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Tumbling is an inherently nonlinear phenomenon, and this paper uses a generic model of a tumbling multibody

systemmade up of a rigid body to which discretemasses are attached; it obtains the equations of motion of the system

explicitly, exhibiting the highly nonlinear nature of the dynamics. Particularizations of the generic model used here

are useful in applications such as liquid sloshing in rockets, biodynamics, and capture and refurbishing of space

debris. It is assumed that the mathematical description of the system is accurately known. A uniform analytical

dynamics-based approach is used to obtain both the equations of motion of the system as well as the requisite control

torques and forces to satisfy control requirements. No linearizations or approximations of the nonlinear dynamics are

made, and closed-form controls are obtained that precisely track user-specified time-dependent control requirements

on the tumbling multibody system. The methodology is demonstrated using two examples of tumbling systems with

internal degrees of freedom in a constant gravity field that possess significant nonlinear internal motions. Precision

tumbling control of such tumbling-vibrating multibody systems is achieved with considerable ease, making the

approach presented herein useful for real-time control.

I. Introduction

T HE motion of a swimmer from a high-dive platform as he
somersaults through the air or the motion of a mundane cube of

nonhomogeneous material as it wobbles when thrown up in the air is
always fascinating to watch. One of the reasons tumbling motions,
especially in three dimensions, are almost magical to watch is that
they are complex and often seem to defy intuition. It is the highly
nonlinear nature of the equations that describe such motions that
causes our intuition to falter, and hence the apparent strange behavior
of such systems. This paper develops a generic model of a multi-
degree-of-freedom tumbling system composed of a rigid body to
which a set of discrete masses is attached that can move along a line
fixed to the body. Each mass is connected to its nearest neighbor by a
nonlinear (and/or linear) spring. As will be explained later, the
discrete masses that form the “internal” degrees of freedom of the
system can be large in comparison with the mass of the rigid body,
and they can undergo large-amplitude nonlinear vibrations as the
entire system tumbles. This generic model is useful for several
applications such as liquid sloshing in rockets, biodynamics, and the
capture and control of space debris.
There appear to be three main areas where the dynamics of

tumbling and its control have been studied: 1) control of the
orientation of a rigid body using themotion of internal parts [1–5], the
study of tumbling dynamics of biological species and their internal
control mechanisms through limbs or tails [6,7], and applications in
bioinspired robots [8–10]; 2) work on attitude dynamics in the
aerospace field (e.g., [11–30]); and 3) tumbling of biological species
such as proteins, red blood cells, and flying insects (e.g., [31–34]).
More recently, there has been activity in the capture of tumbling
objects in space in which, for example, the use of optimal control
methods for attitude orientation to capture tumbling objects was
worked on [35]. In the following, we provide a review of the current
literature in these three areas and theways in which the present paper
differs from the work that has been done to date.
References [1,2] explored the use of a spinning internal member

to control the attitude of aerospace vehicles. Reference [3] used a

spinning internal member for which the center of gravity was offset

from the axis of symmetry of a projectile to stabilize the attitude of

the projectile. Reference [4] used feedback linearization to control a

kinetic warhead controlled using three moving mass actuators.

Reference [5] used a vibrating internal mass mechanism to control

the trajectory of a smart weapon. Full-state feedback control

obtained using a feedback linearization technique was used. While

the internal motion was leveraged to control the motion of a

projectile, the control of both the internal masses and the tumbling

body was not dealt with; it is the focus of the current work. In

particular, this paper deals with situations where the internal masses

can be a significant percent (more than 50%) of the total mass of the

tumbling–vibrating body, thereby making the nonlinear inter-

actions significant and placing them outside the scope of any

linearizations. Also, the generic dynamical model used in this paper

has a greater degree of generality because it deals with an arbitrary

number of nonlinearly coupled internal masses moving along an

(any) axis that may or may not pass through the center of mass of the

tumbling body and is oriented along an arbitrary direction. The

current paper also differs from [1–5] in the sense that no concepts

borrowed from traditional control theory were used. The control

approach relies on fundamental results from the closely allied field

of analytical dynamics, and it provides exact control so that the

control requirements become the integrals of motion of the

controlled nonlinear system.

Reference [6] provided geometric insights into self-righting of

falling cats. A feasibility analysis of maneuvers involving limb

motions performed by a weightless astronaut to achieve self-

orientation was provided in [7]. A three-dimensional analytical

model was developed in [8] to investigate the use of inertial

appendages to control the orientation of bioinspired robots. This

studywas inspired by self-righting maneuvers of lizards. A nonlinear

feedback controller for a two-link robot with an active tail was

proposed in [9]. The control strategy consisted of a simple

proportional gain feedback. Reference [10] considered a general

robot system that could be thought of as a connected chain of rigid

bodies and developed control algorithms to achieve a pose that

reduced the impact of landing. The methodology was inspired by

falling cats. The current paper is different from the aforementioned

work in the following ways:
1) Trajectory requirements are placed on internal masses as well as

translation and rotation of the tumbling body, whereas [8–10] were
only concerned with orientation control of a body with no control
requirements on either the internal masses or the body.
2) The proposed control approach is inspired by recent advances in

analytical dynamics, whereas the control approach presented in
[8–10] was inspired by biological systems.
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3) The proposed approach provides closed-form nonlinear control
that exactly satisfies the control requirements cast in the form of
control constraints.
4) The proposed control simultaneously minimizes a user-defined

quadratic control cost at each instant of time.
The work done to date in the area of attitude control can be broadly

classified into three groups. Considerable work has been done on
the attitude control of rigid bodies (see, for example, [11–18]); this
forms the first group of research activity. Here, different control
methodologies such as feedback linearization, velocity feedback
control, sliding-mode control, and State Dependent Riccati Equation
(SDRE) control have been used to control the attitude of a rigid body,
typically from a given rest position to another target rest position. As
opposed to such standardly used methods developed by control
theorists, [19] used an analytical dynamics-based method that unified
the modeling and the control of rigid-body motions, resulting in a
simpler closed-form exact control. The second focus of activity has
been in developing optimal control methods for the attitude control of
rigid bodies (see, for example, [20–22]); and a third focus has been on
developingmethods of attitude and position control of systems of rigid
bodies, such as the controlled motion of one rigid-body spacecraft
around anotherwhen the twomove in uniformand nonuniformgravity
fields (see, for example, [23–25]). Such work was recently also
extended to include systems for which the properties may be only
known imprecisely and/or systems on which the forces acting may be
known with poor accuracy [26–28]. One of the areas where tumbling
dynamics becomes important is when the fluid–structure interaction
becomes significant; here, the main challenge is in the modeling of the
unsteady nature of the complex fluid flow, which can often be
turbulent. Given our imprecise knowledge of the proper fluidmodel, it
is important that control methods that allow the inclusion of such
imprecise descriptions are developed [29].
Work in the biodynamics field related to tumbling is more along

experimental lines, with quantitative modeling being somewhat
difficult at this time due to the lack of well-established dynamical
models. References [30–33] show the importance of tumbling at the
organism level, the subcomponent level, and at the molecular level
(for example, in proteins).
As seen from the preceding discussion, though considerable work

has been done in these three areas, precision control of a tumbling
body that has numerous internal degrees of freedom (which one may
also want to control) has not been dealt with so far in the manner
described here. This paper develops a generic model of a general
tumbling body with no axis of symmetry and an arbitrary number of
internal masses that move along an arbitrary axis that may or may not
pass through the center ofmass, and that is oriented along an arbitrary
direction. It focuses on the fundamental nonlinear behavior of a
tumbling object that has several internal moving parts, with the
internal parts also being coupled to one another through nonlinear
elements. The explicit quaternion equations of motion that capture
the ensuing large rotational dynamics are obtained. They expose the
highly nonlinear nature of the dynamics wherein the vibratory
motions of the internal degrees of freedom are nonlinearly coupled to
the rigid-body dynamics. The general equations derived for the
generic model are particularized to two pedagogical examples of
practical importance. The first deals with the motion of a rigid
parallelepiped, to which is attached a cylindrical rod along whose
surface, discrete masses connected by nonlinear spring elements are
allowed to slide and vibrate as the parallelepiped tumbles. This
example shows the effect of internal vibrations on the tumbling of
objects that do not have an axis of symmetry. The second deals with
the dynamics of a cylinder, such as a spacecraft, alongwhose axis is a
rod onwhich ismounted a chain ofmasses, with each connected to its
nearest neighbor by nonlinear spring elements. This illustrates the
nature of tumbling when the internal motions are along a line of axial
symmetry of the body.
The paper develops a uniform approach based on results from

analytical dynamics [36–39] for obtaining the equations of motion of
the tumbling system and for controlling it to satisfy given control
requirements. Both the tumbling of the system as well as its internal
motions (the vibratingmasses) are controlled with high precision in a

user-prescribed time-dependent manner. The system and its
parameters are assumed to be known, and the system is referred to
as the nominal system. (Reference [29] deals with the dynamics and
precision control of tumbling multibody uncertain systems.) The
approach used here provides closed-form control of the nominal
system so that it asymptotically fulfills all the control requirements.
No linearization or approximations are made to the nonlinear
dynamical model. The control is obtained in closed form, and can
therefore be used in real time. In a sense, the control is “exact”
because it causes the control requirements to become the integrals of
motion of the controlled nonlinear system. In addition, the control
cost (a quadratic function of the generalized control force) is
minimized at each instant of time. The aforementioned two examples
(the parallelepiped and the cylinder) are considered; and the
simplicity, efficacy, and accuracy of the control approach developed
herein is illustrated through numerical simulations.

