1 � 0.55 mN∕m3,

kn�n�;2 � 0.3 mN∕m3, and kl�n�;3 � 0.2 mN∕m3. The equilibrium

positions (in meters) of the discrete masses measured along R from
the reference point O 0 are pe � �4; 12�T . The moment of inertia
(kilograms-meter square) of the discrete masses m1 and m2 about
their principal axes are Ji � diag�mir

2
0∕2; mir

2
0∕2; mir

2
0�, i � 1; 2,

with values

J1;�n� � 105 × diag�2.5; 2.5; 5�;
J2;�n� � 105 × diag�2; 2; 4� kg ⋅m2 (51)

Because the massesm1 andm2 are not considered as point masses,
in order to include their rotational kinetic energy, the matrix J � JBR
is modified to

J � JBR �
X2
i�1

PT
i JiPi (52)

where themassmoment of inertia of bodyBR is explicitly denoted by
JBR, and Pi are rotation matrices. Here, the rotation matrix P1 �
P2 � P is [1]

P �

2
64

0.9171 −0.0765 0.3912

0.0113 0.9860 0.1664

−0.3985 −0.1481 0.9051

3
75 (53)

The initial position of the center of mass C of body BR is taken to
be the originO, so that R�0� � �0; 0; 0�T m, and its initial velocity is
taken to be _R�0� � �1; 2; 20�T . The initial orientation of the body is
obtained by rotating it about the unit vector v � 1∕

			
3

p
× �1; 1; 1�T in

the inertial XYZ frame through an angle θ � π∕3 so that the
quaternion at initial time is u�0� � �0.8034; 0.1600;
0.4272; 0.3828�T . The initial angular velocity ω about the principal
axis throughC is taken to be the three-vectorω�0� � �1;−1; 0.5�T so
that _u�0� � �0.0379; 0.6999;−0.2503;−0.0927�T . The initial posi-
tions pi

�n� of the discrete masses measured along the rod R from the

reference point O 0 are p�0� � �5; 11�T , and their initial velocities
are _p�0� � �−0.4; 0.3�T .

2. Actual System

The actual uncertain system has parameters and given forces that
are unknown to the person modeling the system.We imagine that the
actual system belongs to an ensemble of systems and that a candidate
from this ensemble is picked (realized) in actuality. For purposes of
demonstrating ourmethodology, we provide the parameters of such a
system that is picked.
The mass of BR in the actual system is mBR � 4.826 × 105 kg.

Its moment of inertia along the principal axes is
J � 107 × diag�0.3846; 1.2126; 1.3482� kg ⋅m2. The actual masses
of the sleeves are m1 � 5.26 × 105 kg and m2 � 3.735 × 105 kg
Their moments of inertia about their principal axes are J1 �
105 × diag�2.6303; 2.6303; 5.2605� and J2 � 105 × diag�1.8676;
1.8676; 3.7353� kg ⋅m2. The linear spring elements connecting the
masses have stiffnesses kl1 � 6.044 mN∕m, kl2 � 7.636 mN∕m, and
kl3 � 2.94 mN∕m; and the stiffnesses of the nonlinear cubic spring
elements are kn1 � 0.551 mN∕m3, kn2 � 0.319 mN∕m3, and
kl3 � 0.204 mN∕m3. The initial conditions and other parameters
are the same as those for the nominal system.
Thus themass ofBR in the actual systemdiffers from that used in the

nominal systemby approximately 5%, themoments of inertia differ by
about 12%, the values of the discrete masses differ by about 6%, theFig. 2 Multibody tumbling system.
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values of the stiffnesses of the linear spring elements differ by 2%, and
the values of the stiffnesses of the cubic spring elements differ by 6%.
The gravitational constant is also assumed to be uncertain, and its

actual value is taken to be g � 9.73 m∕s2.