II. Notation

This section introduces notation that will be used in the paper. In
the following, u, v, and m are arbitrary n vectors (n-by-1 column
vectors); A and B are m-by-m matrices; and w, w1, and w2 are m
vectors. The ith element of n vectors u, v, and m are ui, vi, and mi,
respectively.
The Hadamard product (elementwise multiplication) of two n

vectors, u and v, is denoted by u ∘ v, so that

u ∘ v � v ∘ u ≔ �u1v1; u2v2; : : : ; unvn�T (1)

The Kronecker product of two matrices C � �cpq� ∈ Rp×q and
D ∈ Rr×s is defined as

Cp×q ⊗ Dr×s ≔

2
6664
c11D c12D · · · c1qD
c21D c22D · · · c2qD

..

. ..
. . .

. ..
.

cp1D cp2D · · · cpqD

3
7775

pr×qs

(2)

The n-by-n diagonal matrix diag�u� has elements of n-vector u
along its diagonal so that

diag�u� ≔

2
6664
u1

u2
. .
.

un

3
7775 (3)

and �u ∘ v� � diag�u�v.
The n-vector1n is defined as a vector for which the elements are all

unity as

1n ≔ �1; 1; : : : ; 1�T (4)

so that one can write the n-by-n identity matrix In � diag�1n�, and
u � �1n ∘ u� � �u ∘ 1n�. Furthermore,

Xn
i�1

mi � 1Tnm � mT1n; �u ∘ v�T1n � uTv; and

Xn
i�1

miuivi � mT�u ∘ v� � �m ∘ u�Tv (5)

Similarly, the r × s matrix 0r×s has all its elements equal to zero.
The Kronecker product has the following well-known properties,

which will be used in the sequel:

�Cp×q ⊗ Dr×s�T � CT
p×q ⊗ DT

r×s (6)

�uT ⊗ A��v ⊗ w� � �uTv�Aw (7)
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�uT ⊗ A��diag�v� ⊗ B� � �u ∘ v�T ⊗ AB (8)

�diag�u� ⊗ wT��diag�v� ⊗ B� � diag�u ∘ v� ⊗ wTB (9)

�diag�u� ⊗ wT
1 ��v ⊗ w2� � �u ∘ v�wT

1w2 (10)

III. Modeling a Multibody Tumbling System

In this section, we consider a general model of a composite
multibody tumbling system undergoing three-dimensional tumbling
as well as motion of its internal parts. The multibody system is
assumed to comprise of the following two components (see Fig. 1a):
1) The first component includes a rigid body B of mass mB and a

rigid rodR of massmR that is fixed to the bodyB. The center of mass
of the composite rigid body (denoted hereafter as BR) is located at C
(see Fig. 1a). The coordinate axes of the body-fixed coordinate frame
xyz, for which the origin is chosen to coincide with C, lie along the
principal axes of inertia of BR. The direction of the axis of the rod is
specified by the unit vector a, for which the components in the body-
fixed coordinate frame are the constants a1, a2, and a3, respectively.
The coordinates ofC in the inertial coordinate frameXYZ are denoted
by �Xc; Yc; Zc�. The vector fromC to a suitable pointO 0 on the rodR
is the three-vector d, for which the components in the xyz frame are
the constants d1, d2, and d3, respectively (see Fig. 1a).
2) The second component includes a set of discrete masses

mi; i � 1; 2; : : : ; n, that slide along the rod R, with each mass
connected to its nearest neighbor by linear and/or nonlinear spring
elements (see Fig. 1b). The position of the masses measured fromO 0
along the rod R are denoted by pi; i � 1; 2; : : : ; n. As shown in
Fig. 1b, the spring element ki�1 connecting massmi to massmi�1 is
assumed, for simplicity, to consist of a linear elastic spring element
with stiffness kli�1 in parallel with a cubically nonlinear elastic spring
element with stiffness kni�1. The equilibrium positions of the discrete
masses are given bypi

e; i � 1; 2; : : : ; n, as measured along the rodR
from O 0.
A uniform analytical dynamics approach to the determination of

the explicit equations of motion of this composite body and its
precision control is developed. Explicit controls are found so that
1) the angular velocity vector follows a user-prescribed time-
dependent trajectory, and 2) each of the discrete masses follows user-
prescribed time-dependent internal motions along the rod R. These
trajectory requirements need to be satisfied as the composite system
tumbles, vibrates, and translates under gravity. No linearizations and/
or approximations of the nonlinear dynamics of the system are made
in finding the closed-form controls. In [29], the system is assumed to
be only imprecisely known, and an approach to controlling this

uncertain system is developed so that it satisfies the aforementioned

set of user-prescribed trajectory requirements.
The rigid bodyBR has six degrees of freedom, and each pointmass

has one degree of freedom. Thus, a total of n�6 coordinates are

required to describe the configuration of the system. However, in

what follows, an additional coordinate will be used to describe the

composite system’s configuration, and its rotational motion will be

described by four quaternions. The mass of BR (bodies B and R) is
denoted bymBR, and itsmassmoment of inertiamatrixwith respect to

the body-fixed frame located at C (for which the directions are along

the principal axes of inertia ofBR) is denoted by J � diag�Jx; Jy; Jz�.

IV. Equations of Motion of the Uncontrolled System

The rotational displacement of the system is described by the unit

quaternion u � �u0; u1; u2; u3�T . The active rotation matrix S�u�
used to transform from body coordinates to inertial coordinates is

given by

S�u� ≔ � S1 S2 S3 �

�

2
664

2u20 − 1� 2u21 2u1u2 − 2u0u3 2u1u3 � 2u0u2

2u1u2 � 2u0u3 2u20 − 1� 2u22 2u2u3 − 2u0u1

2u1u3 − 2u0u2 2u2u3 � 2u0u1 2u20 − 1� 2u23

3
775
(11)

The angular velocity of the composite body BR is given by

ω � H _u ≔

2
4−2u1 2u0 2u3 −2u2
−2u2 −2u3 2u0 2u1
−2u3 2u2 −2u1 2u0

3
5
2
664

_u0
_u1
_u2
_u3

3
775 (12)

where the matrix H is defined as

H ≔

2
4−2u1 2u0 2u3 −2u2
−2u2 −2u3 2u0 2u1
−2u3 2u2 −2u1 2u0

3
5 (13)

In the preceding and throughout the rest of the paper, one dot on top

of a variable denotes a derivative with respect to time and two dots

represent a second derivative with respect to time t.
The rotational kinetic energy of the body-rod BR system is

given by

Fig. 1 Representations of a) generic multibody tumbling system and b) schematic of the rod R.
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KER � 1

2
ωTJω � 1

2
_uTHTJH _u (14)

where J � JBR is the moment of inertia of BR, and ω is the angular

velocity ofBR expressed in the xyz body-fixed frame that is attached

to BR. It is useful to note the following partial derivatives of ω:

∂ω
∂ _u

� H and
∂ω
∂u

� − _H (15)

It can also be easily verified that the matrixH satisfies the relation

_H _u � 0 (16)

Denoting by vector R, the position of the center of mass C of the

body BR

R � �Xc; Yc; Zc�T (17)

the translational kinetic energy (KE) of BR is given by

KET � 1

2
mBR

_RT _R (18)

Similarly, the potential energy (PE) of BR is

PE � mBRgZc � mBRge
T
3R (19)

where g is the (constant) acceleration due to gravity, and e3 denotes
the basis vector;

e3 � �0; 0; 1�T (20)

The coordinates of the ith discrete mass in the inertial coordinate

system are denoted by ri � �riX; riY; riZ�T. These are computed, using

the active rotation matrix S�u�, as

�riX; riY; riZ�T � �Xc; Yc; Zc�T � piS�u�a� Sd

� R� pi�S1a1 � S2a2 � S3a3� � Sd (21)

where Si is the ith column of the matrix S�u�; d is the position vector

of O 0, which is a suitable reference point on the rod R in the body-

fixed coordinate frame (see Fig. 1a); and a is the unit vector (for

which the components are given in the body frame) in the direction of

the axis of the rod.
Consider now the first column S1 given by

S1 � �2u20 � 2u21 − 1; 2u1u2 � 2u0u3; 2u1u3 − 2u0u2�T (22)

The time derivative of the vector S1 can be computed as

_S1 �
2
4 4u0 _u0 � 4u1 _u1
2 _u1u2 � 2u1 _u2 � 2 _u0u3 � 2u0 _u3
2 _u1u3 � 2u1 _u3 − 2 _u0u2 − 2u0 _u2

3
5

�
2
4 4u0 4u1 0 0

2u3 2u2 2u1 2u0
−2u2 2u3 −2u0 2u1

3
5
2
664

_u0
_u1
_u2
_u3

3
775 ≔ L1 _u (23)

Furthermore, it can be verified from Eq. (23) that

∂S1
∂u

� L1 and
∂ _S1
∂u

� _L1 (24)

In a similar manner, one obtains relations related to the second and

third columns, S2 and S3, of the matrix S�u� so that one gets

∂Si
∂u

� Li;
∂ _Si
∂u

� _Li; and _Si � Li _u; i � 1; 2; 3 (25)

where

L2 �
2
4−2u3 2u2 2u1 −2u0

4u0 0 4u2 0

2u1 2u0 2u3 2u2

3
5

and

L3 �
2
4 2u2 2u3 2u0 2u1
−2u1 −2u0 2u3 2u2
4u0 0 0 4u3

3
5 (26)

Hence, the following relations are obtained:

_S�u�a �
X3
i�1

ai _Si �
�X3

i�1

aiLi

�
_u ≔ La _u (27)

∂�Sa�
∂u

� La; and
∂� _Sa�
∂u

� _La (28)

where we have denoted

La ≔
X3
i�1

aiLi (29)

Furthermore, Eq. (27) yields

�S�u�a � _La _u� La �u (30)

To simplify the analysis, we define m as the mass vector

consisting of the values of the point masses, p as the vector of their

positions along the rodRwith respect to pointO 0, and r as the vector
consisting of their respective coordinates in an inertial frame of

reference so that

m ≔ �m1; m2; : : : ; mn�T; p ≔ �p1; p2; : : : ; pn�T (31)

and

r≔ �r1X;r1Y;r1Z;r2X;r2Y;r2Z; ···;rnX;rnY;rnZ�T�1n⊗R�p⊗Sa�1n⊗Sd

(32)

Assuming the components of the vector d are d � �d1; d2; d3�T ,
the partial derivatives of r are

∂r
∂R

� 1n ⊗ I3 (33)

∂r
∂u

� p ⊗
∂�Sa�
∂u

� 1n ⊗
∂�Sd�
∂u

� p ⊗ La � 1n ⊗ Ld

and

∂r
∂p

� In ⊗ Sa (34)

where

Ld �
X3
i�1

diLi
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Defining

MD ≔ diag�m� ⊗ I3 (35)

the kinetic energy of all the discrete point masses is compactly

written as

TD � 1

2
_rTMD _r (36)

and the potential energy is

UD � grT�m ⊗ e3� �Us: (37)

Us is the potential energy in the spring elements given by

Us�
Xn�1

i�1

1

2
kli

�
pi−pi−1−pi

e�pi−1
e

�
2�1

4
kni

�
pi−pi−1−pi

e�pi−1
e

�
4

(38)

where kli and kni are the linear and nonlinear stiffnesses of the ith
spring element, and p0 � pn�1 � p0

e � pn�1
e � 0.

Differentiating Eq. (32) with respect to time yields

_r � 1n ⊗ _R� _p ⊗ Sa� p ⊗ _Sa� 1n ⊗ _Sd

� 1n ⊗ _R� _p ⊗ Sa� p ⊗ La _u� 1n ⊗ Ld _u (39)

and

�r � 1n ⊗ �R� �p ⊗ Sa� 2 _p ⊗ _Sa� p ⊗ �Sa� 1n ⊗ �Sd

� 1n ⊗ �R� �p ⊗ Sa� 2 _p ⊗ La _u� p ⊗ � _La _u� La �u�
� 1n ⊗ � _Ld _u� Ld �u� (40)

The partial derivatives of _r that will be needed for obtaining the

Lagrange equations are given by

∂ _r
∂ _u

� p ⊗ La � 1n ⊗ Ld (41)

∂ _r
∂u

� _p ⊗
∂Sa
∂u

� p ⊗
∂ _Sa
∂u

� 1n ⊗
∂ _Sd
∂u

� _p ⊗ La � p ⊗ _La � 1n ⊗ _Ld (42)

∂ _r
∂ _p

� In ⊗ Sa

and

∂ _r
∂p

� In ⊗ _Sa � In ⊗ La _u (43)

The configuration space vector

q ≔ �RT; uT; pT �T �
2
4Xc; Yc; Zc|����{z����}

RT

; u0; u1; u2; u3|�������{z�������}
uT

; p1; p2; : : : ; pn|���������{z���������}
pT

3
5

T

(44)

is used to describe the configuration of the system at any time t.
A total of (n� 7) coordinates are used, all of which are not

independent because the rotation is overparametrized by the
quaternion four-vector u, which is subject to the constraint uTu � 1.
The total kinetic energy of the system is

T � TBR � TD � 1

2
mBR

_RT _R� 1

2
ωTJω� 1

2
_rTMD _r (45)

and the potential energy is

U � mBRgR
Te3 � grT�m ⊗ e3� �Us (46)

The Lagrangian for the composite system is

L � T −U (47)

Because the configuration coordinates are not all independent of

one another [see Eq. (44)], the explicit equations of motion of the
uncontrolled system are now obtained using the following three-step
approach [36–39]:
1)Obtain the equation ofmotion of the unconstrained system in the

form M�q� �q � Q�q; _q�; here, all the components of the quaternion
are taken to be independent.
2) Express the quaternion constraint (namely, that its norm is unity)

in the form Am�q; _q; t� �q � bm�q; _q; t�.
3) Use the fundamental equation of mechanics (we omit for clarity

the arguments of the various quantities):

M �q � Q� AT
m�AmM

−1AT
m���bm − AmM

−1Q� (48)

The matrix X� denotes the Moore–Penrose inverse of the
matrix X.
Step 1:Webegin by finding the unconstrained equations ofmotion

of the system, which are given by Lagrange’s equations as

d

dt

�
∂L
∂ _qi

�
−
∂L
∂qi

� 0; i � 1; 2; : : : ; n� 7 (49)

Result 1: The equation of the motion of the unconstrained
multibody system given by Eq. (49) is

M�q� �q � Q�q; _q� (50)

where M is the generalized mass matrix, and Q is the generalized
force vector given by

M �

2
664

fmBR �mT1ngI3 fmTpgLa � fmT1ngLd �Sa�mT

fmTpgLT
a � fmT1ngLT

d HTJH � f�p ∘ m�TpgLT
aLa � Ad LT

aSa�p ∘ m�T � LT
dSam

T

m�Sa�T �p ∘ m��Sa�TLa �m�Sa�TLd f�Sa�TSagdiag�m�

3
775 (51)

where

Ad � fmTpg�LT
aLd � LT

dLa� � fmT1ngLT
dLd

and

Q �

2
664

−2fmT _pgLa _u − �fmTpg _La � fmT1ng _Ld� _u − g�mBR � fmT1ng�e3
−2 _HTJH _u − 2f�p ∘ m�T _pgLT

aLa _u − f�p ∘ m�TpgLT
a
_La _u − gfpTmgLT

ae3 � Bd

−f�Sa�T _La _ug�p ∘ m� − 2f�Sa�TLa _ug�m ∘ _p� − f�Sa�T _Ld _ugm� FS − gf�Sa�Te3gm

3
775 (52)
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where

Bd � −�2fmT _pgLT
dLa � fmTpgLT

a
_Ld � fmTpgLT

d
_La

� fmT1ngLT
d
_Ld� _u − gfmT1ngLT

de3

In the preceding, FS is the force (column) vector due to the spring

elements, for which the ith component is

FS
i � −kli�pi − pi−1 − pi

e � pi−1
e � − kni �pi − pi−1 − pi

e � pi−1
e �3

� kli�1�pi�1 − pi − pi�1
e � pi−1

e �
� kni�1�pi�1 − pi − pi�1

e � pi−1
e �3 (53)

For convenience, scalars are shown in curly brackets.
Proof: See the Appendix A.
Remark 1: It is assumed in obtaining Eqs. (50–52) that the masses

mi, i � 1; : : : ; n, are pointmasses. If they are not assumed to be point

masses and possess substantial rotational kinetic energy, these

equations can be modified in a simple and straightforward manner.

Referring to ri�pi� now as the locations in the inertial frame (alongR
fromO 0) of the center of massCi ofmi, we can denote themoment of

inertia of mass mi about its principal axes going through Ci by the

diagonal 3-by-3 matrix Ji. The contribution to the total rotational

kinetic energy (of the composite system) made by the rotational

motion of mass mi is then �1∕2�ωT
pJiωp, where ωp is the angular

velocity three vector for which the components are the angular

velocities along the principal axes of mi. But, because the angular

velocity of BR about its body-fixed frame xyz is ω, we have

ωp � Piω, where Pi is a rotation matrix. Hence, the contribution of

massmi becomes �1∕2�ωTPT
i JiPiω. Thus, the rotational energy that

is given in Eq. (14) gets modified to

KER � 1

2
ωTJBRω� 1

2

Xn
i�1

ωTPT
i JiPiω

� 1

2
ωT

�
JBR �

Xn
i�1

PT
i JiPi

�
ω (54)

where we have explicitly denoted the moment of inertia of body BR
about the body-fixed axes xyz by JBR. Consequently, all that is
needed to include the rotational kinetic energy of masses mi,

i � 1; : : : ; n, is to replace J in Eqs. (50–52) by

JBR �
Xn
i�1

PT
i JiPi

Step 2:Themodeling constraint is the requirement that the norm of

the quaternion is unity:

ϕm ≔ uTu − 1 � 0 (55)

By differentiating Eq. (55) twice with respect to time t, we obtain the
modeling constraint equation in the form

Am�q; _q; t� �q � bm�q; _q; t� (56)

where

Am ≔ � 01×3; uT; 01×n �

and

bm ≔ − _uT _u (57)

One could also use the dynamical system

�φm � δ1 _φm � δ2φm � 0; δ1; δ2 > 0 (58)

as a modeling constraint on the unconstrained system of Eq. (50).
Note that φm�0� � 0 and this constraint ensure that φm → 0 as
t → ∞, thus attempting to keep φm�t� close to zero. Use of Eq. (58)
leads to

Am � �01×3; uT; 01×n�

and

bm � −δ1uT _u −
δ2
2
�uTu − 1� − _uT _u (59)

Because Am is a row vector, the matrix AmM
−1AT

m in Eq. (48) is
therefore a scalar for which the generalized inverse is simply its
reciprocal.
Step 3: The equation of motion of the multibody system is then

given explicitly by Eq. (48), where the matrixM and the vectorQ are
explicitly given in Eqs. (51) and (52), respectively; andAm andbm are
given in Eq. (57). This yields the equation ofmotion of themultibody
system as

M �q � Q −

2
664
03×1

u

0n×1

3
775 1

�uT �M−1�22u�

×
�
δ1u

T _u� δ2
2
�uTu − 1� � _uT _u� AmM

−1Q

�
(60)

where we have denoted by �M−1�22 the (2,2) block matrix element of
M−1 [see Eq. (51)]. We note that the quantity in the denominator
�uT �M−1�22u� is a positive scalar.
Remark 2: If external “given” forces and/or torques are applied to

the multibody system, then the vector Q in Eq. (52) needs to be
augmented by the generalized forces that are engendered. The
generalized force four-vector Qτ corresponding to the quaternion u
for a given set of physically applied torques τ about the xyz body-
fixed axes is given by the relation [19]

Qτ � HTτ (61)

Remark 3:As seen from Eqs. (51), (52), and (60), the dynamics is
highly nonlinear. The translation of the bodyBR, its tumbling, and the
vibration of the discrete masses that slide along the rod R are all
highly nonlinearly coupled.