3. Control Objectives

The system is controlled such that the tumbling motion of the
composite body tracks the desired angular velocities and the motion
of the internal masses tracks desired trajectories.
1) The positionspi�t� of the vibratingmasses along the rod relative

to the reference pointO 0 are required to track the desired trajectories
�pi�t�, which involve harmonic oscillations around the equilibrium
positions pi

e with amplitude li and frequency λi so that

�pi�t� � pi
e � li cos�λit�; i � 1; 2 (54)

and
2) The angular velocity componentsωi of the bodyBR are required

to track desired trajectories �ωi�t� given by

�ωi�t� � bi cos�σit�; i � 1; 2; and 3 (55)

In the preceding, bars above the various quantities indicate our
control requirements.
The quantities l � �l1; l2�T , λ � �λ1; λ2�T , b � �b1; b2; b3�T , and

σ � �σ1; σ2; σ3�T are user-prescribed constants. For simulation
purposes, they are chosen to be

l� �−1;2�T; λ� �2π;π∕2�T; b� �−10;8;15�T; and σ� �0;π;2π�T
(56)

The parameters for the constraint matrices are also chosen to be

α1 � α2 � 2; β1 � β2 � 12; δ1 � 0.5; δ2 � 8; and γ � 0.6

(57)

The equations ofmotion of the controlled uncertain system and the
nominal system given by Eqs. (17) and (1) are simultaneously
integrated, with the nominal control force and the compensating
control force computed using Eqs. (16) and (25).

4. Compensating Controller

The parameters for obtaining the additional compensating
generalized force are chosen as β � β0 � 1012, ε � 10−4, and
K � 3. The theoretical tracking error bounds (between the actual
system and the nominal system) obtained using Eqs. (36) and (37) are

jeij ≤
1

K
ε � 3.3 × 10−5; i � 1; 2; : : : ; 9 (58)

and

j _eij ≤ 2ε � 2 × 10−4; i � 1; 2; : : : ; 9 (59)

Numerical integration is carried out using the ode15s package in
MATLAB with a relative error tolerance of 10−12 and an absolute
error tolerance of 10−13. The results are presented in Figs. 3–9.
Figure 3 shows the displacement time history of the discrete masses
of the controlled uncertain system as well as the errors in tracking the
control requirements ep�t� � p�t� − �p�t�. At the end of 20 s,
tracking error ep�20� is O�10−8� m. When integration is continued

Fig. 3 Displacement of discrete masses and tracking error ep�t� ≔ �e1;e2�.

Fig. 4 Angular velocity of controlled uncertain system and tracking error eω.
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until 60 s, the tracking error at the end of 60 s, ep�60�, isO�10−12� m.
Similarly, Fig. 4 shows the time history of various components of the
angular velocity vector. It also shows the error in tracking the control
requirements eω�t� ≔ ω�t� − �ω�t�. At the end of 20 s, the error
eω�20� is ofO�10−4� rad∕s. At the end of 60 s, the error eω�60� is of
O�10−10� rad∕s. It should be pointed out that, at the end of 60 s, the
actual tracking error e�t� � q�t� − q�n��t� between the nominal and

the actual systems is of O�10−8� and the tracking error _e�t� in the
generalized velocity is of O�10−7�, which is much smaller than the
error estimates provided by Eqs. (58) and (59).
Figure 5 shows the generalized nominal control forces to be

applied to the tumbling–vibrating body so that the nominal system
satisfies the control requirements. The figure on the left shows the
forces on the discretemasses (denoted byFc), whereas the one on the

Fig. 5 Nominal control forces on discrete masses and control torques.

Fig. 6 Additional compensating control forces on discrete masses and control torques, β � β0 � 1012.

Fig. 7 Total control forces on discrete masses and control torques.
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right shows the control torques Tc to be applied on the body BR.
The nominal control force applied at C on BR is effectively zero
(computationally less than 10−20 N throughout the interval of
integration). The control torques can be computed from the
generalized control forces as Tc � �1∕4�HTQC

4–7, whereQ
C
4–7 is the

four-vector containing components of the generalized nominal
control force vectorQC from index four up to seven. These plots can
be compared with similar ones in Fig. 6 that show the additional
compensating control forces on the discrete masses, Fu, and the
compensating control torques on the body BR, Tu. We note that the
additional compensating (generalized) control forces are about an
order of magnitude less than the nominal forces. The total control
force, which is the sum of the nominal control force QC and the
compensating generalized control forceQu, causes the trajectories of
the controlled uncertain system to closely track the trajectories of the
nominal system so that the controlled uncertain system behaves as
though it were the nominal system: that is, as though it were the
nominal system with no uncertainties involved. The total control
forces on the discrete masses and the control torques on the body BR
are shown in Fig. 7.
Because it is assumed that there is uncertainty in the gravitational

constant g, the additional compensating control forces on the body
BR cannot be zero because the center of massC (ofBR) of the actual
system, which is moving under the uncertain value of g (taken to be
9.73 m∕s2), has to track the corresponding center of mass C of the
nominal system, which is moving under the nominal value of g
(9.81 m∕s2). Figure 8a shows the time history of the components (in
the inertial frame) of the additional compensating control force to be
applied to the center of mass C of body BR.

The control force is continuous as seen in Fig. 8b, where the
timescale is expanded and a small portion of the time history of the
compensating control force components on BR is shown from t �
5 s to t � 6 s. Because the nominal control force at C on BR is zero,
the total control force at C on BR is just the additional compensating
control force shown in the figure.
Figure 9 shows the motion of the center of massC ofBR as well as

the components of the quaternion vector u�t�. The dashed line in
Fig. 9a represents the norm of the quaternion vector u�t�, which is
seen to be unity throughout the integration interval. The error in
satisfying the unit-quaternion constraint eu � uTu − 1 is of
O�10−11� throughout the interval of integration. Figure 9b shows
the three components of the motion of the center of mass C of BR in
the inertial frame.
To demonstrate that the compensating control forces are relatively

insensitive to our estimate of the uncertainty in the actual system vis-
à-vis the nominal system that is described by the value of the
parameter β, we simulate the system again with a larger value of
β � β1 � 1015, keeping the rest of the parameters unchanged. It
should be noted that the newvalue β1 for β is larger by a factor of 1000
than the earlier value β0. Figure 10 shows plots for the additional
compensating control forces on the discretemasses and the additional
compensating torques with β � β1 � 1015, which can be compared
with the corresponding plots for β � β0 � 1012 shown in Fig. 6. As
seen from these figures, the compensating forces do not change
perceptibly. The plot for the additional compensating control force at
C on BR (not shown for brevity) also does not change perceptibly
from that shown in Fig. 8. Thus, overestimating the uncertainties by
using a value of β that is a 1000 times as large as previously, as might

Fig. 8 Compensating (and total) control force on body BR, β � β0 � 1012.

Fig. 9 Quaternion four-vector and motion of point C.
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be done in practice from a conservative standpoint, does not cause
much change in the (generalized) additional compensating control
forces (see Result 3).
Comparing Figs. 3a, 4a, and 9b (which show the controlled

response of the uncertain system) with Figs. 9a, 10a, and 11b,
respectively, shown in [1] for the controlled response of the nominal
system, we indeed observe that the uncertain system behaves as
though it were the nominal system, devoid of uncertainty.

B. Example 2

As a second example, we consider a hollow cylinder B with a
coaxial rodR along which a chain of five masses, connected together
with nonlinear springs, can slide freely. The system is shown in
Fig. 12. As with example 1, we first summarize the parameters of the
nominal system followed by the parameters of the (realized) actual
uncertain system.

1. Nominal System

The outer diameter of the cylinder isD � 8 m, its outer length is
h � 12 m, the thickness of the wall is a � 2 cm, and the diameter
of the rod is 20 cm. The cylinder and rod are made of steel with a
density of 7 × 103 kg∕m3. The center of mass C of the body BR
(cylinder� rod) is located along the axis of the cylinder at the
center of the rod. The body fixed xyz frame has its x axis along the
axis of the rod, and the other two body axes lie perpendicular to
the axis of the rod. The mass of BR ismBR;�n� � 2.934 × 104 kg. Its
moment of inertia matrix in the xyz body-fixed frame is
J�n� � 105 × diag�7.809; 7.535; 7.535� kg ⋅m2. The center of mass
of the cylinder itself is taken as the reference point (it lies along the