V. Simulation of Dynamics of an Uncontrolled
Tumbling System

In this section, we consider two examples of the generic tumbling
multibody as described in the previous section. The first is a
rectangular parallelepiped (body B); at its corner stands a cylindrical
rod (rod R) perpendicular to one surface (see Fig. 2). Two discrete
masses slide along R, and each mass is connected to its nearest
neighbor (and the two ends ofR) by a linear spring element in parallel
with a nonlinear cubic one. The second example deals with a
cylindrical body B; along its axis is a rod R. Five discrete masses
move along the rod, with each mass being connected to its nearest
neighbor (and the ends of R) with linear and nonlinear spring
elements as before. These same examples will be used in Sec. VII,
which deals with the precision control of this tumbling, vibrating
system as it falls under gravity. Reference [29] deals with the control
of the system when the parameters describing it and the forces acting
on it are assumed to be known only imprecisely.

A. Example 1

1. Description of Body BR

A rigid 16-m-long aluminum (density of 2.7 × 103 kg∕m3)
cylindrical rodR of radius r0 � 1 m is mounted at one corner on the
surface of a rigid rectangular aluminum block B of dimensions
10 × 6 × 2 m, as shown in Fig. 2, so that L � 5, b � 3, and
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h � 1 m. An inertial XYZ frame is chosen so that the Z axis points

vertically upward. The X axis of the frame is parallel to the edge of

body B of dimension 2L, and the Y axis is parallel to the edge

of dimension 2b. The center of mass of BR (bodies B and R) is
located at C. A body-fixed xyz coordinate system for which

the origin is located at C, and for which the axes are along the

principal axes of inertia of BR, is used. The moment of inertia

matrix of BR about these body-fixed axes is given by the matrix

J � 107 × diag�1.3626; 1.5333; 0.3848� kg∕m2. The mass of the

body BR is 4.597 × 105 kg. The reference point O 0 on the rod R is

located at the center of the circle where the rod R meets the

parallelepiped B. The vector from point C to the reference point

O 0 is d � �3.2616; 1.4196;−0.1623�T m. The unit vector a in

the body-fixed xyz coordinate frame (with origin at C) is

a � �−0.3985;−0.1481; 0.9051�T . The equilibrium positions m of

the discrete masses measured alongR fromO 0 (see Fig. 2) are taken
to be pe � �4; 12�T . The parameters for the modeling constraint are

δ1 � 0.5 and δ2 � 8 [see Eq. (58)]. The configuration of the system
is described by the 9-vector q � �rT; uT; p1; p2�T. At time t � 0, the
origin of the inertial XYZ frame and point C coincide.

2. Description of the Discrete Masses and Spring Elements

The discrete masses that slide along the rod R have values of

m1 � 5 × 105 kg and m2 � 4 × 105 kg (see Fig. 2). The linear

spring elements connecting the discrete masses m1 and m2 have

stiffnesses kl1 � 6 MN∕m, kl2 � 7.5 MN∕m, and kl3 � 3 MN∕m;

and the stiffnesses of the nonlinear cubic spring elements are

kn1 � 0.55 MN∕m3, kn2 � 0.3 MN∕m3, and kn3 � 0.2 MN∕m3.
The rotational kinetic energy ofmassesm1 andm2 is also included.

As shown in Remark 1, this entails adding to the moment of inertia

matrix JBR the expression

Xn
i�1

PT
i JiPi

The moments of inertia of massesmi, i � 1; 2, about the direction
of the unit vector a (along the axis of the cylinder R) are taken to be
mir

2
0. Thus,

Ji � diag�mir
2
0∕2; mir

2
0∕2; mir

2
0�

yielding

J1 � 105 × diag�2.5; 2.5; 5�; J2 � 105 × diag�2; 2; 4� (62)

And, the orthogonal matrix P � P1 � P2 in Eq. (54) is

P �
2
4 0.9171 −0.0765 0.3912

0.0113 0.9860 0.1664

−0.3985 −0.1481 0.9051

3
5 (63)

3. Description of Initial Conditions

The initial position of the center of mass C of the body BR in the

inertial frameXYZ (for which theZ axis points upward) is taken to be

the origin O so that R�0� � �0; 0; 0�T , and its initial velocity (in

meters per second) is taken to be the vector _R�0� � �1; 2; 20�T.
The initial orientation of the body BR at time t � 0 is obtained by

rotating it about the unit vector ν � 1∕
			
3

p �1; 1; 1�T in the inertial

XYZ frame through an angle θ � π∕3 so that the initial quaternion

that describes the orientation of the xyz body-fixed axes is

u�0� � �0.8034; 0.1600; 0.4272; 0.3828�T

The initial angular velocity (in radians per second) about this

body-fixed frame (see Fig. 2) is taken to be the three-vector

�ωx�0�;ωy�0�;ωz�0��T � �1;−1; 0.5�T , so that

_u�0� � �0.0379; 0.6999;−0.2503;−0.0927�T

Finally, the initial positions (in meters) of the twomasses are taken

as p�0� � �5; 11�T , and their initial velocities (in meters per second)

are taken as _p�0� � �−0.4; 0.3�T .
In summary, we note that the ratio �m1 �m2�∕mBR ≈ 2 so that the

vibrating masses, which are connected by nonlinear spring elements

and which slide along the rod R, account for approximately two-

thirds the total mass of the composite body. The body BR is given an

initial velocity of 1 m∕s in the X direction, 2 m∕s in the Y direction,

and 20 m∕s in the Z direction. Its initial orientation is obtained by

rotating it about the vector v through an angle of 60 deg in the inertial
frame. It is given an angular velocity about the three principal body-

fixed axes of 1, −1, and 0.5 rad∕s, respectively. The displacement of

m1 relative to its equilibrium position is 1 m, and the displacement of

m2 relative to its equilibrium position is −1 m. The spring elements

connecting them to one another (and to the ends of the rod R) have a
cubic nonlinearity. The initial velocities of m1 and m2 are −0.4 and

0.3 m∕s, respectively. The positions pi and velocities _pi of the

discrete masses are measured from O 0 along the rod R. The values
chosen for δ1 and δ2 in Eq. (58) are δ1 � 0.5 and δ2 � 8.
With the initial conditions described previously, the body is

allowed to fall freely under gravity (g � 9.81 m∕s2). Using the

equations of motion given by Eq. (60), where M and Q are given in

Eqs. (51) and (52), the motion of this tumbling, vibrating body is

simulated. The computations are done using ode113 in theMATLAB

environment using a relative error tolerance of 10−12 and an absolute
error tolerance of 10−13.
Figure 3 shows the positions p1�t� and p2�t� from O 0 (measured

along the rod R; see Fig. 2) of the two discrete massesm1 andm2, as

well as the angular velocity of body BR as it descends under gravity

over a time duration of 20 s.
Figure 4 shows the computed quaternion 4-vector u�t� and the

motion of point C, the center of mass of the body BR. The error

eu � u20 � u21 � u22 � u23 − 1 in the norm of the quaternion 4-vector

is O�10−15� throughout the interval of integration.
The dynamics of the system show that it translates, vibrates, and

tumbles; the discrete masses vibrate along the rod R during the

tumbling. As indicated by the complex nonlinear equations that

describe themotion, the translation, the tumbling, and thevibration of

the discrete masses are all nonlinearly coupled to one another.

B. Example 2

As a second example, we consider a rigid closed hollow cylinderB
with a rigid rod R down its axis, along which a set of five discrete

massesmi, i � 1; 2; : : : ; 5, slide (see Fig. 5). The masses, as before,

are each connected to their nearest neighbors by a linear spring in

parallel with a nonlinear (cubic) spring. The discrete masses at either

Fig. 2 Multibody system considered in example 1.
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ends of the rod are connected to the end plates that cap the cylinder.

The body, denoted BR, consists of the cylinder B and the rod R.

1. Description of the Body BR

The outer diameter of the cylinder B is 8 m, its outer length is

h � 12 m, and its wall thickness is a � 2 cm; the diameter of the

rod R is 20 cm. The cylinder’s ends are capped with circular disks,

also of thicknesses of 2 cm. The cylinder and the rod are made of

steel, with a density of 7 × 103 kg∕m3. The center of mass C of the

body BR is located along the axis of the cylinder at the center of

the rod R, and one principal axis (body-fixed x-axis) lies along the
cylinder axis, with the other two perpendicular to the cylinder axis

(in Fig. 5, the xyz body-fixed frame is shown outside the figure to

avoid clutter, but it is fixed at the center of mass C of BR). The
moment of inertia matrix (kg∕m2) of BR about these principal axes

is J � 105 × diag�7.809; 7.535; 7.535�; its mass is 2.934 × 104 kg.
Positions of the discrete masses that slide along R are measured

(both in the positive and negative directions) from C ≡O 0 because
the vector d � 03×1 (see Fig. 1). The unit vector a that shows the
direction of the rod R in the body-fixed frame is a � �1; 0; 0�T .
The origin of the XYZ inertial frame at t � 0 coincides with C. The
configurationvector is q � �RT; uT; pT �T , wherep is now a 5-vector
of the positions of each of the discrete masses from C along the rod
R. The values chosen for δ1 and δ2 in Eq. (58) are δ1 � 0.5
and δ2 � 8.

2. Description of the Discrete Masses and Spring Elements

Along the axis of the cylinder are five discrete masses
(mi; i � 1; 2; : : : ; 5) for which the values (in kilograms) are given in
our notation by m � 104 × �1; 2; 2; 1; 1�T. The stiffnesses of the
linear springs (in meganewtons per meter) connecting the five
masses are

kl � �70; 50; 70; 100; 70; 50�T (64)

Fig. 4 Quaternion 4-vector and motion of the point C.