rod)O 0; hence, vector d � �0; 0; 0�T. The unit vector along the rodR
is a � �1; 0; 0�T . The equilibrium positionspe of the discretemasses
measured along R are uniformly spaced along its length, h − 2a.
The nominal (constant) acceleration due to gravity is taken to
be g�n� � 9.81 m∕s2.
The masses that slide along the rod have values

m�n� � 104 × �1; 2; 2; 1; 1�T kg. The stiffnesses of the linear
spring elements connecting the masses are kl�n� ��70; 50; 70; 100; 70; 50�T mN∕m, and nonlinear (cubic) stiffnesses
are kn�n� � �30; 70; 40; 60; 50; 80�T kN∕m3.
The initial position ofC in an inertial frame (with the inertialZ axis

pointed upward) is taken to be the origin, so that R�0� � �0; 0; 0�T ,
and its initial velocity is taken to be _R�0� � �1; 2; 10�T m∕s. The
cylinder is aligned so that its body-fixed x-axis lies along the inertial
X axis. The initial orientation of the body is obtained by rotating it
about the unit vector ν � 1∕

			
3

p �1; 1; 1�T in the inertial frame
through an angle θ � π∕3 so that the initial quaternion is
u�0� � �cos�θ∕2�; sin�θ∕2�ν�T . The initial angular velocity in the
body-fixed frame is taken to be the three-vector �1;−1; 2�T rad∕s,
so that _u�0� � �−0.2887; 0.8660;−0.5477; 0.5774�T . The initial
positions measured along R, relative to the reference point C of the
five masses, are p�0� � �−4.4;−1.8; 1.4; 2.5; 4.2�T m; and their
initial velocities are _p�0� � �0.2;−0.3;−0.2; 0.1;−0.2�T m∕s. With
these initial conditions, the body is allowed to undergo free
gravitational fall.

2. Actual System

To demonstrate the control methodology, a specific actual system,
picked from an ensemble of unknown systems, is described in the
following.

Fig. 10 Additional compensating control forces on discrete masses and control torques, β � β1 � 1015.

Fig. 11 Displacement of discrete masses and tracking error ep�t� ≔ �e1;e2;e4�.
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The mass of BR in the actual system is mBR � 2.86 × 105 kg. Its
moment of inertia along the principal axes is J � 105 × diag�6.2649;
6.7889; 8.4262� kg ⋅m2. The actual masses of the sliding discrete
masses are m � 104 × �0.903; 2.04; 2.042; 0.921; 0.976�T kg. The
linear spring elements connecting the masses have stiffnesses
kl � �71.09; 50.96; 68.77; 101.56; 70.22; 50.48�T mN∕m, and the
stiffnesses of the nonlinear cubic spring elements are
kn � �30.781; 71.146; 36.164; 56.520; 50.447; 84.306�T mN∕m3.
In summary, the mass of BR in the actual system differs from that

used in the nominal system by approximately 2.5%, the maximum
difference in the entries of the moment of inertia matrix of BR
between the actual and the nominal system is about 20%, thevalues of
the discrete masses differ by about 10%, the values of the stiffnesses
of the linear spring elements differ by 2%, and the values of the
stiffnesses of the cubic spring elements differ by 6%.
The gravitational constant is also assumed to be uncertain, and its

actual value is taken to be g � 9.73 m∕s2.

3. Control Requirements

Similar to example 1, we control the angular velocity of the
tumbling body and internal motions of the discrete masses so they
track desired trajectories. However, we only control the positions of
the first, second, and the fourth discrete masses. The desired position
of these masses are

�pi�t� � pi
e � li cos�λit�; i � 1; 2; and 4 (60)

The desired angular velocity of the tumbling body is

�ωi�t� � bi cos�σit�; i � 1; 2; and 3 (61)

For numerical simulation, the parameters are chosen to be

l1 � 0.8; l2 � −1; l4 � 0.5; λ1 � π∕2; λ2 � π; λ4 � π∕4
(62)

and

b � �8;−10; 15�T and σ � �π; 0; 2π�T (63)

The parameters for the constraint matrices are chosen as

αi � 2; βi � 12; i � 1; 2; 3 (64)

δ1 � 0.5; δ2 � 8; and γ � 0.4 (65)