Fig. 5 Hollow cylinder B (left) along whose axial rod R (right) are five masses that slide.

Fig. 3 Displacement of the discrete masses and the angular velocity of BR over 20 s.
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and those of the nonlinear springs (in kilonewtons per cubic meter)

that are in parallel are

knl � �30; 70; 40; 60; 50; 80�T (65)

We assume here that the contribution of these masses to the

rotational kinetic energy of the composite system is negligible.

3. Description of Initial Conditions

The initial position of the center ofmassC of bodyBR in an inertial

frame for which the Z axis points upward is taken to be the origin so

thatR�0� � �0; 0; 0�T , and its initial velocity (in meters per second) is

taken to be the vector _R�0� � �1.2; 20�T.
The inertial Z axis points vertically upward. Starting with the

body-fixed x, y, and z axes of BR along the inertial X, Y, and Z axes,

respectively, the initial orientation (at time t � 0) of the body is

obtained by rotating it about the unit vector ν � 1∕
			
3

p �1; 1; 1�T in the
inertial frame through an angle of θ � π∕3 so that the initial

quaternion u�0� � �cos�θ∕2�; sin�θ∕2�v�T . The initial angular

velocity (in radians per second) about the principal axes is taken

to be the three-vector �ωx�0�;ωy�0�;ωz�0��T � �1;−1; 2�T, so that

_u�0� � �−0.2887; 0.8660;−0.5477; 0.5774�T . Finally, the equilib-

rium positions (in meters) of the discrete masses measured along R
are uniformly spaced along its length of h − 2a. The initial positions
(in meters) measured from C along R of the five masses and their

initial velocities (in meters per second) are

p�0� � �−4.4; −1.8; 1.4; 2.5; 4.2 �T (66)

and

_p�0� � � 0.2; −0.3; −0.2; 0.1; −0.2 �T (67)

In summary, we note that the ratio

�X
mi

�
∕mBR ≈ 2.4

so that the vibrating masses that slide along the rod R account for
approximately 70% of the total mass of the composite body. As in
example 1, at t � 0, the pointC coincides with the inertial frame and
the body BR is given an initial velocity of 1 m∕s in the X direction,
2 m∕s in the Y direction, and 20 m∕s in the Z direction. Its
orientation at t � 0 is obtained by rotating it about the vector v
through 60 deg. It is given an angular velocity about the three
(rotated) principal axes of 1, −1, and 2 rad∕s, respectively.
With these initial conditions, the body is allowed to fall freely

under gravity (g � 9.81 m∕s2). Using again the equations of motion
given by Eq. (60), whereM andQ are given in Eqs. (51) and (52), the
motion of this tumbling, vibrating body is simulated. Error tolerances
for the numerical integration using ode113 are the same as those in
example 1. The simulation is carried out for 20 s.
Figure 6a shows a small segment from 12 to 15 s of the positions of

the various discrete masses as the cylinder tumbles with the masses
vibrating along the rod R. Figure 6b shows the variation in the
components of the angular velocity of BR over the duration of the
simulation. The quaternion 4-vector u and the motion of the center of
mass C of body BR are shown in Fig. 7. The dashed line in Fig. 7a
represents the time history of Norm(u). The error in the modeling
constraint eu � uTu − 1 is of O�10−15� throughout the integration
interval.
Because the only external force acting on the falling multibody

parallelepiped (example 1) and themultibody cylinder (example 2) is
gravity, the angular momentum in the inertial frame of reference
about the center of mass of each of these tumbling, vibrating
multibody systemsmust be conserved. The two examples considered
are fairly complex, and so this serves as a check on the computational
results shown. The constancy of the components of the angular
momentum vector (about the center of mass in the inertial frame) for
the two examples is shown in Fig. 8. As seen, the components of the
angular momentum are constant for each example.

VI. Equations of Motion of Controlled System: Explicit
Determination of Generalized Control Force

We now place control requirements on the tumbling, vibrating,
generic multibody system. The determination of the explicit

Fig. 6 Displacement of the discrete masses and the angular velocity of BR.

Fig. 7 Quaternion 4-vector and motion of the point C.
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generalized control force to obtain precision control without making

any linearizations or approximations in the dynamics of the system is

one of themain contributions of this paper. Because the control forces

are computed using a simple explicit expression, the computational

costs are negligibly small and the method can be used for real-time

control.
The approach is based on recent (exact) results from analytical

dynamics [36–41]. First, the control requirements are framed as

constraints on the nonlinear dynamical system. Two types of

constraints generally arise, as we shall soon see. They are of the form

φc�q; t� � 0 (68)

where φc is an h vector, and

ψc� _q; q; t� � 0 (69)

where ψc is a j vector.
We differentiate each equation in the set of Eq. (68) twice with

respect to time t and each equation in the set of Eq. (69) once with

respect to time. We then form the dynamical equations

�φc � diag�α1; α2; : : : αh� _φc � diag�β1; β2; : : : ; βh�φc � 0 (70)

and

_ψc � diag�γ1; γ2; : : : ; γj�ψc � 0 (71)

in which the parameters in the diagonal matrices are chosen to be

positive. Matrices that are more general than the diagonal matrices

shown can also be used; but, for simplicity, we will use these here.

This choice of parameters ensures that φc;ψc → 0 asymptotically

as t → ∞.
Next, Eqs. (70) and (71) are used as the constraints on the

unconstrained system for which the equation is given by M �q � Q
[see Eq. (50)]. Furthermore, Eqs. (70) and (71) can always be

expressed in the form

Ac�q; _q; t� �q � bc�q; _q; t� (72)

On including the modeling constraints, if any, which are of the

form Am�q; _q; t� �q � bm�q; _q; t�, we obtain the set of all the

constraints on the unconstrained dynamical system [described by

Eq. (50)] as

A �q ≔
�
Am

Ac

�
�q �

�
bm
bc

�
≔ b (73)

Wenowobtain the equation ofmotion of the controlled system that

satisfies the control constraints [Eqs. (68) and (69)] asymptotically by

using the fundamental equation of mechanics

M �q � Q� AT�AM−1AT���b − AM−1Q� � Q�QC (74)

in which the vector QC explicitly gives the generalized control
force needed. It should be pointed out that this explicit generalized
control force minimizes at each instant of time the control cost
J�t� � �QC�TM−1QC. (For general weighting matrices, other than
M−1 in the cost function J�t�, and a more general discussion of the
exponential stability of the control methodology, see Appendix B).

VII. Simulation of Dynamics with Controlled Tumbling
and Controlled Vibrations: Example 1 (Continued)

We continue the examples from Sec. V with the following control
objectives:
1) The vibrating discrete masses mi are required to oscillate

harmonically about their equilibrium positions pi
e with amplitude li

and frequency λi so that

�pi�t� � pi
e � li cos�λit�; i � 1; : : : ; n (75)

2) The angular velocity componentωi�t� of the bodyBR (about its
principal axes) is required to oscillate sinusoidally with amplitude bi
and frequency σi such that

�ωi�t� � bi cos�σit�; i � 1; 2; 3 (76)

where the parameters l � �l1; : : : ; ln�T , λ � �λ1; : : : ; λn�T ,
b � �b1; b2; b3�T , and σ � �σ1; σ2; σ3�T are user-specified constants.
The bars above the quantities denote that these are the user-prescribed
control objectives. Our control requirements are p → �p and ω → �ω
as t → ∞.
Thus it is required that 1) the two discrete masses execute

sinusoidal motion along the rod R, each with a different (given)
amplitude and a different (given) frequency; 2) whereas the body
tumbles with its angular velocity sinusoidally changing (about each
principal axis of BR) with a given amplitude and a given frequency.
We note that the control requirements are time dependent. Our aim is
to obtain closed-form precision control of the tumbling and the
vibrational behavior of the system.
As stated in Sec. VI, we first cast the control requirements given by

Eqs. (75) and (76) as constraints on the nonlinear dynamical system.
The control requirement regarding the positions of the massesmi can
be expressed as the constraint

φp�t� ≔ p�t� − �p�t� � 0 (77)

on the dynamical system, where �p�t� � � �p1; : : : ; �pn�T is given in
Eq. (75). Because the systemmay not start on the constraintmanifold,
one can think of the quantity φp � p − �p as the trajectory error in
p�t� and use the dynamical equation

�φp�diag�α1;α2� _φp� diag�β1;β2�φp � 0; αi;βi > 0; i� 1; : : : ;n

(78)

as a constraint on the dynamical system. For suitable positive values
of αi; βi, i � 1; : : : ; n, this constraint will ensure that φp → 0

Fig. 8 Conservation of angular momentum: a) example 1 and b) example 2.
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asymptotically as t → ∞. Different choices of the parameters αi and
βi will, of course, cause different rates at which asymptotic

convergence occurs. Noting Eq. (77), the last equation can be

rewritten as

�p � −diag�α1; : : : ; αn�� _p − _�p� − diag�β1; : : : ; βn��p − �p� � ��p

(79)

and, by using the configuration vector q � �R; u; p�T, it can be

compactly expressed as

Ap �q � bp�q; _q; t� (80)

where

Ap � �0n×7; In�

and

bp � −diag�α1; : : : ;αn�� _p − _�p� − diag�β1; : : : ; βn��p − �p� � ��p

(81)

Similarly, the control requirement on the angular velocity can be

expressed as a constraint on the dynamical system given by [see

Eq. (12)]

φω�t� ≔ ω�t� − �ω�t� � H _u�t� − �ω�t� � 0 (82)

Again, because one may not start on the constraint manifold, one

can conveniently use the dynamical equation

�φω�t� � γφω � 0; γ > 0 (83)

as a constraint on the dynamical system. Equation (83) ensures, for

γ > 0, that φω → 0 exponentially as t → ∞, with the rate of

convergence depending on the value of γ that is chosen. In view of

Eq. (82), the last equation can be rewritten as (recall _H _u � 0)

H �u�t� � −γ�H _u − �ω� � _�ω�t� (84)

As before, one can compactly write this relation in terms of the

configuration vector q�t� as

Aω �q � bω�q; _q; t� (85)

where

Aω � �03×3; H; 03×n� and bω � −γ�H _u − �ω� � _�ω�t� (86)

The equation of motion of the controlled dynamical system can

now be obtained following the same three-step procedure that was

used earlier
The first step (Step 1) is the unconstrained system given by

M�q� �q � Q�q; _q; t� (87)

whereM and Q are given in Eqs. (51) and (52).
The second step (Step 2) is the statement of all the constraints in the

form A�q; _q; t� �q � b�q; _q; t�.
1) We have the modeling constraint given by Eq. (56) that ensures

that the norm of the quaternion is unity.
2) In addition, to control the system so as to satisfy the control

requirements, we have two sets of constraints given by Eqs. (80) and
(85). We call them control constraints.

The three constraints can be written as

A �q≔
h
0�n�4�×3 Â�n�4�×�n�4�

i
≔

2
664
01×3u

T01×n

03×3H03×n

0n×30n×4In

3
775
2
664

�R

�u

�p

3
775

�

2
664

−δ1uT _u−
δ2
2
�uTu− 1�− _uT _u

−γ�H _u− �ω� � _�ω�t�
−diag�α1; : : : ;αn�� _p− _�p�− diag�β1; : : : ;βn��p− �p� � ��p

3
775

≔ b (88)

Note that the rank of matrix A is (n�4), and it cannot change

because the matrix �u 1
2
HT � is orthogonal (with determinant

unity).
Remark 4: In the preceding, we assume that all the masses mi

are to be controlled, as well as each of the components of the

angular velocity ofBR. If a control requirement is to be placed only

on, say, m2, then only the second row of Ap in Eq. (81) will be

considered as a constraint so that Ap will then be a row vector;

correspondingly, only the second element of the column vector bp
in Eq. (81) will be considered. Similar remarks apply if we want to

control just one (or two) of the three components of the angular

velocity of BR.
For the third step (Step 3), the equation of motion of the controlled

system is now given by

M �q � Q� AT�AM−1AT���b − AM−1Q� � Q�QC (89)

wherematrixA and columnvectorb are shown inEq. (88).Noting the
structure of matrix A given in Eq. (88), it is easy to see that

�AM−1AT�� � �Â�M̂�−1ÂT�−1 (90)

where �M̂�−1 stands for the lower corner �n� 4� × �n� 4� block of
matrix M−1, which is positive definite.
Remark 5: The requisite generalized control force needed to

control the system so that it asymptotically satisfies the control

requirements given in Eqs. (75) and (76) is explicitly given by vector

QC. Observe that no approximations of the nonlinear equations

describing the dynamical system are made. The control force needed

to satisfy the control requirements, theoretically speaking, is exact in

the sense that these requirements are made to be the integrals of

motion of the controlled system. The (generalized) control force is

provided in closed form through the simple multiplication of

matrices; therefore, the computational cost for obtaining it is

negligible. This makes the control approach useful for real-time

applications. Furthermore, it minimizes, at each instant of time, the

control cost J�t� � �QC�TM−1QC.
To illustrate the ease and accuracy with which precision tumbling

control can be achieved along with precision vibrational control

of the nonlinear motion of the discrete masses that oscillate by

sliding along the rod R, we consider the two examples discussed

in Sec. V.

A. Example 1 (Continued)

We consider the dynamical system that was described in Sec. V

(example 1), keeping the description of the bodyBR, the values of the
discrete masses and spring elements, and the initial conditions

the same.
For control requirements, the parameters that specify our control

requirements given in Eqs. (75) and (76) are chosen as follows:

l� �−1;2�T; λ� �2π;π∕2�T; b� �−10;8;15�T; and σ� �0;π;2π�T
(91)
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and those in Eqs. (79) and (84) are taken to be

α1 � α2 � 2; β1 � β2 � 12; δ1 � 0.5; δ2 � 8; and γ � 0.6

(92)

Equation (91) states that the control requirement on the
positions of the discrete masses m1 and m2 is that the two masses
oscillate sinusoidally about their (respective) equilibrium
positions with amplitudes − cos�2πt� and 2 cos�πt∕2�, respec-
tively. The control requirement on the body BR is that its
angular velocities be ωx � −10 rad∕s, ωy � 8 cos�πt� rad∕s,
and ωz � 15 cos�2πt� rad∕s. Note that, because ωx�0� � 1, the
rotation about the x-principal axis is required to reverse direction,
whereas the angular velocities about the other two axes are
required to vary periodically.
The simulation is again carried out using ode113 in the MATLAB

environment, with the same error tolerances for the numerical
integration as in Sec. V. Figure 9 shows the displacement of the
discrete masses m1 and m2 and the error in tracking the required
control objective expressed in Eq. (75). At the end of 20 s, the
tracking error ep�t� � p�t� − �p�t� is O�10−8� m. Upon continuing
the integration to 60 s, the error ep�t � 60� reduces and becomes
O�10−12� m. Precision control is thus stably obtained.
The angular velocity of the bodyBR is shown in Fig. 10 alongwith

the error in tracking the angular velocity eω�t� � ω�t� − �ω�t�. At the
end of 20 s, the error eω�t � 20� is of O�10−4� rad∕s. When
the computations are continued to 60 s, the error eω�t � 60� for the
controlled system reduces and is of O�10−11� rad∕s. Figure 10a can
be compared with Fig. 3b for the uncontrolled system. Precision
control is again obtained.
Figure 11 shows the generalized control forces that need to be

applied to control the tumbling, vibrating body so that it satisfies all
the control requirements imposed. The control force exerted at
the point C is zero, and only the forces on the discrete masses
and torques are therefore shown. The precision control obtained
here is effected by the application of forces F1 andF2 along the rod

R to masses m1 and m2, as well as by the application of torques
about the principal axes that meet at C. For simplicity, we have not
considered the auxiliary problem of including the control
mechanisms for generating these forces and the torques in the
dynamical equations.
Lastly, the motion of point C in the inertial frame and the

quaternion 4-vector u�t� for the controlled motion are shown in
Fig. 12. The error in the norm of the quaternion eu � u20 � u21 �
u22 � u23 − 1 is of O�10−13� throughout the interval of integration.
Remark 6: The reasons why the tracking errors become very small

with increasing time are as follows:
1) The complete nonlinear dynamical system is handled when

finding the generalized control forcesQCwith no approximation and/
or linearizations.
2) Equation (89) provides the control force QC that, theoretically

speaking, causes the constraint equations [Eqs. (58), (78), and (83)]
to be exactly satisfied. And, each of these equations shows that the
quantities φm;φp, and φω exponentially go to zero in time. But, as
seen from Eqs. (55), (77), and (82), the quantities φm;φp, and φω are
nothing but the tracking errors: a) betweenNorm�u� and unity, which
is a modeling requirement; b) between p�t� and the desired �p�t�; and
3) between ω�t� and the desired �ω�t�. The latter two are our control
requirements.
3) The rate of convergence to the desired control objectives can be

altered by a proper choice of the parameters used in Eq. (92). This
will, of course, affect the control forces needed to satisfy the
objectives.
4) As mentioned before, the control forceQC, while ensuring that

the tracking error (theoretically speaking) goes to zero, also ensures
simultaneously that the control cost J�t� � �QC�TM−1QC is
minimized at each instant of time.

B. Example 2 (Continued)

We continue the example of the cylinder shown in Fig. 5 that has
five internally vibrating discrete masses. The description of the body
BR, the values of the discrete masses and spring elements, and the

Fig. 9 Displacement of discrete masses and tracking error ep�t� ≔ �e1�t�e2�t��T.

Fig. 10 Angular velocity and tracking error eω.
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initial conditions are the same as those used in Sec. V. Recall that the

sumof the discretemasses is about 2.4 times themass of the cylinder–

rod system BR.
For the control requirements, of the five discretemasses,we take as

our control objective the control of the positions of only masses m1,

m2, and m4, allowing the motion of masses m3 and m5 to remain

uncontrolled. Hence, our control requirements on the positions of the

masses are as follows:

�pi�t� � pi
e � li cos�λit�; i � 1; 2; 4 (93)

As before, the constraints imposed on the dynamical system are

then [see Eq. (79)]

�pi � −αi� _pi − _�pi� − βi�pi − �pi� � ��pi ≔ ĝi; i � 1; 2; 4 (94)

One can express these three control requirements in the form

Ap �q � bp�q; _q; t�, where matrix Ap � �03×7; V3×5� and matrix V
have all elements as zero, except for (1,1), (2,2), and (3,4) elements,

which are each equal to unity. Similarly, the three-vector bp ≔
ĝ � �ĝ1; ĝ2; ĝ4�T has the right-hand sides of Eq. (94) as its three

elements.
Control requirements on the components of the angular velocities

(about the principal axes of the cylinder) are imposed so that, as

before,

�ωi�t� � bi cos�σit�; i � 1; 2; 3 (95)

This leads to

Aω � �03×3; H; 03×5�

and

bω � −γ�H _u − �ω� � _�ω�t� (96)

in a manner similar to Eq. (86), making allowance for the fact that the

vectorp is five-by-one nowbecausewe have five discretemasses.We

assemble the control constraints now so that

A �q ≔

2
4 01×3 uT 01×5
03×3 H3×4 03×5
03×3 03×4 V3×5

3
5
2
4 �R

�u
�p

3
5

�
2
4−δ1uT _u − δ2

2
�uTu − 1� − _uT _u

−γ�H _u − �ω� � _�ω�t�
ĝ

3
5 ≔ b (97)

The rank of matrixA is seven now, and it does not change because,

again, the matrix �u 1
2
HT � is orthogonal. We next show some

simulation results.
The parameters that specify our control requirements given in

Eqs. (93) and (95) are chosen as follows:

l1 � 0.8; l2 � −1; l4 � 0.5; λ1 � π∕2; λ2 � π; λ4 � π∕4
(98)

and

b � � 8; −10; 15 �T

and

σ � � π; 0; 2π �T (99)

Furthermore, we choose the same parameters in Eq. (97) as in

example 1 so that

αi � 2; βi � 12; i � 1; 2; 3 (100)

δ1 � 0.5; δ2 � 8; and γ � 0.4 (101)

Fig. 12 Quaternion 4-vector and the motion of the point C.