4. Compensating Controller

The parameters for the additional compensating control force are
chosen as β � β0 � 0.5 × 108, ε � 10−4 and K � 3. The tracking

error bounds between the actual system and the nominal systemusing
Eqs. (36) and (37) are

jeij ≤
1

K
ε � 3.3 × 10−5; i � 1; 2; : : : ; 12 (66)

and

j _eij ≤ 2ε � 2 × 10−4; i � 1; 2; : : : ; 12 (67)

The equations ofmotion of the controlled uncertain system and the
controlled nominal system given by Eqs. (17) and (1) are
simultaneously integrated with the nominal control force and the
compensating control force computed using Eqs. (16) and (25).
Numerical integration is carried out using the ode15s package in
MATLAB with a relative error tolerance of 10−10 and an absolute
error tolerance of 10−12. The results are presented in Figs. 11–20.
Figure 11 shows the time history of the positions of the discrete
masses relative to the reference point C�O 0� of the controlled
uncertain system as well as the errors in tracking the control
requirements ep�t� � p�t� − �p�t�. At the end of 20 s, the tracking
error ep�20� isO�10−9� m. If the numerical integration is continued
until 60 s, the tracking error ep�60� isO�10−11�. Figure 13 shows the
time history of various components of the angular velocity vector. It
also shows the error in satisfying the control requirements eω�t� ≔
ω�t� − �ω�t� imposed on the angular velocity of the uncertain body
BR. At the end of 20 s, the error eω�20� isO�10−3� rad∕s; at the end
of 60 s, the error eω�60� is O�10−10� rad∕s. Integration over longer
time intervals gives errors of the same order of magnitude as the error
tolerances used in the numerical integration.
The tracking error at the end of 60 s between the states of the

nominal and the actual systems (e � q − q�n�) is of O�10−5�, and
the tracking error in the generalized velocity ( _e � _q − _q�n�) is of
O�10−4�, as predicted by Eqs. (66) and (67).
Figure 14 shows the generalized nominal control forceQC to be

applied to the tumbling–vibrating body so that the nominal system
satisfies the control requirements. Forces on the discrete masses
are shown in Fig. 14a, whereas Fig. 14b shows the control torques
to be applied to BR about its principal axes. No nominal force is
applied at C to BR (computationally less than 10−20 N throughout
the interval of integration). Because discrete massesm3 andm5 are
not controlled, the nominal control forces applied to these two
masses turn out to be zero. These plots can be compared with
similar ones in Fig. 15 that show the generalized additional
compensating control force Qu. These additional generalized
forces are much smaller than the generalized nominal forces. It is
important to note that the compensating control force is smooth.
Figures 16a and 16b show the additional compensating control
forces on the discrete masses and the additional compensating
control torques on an expanded timescale from t � 5.5 to

Fig. 12 Representations of a) hollow cylinder B with a coaxial rod R, b) on which are five masses that can slide.
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t � 6.0 s. As seen in the figure, they are smooth functions of time.
The figure also shows that, though no nominal control forces are
applied to the discrete masses m3 and m5, there are additional
compensating control forces on them.
Figure 17a shows the time history of the components (in the inertial

frame) of the additional compensating control force applied to the

center of mass C of BR. As before, the additional compensating
control does not exhibit chattering, and Fig. 17b shows these
components from t � 5.5 s to t � 6 s on an expanded scale. Because
the nominal control force atC onBR is zero, the total control force at
C on BR is just the additional compensating control force shown in
the figure.

Fig. 14 Nominal control forces and control torques.

Fig. 15 Additional compensating control forces on discrete masses and control torques, β � β0 � 0.5 × 108.

Fig. 13 Angular velocity and tracking error eω.
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Figure 18 shows the total control forceQC �Qu applied to the five
discretemasses and the torques applied toBR about its principal axes.
As with example 1, the control forces on the discrete masses and the
torques are seen to be much smaller than the nominal ones. The total
generalized control force, consisting of the sum of the nominal and
the compensating control force, when acting on the uncertain system
causes it to exactly mimic the controlled nominal system, and

therefore behave as though there were no uncertainty in the nominal
description, thereby satisfying the control requirements.
Figure 19a shows the components of the quaternion vector u�t�.