Fig. 11 Control forces and control torques.
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We consider the cylinder–rod system that was described in Sec. V

(example 2), keeping the description of the body BR, the description
and values of the masses and springs, and the initial conditions the

same. The simulations are again done over an interval of 20 s.

Figure 13 shows the controlled motion of the five discrete masses

that vibrate along the rod R inside the cylinder. The motions of

masses m1, m2, and m4 are controlled, with the control requirement

being that they oscillate sinusoidally with amplitudes of 0.8, −1, and
0.5m, respectively, andwith periods of 4, 2, and 8 s, respectively. The

error in tracking the control requirements of the three discrete masses

is given by ei�t� � pi�t� − �pi�t�, i � 1; 2; 4. The 3-vector ep�t� ≔
�e1�t�; e2�t�; e4�t��T is also shown. These errors at t � 20 s are of
O�10−8�m. When the computations are continued to 60 s, the errors

at the end of ep�60� are ofO�10−11�m. It is seen that massesm3 and

m5, which are not controlled, show (relatively) high-frequency

oscillations.

Figure 14 shows the three components of the angular velocity

eω�t� � ω�t� − �ω�t�. At the end of 20 s, the error eω�t � 20� is of
O�10−3� rad∕s. When the computations are continued to 60 s,

eω�t � 60� reduces and is of O�10−9� rad∕s, showing the accuracy

attainable with which the control objectives are met. The effect of the

control is illustrated by comparing Figs. 14a and 6b.

The necessary forces on the discretemasses along the rodR and the

required control torques about the principal axes of BR passing

through C [so that the control requirements expressed by Eqs. (93)

and (95) are met] are shown in Fig. 15. As seen from the figure,

because only massesm1,m2, andm4 are controlled, no forces (along

the rod R) are needed to be applied to masses m3 and m5.

Lastly, we show the quaternion 4-vector u�t) and the motion of

pointC (center of mass of bodyBR) in Fig. 16. The error in the norm
of the quaternion 4-vector eu � u20 � u21 � u22 � u23 − 1 is of

O�10−12� throughout the interval of integration.

Fig. 13 Displacement of discrete masses and tracking error ep�t� ≔ �e1�t�e2�t�e4�t��T.

Fig. 14 Angular velocity components and tracking error eω.

Fig. 15 Control force acting on discrete masses and control torques applied to body BR.
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VIII. Conclusions

In this paper, a genericmodel of a tumbling rigid body is developed
that has an arbitrary number of internal degrees of freedom. The
internal motions are modeled by discrete masses that move along an
axis that has an arbitrary orientation to the body and that are
connected by nonlinear spring elements. The explicit quaternion
equations ofmotion for the system are obtained. They are shown to be
highly nonlinear, coupling the translational and rotational motions of
the rigid body to those of the vibrating discrete masses.
A simple approach, which can also be used for nonautonomous

dynamical systems, is based on recent developments from analytical
dynamics, has been used for precision control of the tumbling,
vibrating system. Control requirements imposed on the system are as
follows:
1) The angular velocity of the entire system should track user-

prescribed time-dependent angular velocity trajectories.
2) The motion of the discrete masses internal to the tumbling body

should track user-prescribed time-dependent trajectories.
The control approach has the following characteristics:
1) It uses the entire nonlinear quaternion dynamical equations with

no approximations or linearizations.
2) The (generalized) control forces are obtained in closed form.
3) This leads to negligible computational costs, making the

approach attractive for real-time control of tumbling objects, like
space debris.
4) At each instant of time, a user-specified quadratic control cost is

minimized.
5) It is shown that the control is both simple to obtain and

efficacious.
6) Precision control is achieved, and the errors in tracking the

control requirements are shown to be asymptotically of the same
order of magnitude as the numerical error tolerances with which the
equations of motion of the controlled system are integrated. This is
due to the exact nature of the (generalized) control forces obtained
here for enforcing the control requirements (constraints).

Appendix A: Derivation of Lagrange's Equations
of Motion

To prove the relations in Eqs. (50–53), we breakdown Eq. (49)
into its three components: equations arising from partial derivatives
with respect to the three partitions of the configuration vector q
shown in Eq. (44). Thus, the first three equations of the equation set
[Eq. (49)] are

d

dt

�
∂T
∂ _R

�
−
∂T
∂R

� −
∂U
∂R

(A1)

The first term in Eq. (A1) is computed using Eq. (39) in the following
manner:

∂T
∂ _R

�mBR

�
∂ _R
∂ _R

�T

_R�
�
∂ω
∂ _R

�
T

Jω�
�
∂_r
∂ _R

�
T

MD _r

�mBRI3 _R�0��1Tn ⊗ I3�MD _r�mBR
_R��1Tn ⊗ I3�MD _r (A2)

Noting that 1Tn ⊗ I3MD can be simplified using the identity given in

Eq. (8) as

�1Tn ⊗ I3�MD��1Tn ⊗ I3��diag�m�⊗ I3���1n ∘m�T ⊗ I3�mT⊗ I3
(A3)

we can simplify Eq. (A2) as

∂T
∂ _R

� mBR
_R� �mT ⊗ I3�_r: (A4)

Thus, we obtain

d

dt

�
∂T
∂ _R

�
� mBR

�R� �mT ⊗ I3��r

� mBR
�R� �mT ⊗ I3�

�
1n ⊗ �R� �p ⊗ Sa� 2 _p ⊗ La _u

� p ⊗ � _La _u� La �u� � 1n ⊗ � _Ld _u� Ld �u�
�

� mBR
�R� �mT1n� �R� �mT �p�Sa� 2�mT _p�La _u

� �mTp�� _La _u� La �u� � �mT1n�� _Ld _u� Ld �u� (A5)

We have substituted for �r from Eq. (40) in the second equality and

repeatedly used the identity given in Eq. (7) to obtain the third

equality.
The second term in Eq. (A1) is simply

∂T
∂R

� 0 (A6)

and the last one is obtained using Eq. (34):

∂U
∂R

� mBRge3 � g

�
∂r
∂R

�
T

�m ⊗ e3�

� mBRge3 � g�1Tn ⊗ I3��m ⊗ e3�
� mBRge3 � g�1Tnm�e3 (A7)

Using Eqs. (A5–A7), Eq. (A1) is rewritten as

fmBR �mT1ng �R�
h
fmTpgLa � fmT1ngLd

i
�u� SamT �p

� −2fmT _pgL _u −
h
fmTpg _La � fmT1ng _Ld

i
_u

−
�
mBR � fmT1ng

�
ge3 (A8)

where, for convenience, scalars have been shown by curly brackets. It

can be immediately verified that the first block row of mass matrixM
and generalized force vector Q in Eqs. (50–52) is correct

using Eq. (A8).

Fig. 16 Quaternion four vector and motion of point C.
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We next look at the Lagrange equations:

d

dt

�
∂T
∂ _u

�
−
∂T
∂u

� ∂U
∂u

(A9)

Noting Eqs. (15) and (42), the first term in Eq. (A9) is computed as

∂T
∂ _u

�
�
∂ω
∂ _u

�
T

Jω�
�
∂ _r
∂ _u

�
T

MD _r

� HTJH _u� �pT ⊗ LT
a � 1Tn ⊗ LT

d �MD _r (A10)

and

d

dt

�
∂T
∂ _u

�
� _HTJH _u�HTJ _H _u�HTJH �u�� _pT ⊗ LT

a �MD _r

��pT ⊗ _LT
a �MD _r��1Tn ⊗ _LT

d �MD _r

��pT ⊗ LT
a �MD �r��1Tn ⊗ LT

d �MD �r

� _HTJH _u�HTJH �u�
�
_pT ⊗ LT

a �pT ⊗ _LT
a � 1Tn ⊗ _LT

d

�
MD _r

�
h
�pT ⊗ LT

a �� �1Tn ⊗ LT
d �
i
MD �r (A11)

because _H _u � 0.
Using Eqs. (15) and (42) again, the second term is calculated as,

∂T
∂u

�
�
∂ω
∂u

�
T

Jω�
�
∂_r
∂u

�
T

MD _r

� − _HTJH _u�
�
_pT ⊗ LT

a �pT ⊗ _LT
a � 1Tn ⊗ _LT

d

�
MD _r: (A12)

Using Eq. (34), the final term is computed as

∂U
∂u

� g

�
∂r
∂u

�
T

�m ⊗ e3� � g�pT ⊗ LT
a � 1Tn ⊗ LT

d ��m ⊗ e3�

� g
h
fpTmgLT

a � fmT1ngLT
d

i
e3 (A13)

Identity (7) has been used again in obtaining the third equality.

Following the same steps shown in Eq. (A3), we can simplify

�pT ⊗ LT
a �MD and �1Tn ⊗ LT

d �MD as

�pT ⊗ LT
a �MD � �p ∘ m�T ⊗ LT

a

and

�1Tn ⊗ LT
d �MD � �1n ∘ m�T ⊗ LT

d (A14)

The left-hand side of Eq. (A9) then simplifies, using identity (7), to

HTJH �u� ��pT ⊗ LT
a � � �1Tn ⊗ LT

d ��MD �r� 2 _HTJH _u

� HTJH �u� �p ∘ m�T ⊗ LT
a �1n ⊗ �R� �p ⊗ Sa� 2 _p ⊗ La _u

� p ⊗ � _La _u� La �u� � 1n ⊗ � _Ld _u� Ld �u��
� �1n ∘ m�T ⊗ LT

d �1n ⊗ �R� �p ⊗ Sa� 2 _p ⊗ La _u

� p ⊗ � _La _u� La �u� � 1n ⊗ � _Ld _u� Ld �u�� � 2 _HTJH _u

� HTJH �u� 2 _HTJH _u� f�p ∘ m�T1ngLT
a
�R� fmT1ngLT

d
�R

� f�p ∘ m�T �pgLT
aSa� fmT �pgLT

dSa� 2f�p ∘ m�T _pgLT
aLa _u

� f�p ∘ m�TpgLT
a � _La _u� La �u� � f�p ∘ m�T1ngLT

a � _Ld _u� Ld �u�
� 2fmT _pgLT

dLa _u� fmTpgLT
d � _La _u� La �u�

� fmT1ngLT
d � _Ld _u� Ld �u� (A15)

To facilitate reading, curly brackets in the last equality show inner

products (scalars). Thus, Eq. (A9) can be rewritten using Eqs. (A13)

and (A15) as

h
�p ∘ m�T1n
�
LT
a � fmT1ngLT

d

i
�R�

�
HTJH� f�p ∘ m�TpgLT

aLa

� f�p ∘ m�T1ngLT
aLd � fmTpgLT

dLa � fmT1ngLT
dLd

�
�u

�
�
LT
aSa�p ∘ m�T � LT

dSam
T
�
�p

� −2 _HTJH _u − 2
�
f�p ∘ m�T _pgLT

aLa � fmT _pgLT
dLa

�
_u

− g
�
fpTmgLT

a � fmT1ngLT
d

�
e3 −

�
f�p ∘ m�TpgLT

a
_La

� �p ∘ m�T1ngLT
a
_Ld � fmTpgLT

d
_La � fmT1ngLT

d
_Ld

�
_u (A16)

Equation (A16) can be used to verify that the second block row of

massmatrixM and generalized force vectorQ in Eqs. (51) and (52) is

correct. In the third and final step, we look at the Lagrange equations:

d

dt

�
∂T
∂ _p

�
−
∂T
∂p

� −
∂U
∂p

(A17)

Noting Eq. (43), the first term is computed as

∂T
∂ _p

�
�
∂ _r
∂ _p

�
T

MD _r � �In ⊗ �Sa�T�MD _r � diag�m� ⊗ �Sa�T _r
(A18)

and where we have used identity (9) to simplify the expression

�In ⊗ �Sa�T�MD as

�
In⊗ �Sa�T

�
MD�

�
diag�1n�⊗�Sa�T

�
�diag�m�⊗I3�

�diag�1n ∘m�⊗�Sa�T�diag�m�⊗�Sa�T (A19)

Differentiating Eq. (A18) with respect to time yields

d

dt

�
∂T
∂ _p

�
� diag�m� ⊗ � _Sa�T _r� diag�m� ⊗ �Sa�T �r (A20)

Also using Eq. (43), we obtain

∂T
∂p

�
�
∂ _r
∂p

�
T

MD _r � �In ⊗ � _Sa�T�MD _r � diag�m� ⊗ � _Sa�T _r
(A21)

Furthermore, using Eqs. (34) and (10), we obtain the third term as

∂U
∂p

� g

�
∂r
∂p

�
T

m ⊗ e3 �
∂Us

∂p
� g�In ⊗ Sa�Tm ⊗ e3 �

∂Us

∂p

� g�1n ∘ m��Sa�Te3 �
∂Us

∂p
� mg�Sa�Te3 − FS (A22)

where, the ith element of the column vector FS is the generalized

force applied by the spring elements:

FS
i � −

∂Us

∂p
� −kli�pi − pi−1 − pi

e � pi−1
e �

− kni �pi − pi−1 − pi
e � pi−1

e �3 � kli�1�pi�1 − pi − pi�1
e � pi−1

e �
� kni�1�pi�1 − pi − pi�1

e � pi−1
e �3 (A23)

Combining Eqs. (A20) and (A21), and using Eq. (40), the left-hand

side of Eq. (A17) is computed by recalling Eq. (10) as
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d

dt

�
∂T
∂ _p

�
−
∂T
∂p

� diag�m� ⊗ �Sa�T �r

� diag�m� ⊗ �Sa�T
h
1n ⊗ �R� �p ⊗ Sa� 2 _p ⊗ La _u

� p ⊗ � _La _u� La �u� � 1n ⊗ � _Ld _u� Ld �u�
i

� �m ∘ 1n��Sa�T �R� �m ∘ �p��Sa�TSa� 2�m ∘ _p��Sa�TLa _u

� �m ∘ p��Sa�T� _La _u� La �u� � �m ∘ 1n��Sa�T� _Ld _u� Ld �u�
� m�Sa�T �R�

�
�p ∘ m��Sa�TLa �m�Sa�TLd

�
�u

� f�Sa�TSagdiag�m� �p� 2f�Sa�TLa _ug�m ∘ _p�
�

�
�p ∘ m��Sa�T _La �m�Sa�T _Ld

�
_u (A24)

In the third equality, we have used identity (10) repeatedly. Thus,

using Eqs. (A22) and (A24), Eq. (A17) can be rewritten as

m�Sa�T �R�
�
�p∘m��Sa�TLa�m�Sa�TLd

�
�u�f�Sa�TSagdiag�m� �p

�−2f�Sa�TLa _ug�m∘ _p�−f�Sa�T _La _ug�p∘m�
−f�Sa�T _Ld _ugm�Fs−gf�Sa�Te3gm (A25)

From Eq. (A25), the last block row of the mass matrix M and the

generalized force vector Q in Eqs. (51) and (52) are verified to be

correct. □

Appendix B: Handling General Initial Conditions
and Proof of Exponential Stability

This appendix addresses the use of amore general control cost J�t�
and exponential stability of the control approach. Consider a

mechanical system forwhich the unconstrained equation ofmotion is

given by

M�q; t� �q � Q�q; _q; t� (B1)

whereM is an n-by-nmatrix, andQ is the given generalized force n
vector. The control constraints are given by

A�q; _q; t� _q � c�q; _q; t� (B2)

where A is an m-by-n matrix, and c is an m vector. Upon

differentiating Eq. (B2), we obtain

A�q; _q; t� �q � b�q; _q; t� (B3)

where

b�q; _q; t� ≔ − _A _q� _c (B4)

On defining the error in satisfying the control constraint as

e ≔ A _q − c (B5)

we might enforce a general modified constraint of the form

_e� Pe � 0 (B6)

to allow for general initial conditions that may not satisfy the control

constraint at the initial time t � 0. The matrix P in Eq. (B6) is a user-

prescribed positive definite matrix, and hence can be diagonalized so

that P � TΛTT , where T is an orthogonal matrix andΛ is a diagonal

matrix for which the (diagonal) elements are all strictly positive. The

solution of Eq. (B6) is

e�t� � exp�−Pt�e0 � T exp�−Λt�TTe0 (B7)

where e0 is the error in the satisfaction of the constraints at the initial
time. Thus, e�t� → 0 exponentially as t → ∞, and the diagonal
elements ofΛ influence the rate of asymptotic convergence to e � 0.
The conclusion that the modified constraint in Eq. (B6) leads to

stable control can also be reached in a different way by considering
the Lyapunov function V � �1∕2�eTe and noticing that its rate of
change along the trajectory of the dynamical system is
_V � eT _e � −eTPe. Because P is a positive definite matrix, the
rate of change of the Lyapunov function is always negative; hence,
the controlled dynamical system converges to e � 0 asymptotically
as t → ∞.
Using Eqs. (B3–B5), Eq. (B6) can be expanded as

A �q � b − Pe (B8)

The equation of the controlled dynamical system is then given by

M�q; t� �q � Q�q; _q; t� �QC�q; _q; t� (B9)

where the control forceQC enforces the constraint given in Eq. (B8)
while simultaneously minimizing, at each instant of time, a general
control cost of the form J�t� � QCT

N�q; _q; t�QC, where N is a user-
prescribed positive definite matrix. The explicit expression for the
control force QC is given by [38,39]

QC � N−1M−1AT�AM−1N−1M−1AT���b−Pe−AM−1Q� (B10)

where X� denotes the Moore–Penrose inverse of the matrix X. It
should be noted that the preceding control force can be split as

QC � N−1M−1AT�AM−1N−1M−1AT���b − AM−1Q�|�����������������������������������������{z�����������������������������������������}
QC

1

− N−1M−1AT�AM−1N−1M−1AT��Pe|������������������������������{z������������������������������}
QC

2

(B11)

where the term QC
1 ensures that the system does not leave the

constraint manifold once it reaches it, whereas the termQC
2 drives the

system to the constraint manifold (starting from arbitrary initial
conditions).
When the weighting matrix N is chosen so that N � M−1,

Eq. (B11) simplifies to

QC � AT�AM−1AT���b − AM−1Q�|������������������������{z������������������������}
QC

1

− AT�AM−1AT��Pe|������������{z������������}
QC

2

(B12)

and when N � M−2, it simplifies to

QC � MAT�AAT���b − AM−1Q�|����������������������{z����������������������}
QC

1

−MAT�AAT��Pe|����������{z����������}
QC

2

(B13)

Finally, when the rank of matrix A is m, all the Moore–Penrose
inverses used in Eqs. (B10–B13) can be simply replaced by (the
usual) matrix inverses.
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