The error in satisfying the unit-quaternion constraint eu � uTu − 1
is of O�10−6� throughout the interval of integration. Figure 19b
shows the motion of the center of mass C of BR in the inertial
frame.

Fig. 16 Additional compensating control forces on discrete masses and torques on an expanded time scale.

Fig. 17 Total (compensating) control force at C on body BR a) on normal time scale and b) on expanded time scale.

Fig. 18 Total control forces on discrete masses and control torques, β � β0 � 0.5 × 108.
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We now assume that our guesstimate of the uncertainty β is in
error by a factor of 1000. Figure 20 shows the additional
compensating control forces obtained when the controlled uncertain
cylinder system is simulated with a value of β � β1 � 0.5 × 1011.
A comparison of Figs. 16a and 20a shows that the additional
compensating forces on the discrete masses when using a higher
value of β (here, β1 � 1000β0) does not result in any significant
change in the additional compensating control forces. A comparison
of Figs. 15b and 20b shows a similar result for the additional
compensating control torques. For brevity, we have not shown the
additional compensating control force components acting at C on
the body BR when β1 � 1000β0, but they look nearly identical to
those shown in Figs. 17a and 17b.
Figures 11a, 13a, and 19b, showing the controlled response of the

uncertain system, can be compared with figures 13a, 14a, and 16b of
[1], which show the response of the controlled nominal system. The
response time histories look exactly the same in both the cases,
demonstrating that the controlled uncertain systembehaves as though
it were the nominal system, with no uncertainty in its description.

V. Conclusions

In this paper, a generic uncertain multibody system is considered
with internal degrees of freedom that has practical significance in
studying phenomena like liquid sloshing in rockets, capture and
refurbishing of space debris, etc. It is assumed that the parameters
describing themathematical model of the system and the given forces
acting on it are not accurately known, but their estimates are
available, and so are the bounds on the extent to which the actual
values might deviate from these estimates. A simple control strategy

is used to effectively control the uncertain system such that the system
tumbles in a desired fashion, whereas the internal degrees of freedom
execute user-prescribed oscillatory motions. It is capable of being
used for both autonomous and nonautonomous systems.
The control methodology consists of two steps: 1) the

determination of the generalized control force on the nominal
system (the best guess of the actual system) and 2) the determination
of an additional control to compensate for the uncertainties in the
description of the nominal system. The control obtained in the first
step of the methodology ensures that the nominal system satisfies
exactly the control requirements asymptotically, and this has been
dealt with in detail in [1]. This nominal control force is obtained using
results from analytical dynamics, and it minimizes a control cost at
each instant of time. It is the second step of the methodology that this
paper deals with.
The central idea here is to find an additional compensating control

so that the uncertain system dynamically behaves in the samemanner
as the nominal system; that is, it behaves as though there is no
uncertainty in the description of the nominal system. The
(generalized) compensating control force is found so that the
controlled actual system tracks the trajectories of the nominal system
to within user-prescribed bounds. This is done through the use of a
generalized sliding surface. The methodology relies on the use of a
guesstimate of the uncertainties in our knowledge of the actual
physical system and the forces acting on it vis-a-vis the nominal
system that is used in the first step of the methodology.
The two-step approach developed herein is shown to be capable of

delivering stable precision control of uncertain tumbling multibody
systems using the full nonlinear dynamical description without any

Fig. 19 Components of the quaternion four-vector and motion of point C.

Fig. 20 Additional compensating control forces on discrete masses and control torques, β � β1 � 0.5 × 1011.
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linearizations and/or approximations. Yet, it is simple enough to be
usable in real time. This is because the control forces are obtained in
closed form, with negligible associated computational costs. Two
examples illustrate the ease of implementation and simplicity of the
methodology, as well as the high precision with which stable control
of uncertain nonautonomous systems can be effected through this
approach. Furthermore, the explicit closed-form control obtained
using this methodology is shown to be relatively insensitive to our
ignorance of the uncertainties involved, which is an aspect that has
considerable significance when dealing with the precision control of
real-life uncertain systems. This too is illustrated through the
examples considered.
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