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Abstract The explicit equations of motion for a gen-
eral n-body planar pendulum are derived in a simple
and concise manner. A new and novel approach for
obtaining these equations using mathematical induc-
tion on the number bodies in the pendulum system is
used. Assuming that the parameters of the system are
precisely known, a simple method for its control that
is inspired by analytical dynamics is developed. The
control methodology provides closed-form nonlinear
control and makes no approximations/linearizations of
the nonlinear system. No a priori structure is imposed
on the controller. Globally, asymptotic Lyapunov sta-
bility is achieved along with the minimization of a user-
provided control cost at each instant of time. This con-
trol methodology is then extended to include uncertain-
ties in the parameters of the system through the use of an
additional continuous controller. Simulations showing
the simplicity and efficacy of the approach are provided
for a 10-body pendulum system whose model is only
known imprecisely. The ease with which the uncer-
tain system can be controlled to move from any initial
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state to various final so-called inverted configurations
is demonstrated.

Keywords N-body pendulum system · Equations of
motion · Nonlinear damping · Lyapunov constraint
control · Global asymptotic stability · Uncertain
systems control · Generalized sliding mode control

1 Introduction

Control of pendulum systems has been at the center
of attention of the scientific community for a long
time. The reason is that these systems are conceptu-
ally simple and can be thought of as useful approxima-
tions in the study of several real-life dynamical sys-
tems such as two-dimensional robotic manipulators,
robot arms, legs of a biped robot, and numerous other
articulated mechanical systems. Though conceptually
simple, they are highly nonlinear, and inverted pendu-
lum systems, which are unstable, pose significant chal-
lenges in control design. For this reason, control theo-
rists often use (inverted) pendulum systems as test beds
to test, develop, validate, and compare different con-
trol methodologies. Control methods that can success-
fully stabilize such unstable systems can then be used
with greater confidence when applied to other mechan-
ical systems such as those that arise in aerospace engi-
neering, satellite systems, and in the control of general
multi-body systems.
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This paper studies the dynamics and control of an
n-body pendulum system in which each body com-
prising the system is planar and of arbitrary shape. The
system is more general than that used to date in the
literature because the center of mass of each body is
not required to lie on the line joining the hinges (see
Fig. 1). We refer to such a multi-body planar pendu-
lum with n number of bodies as an n-body pendulum.
This paper is conceived in three parts. The first deals
with the development of the Lagrange equations of
motion for a multi-body planar pendulum. The second
part deals with the development of a Lyapunov stable
control methodology, which is inspired by some recent
results in analytical dynamics, and does not use conven-
tional control theory. It permits the nonlinearly damped
pendulum system to start from any given initial condi-
tions and reach a desired final state, hence providing
global asymptotic convergence. The third part of this
paper deals with the question of controlling an actual
physical multi-body pendulum whose description is not
precisely known. The control methodology developed
in the latter two parts of the paper is applicable to
general nonlinear, nonautonomous uncertain dynam-
ical systems. One of the main purposes of the paper is
to demonstrate the simplicity and effectiveness of the
control methodology in dealing with unstable, multi-
degree of freedom systems—in this case, a ten degree
of freedom pendulum that is controlled to stably ‘stand’
in various so-called unstable configurations.

The derivation of the explicit equations of motion
for a multi-body planar pendulum, though a seemingly
straightforward application of Lagrangian mechanics,
can get rather complex when dealing with a pendulum
consisting of more than four bodies. In fact, the alge-
braic complexity explodes as the number of degrees of
freedom of the system increase and general equations
of motion for n degrees of freedom become extremely
unwieldy and long. For example, Refs. [1] and [2] that
deal with the development of such equations for an
inverted planar pendulum spend several pages deriving
the equations of motion, which are then employed for
either a two-link or three-link pendulum. References
[3] and [4] derive the equations of motion of a similar
system—an inverted pendulum with a follower force;
they show the considerable degree of algebraic com-
plexity in getting the general equations of motion. Ref-
erence [5] presents an algorithm to generate the equa-
tions of motion for robotic manipulators automatically
using a computer program. The Newton–Euler formal-

Fig. 1 An n-body planar pendulum. The location of the center
of mass, Ci , of the ith body with respect to the inertial coordinate
system shown is (xi , yi ), and the distance between its upper and
lower hinges is li . The angles θi that the line joining the hinges in
the ith body makes with the vertical, and the angles ψi are mea-
sured in the counterclockwise direction, as shown. The location
of the lower hinge on the nth body, shown by the square, is taken
to be any arbitrary point in it, different from the upper hinge

ism is used to obtain the equations of motion instead
of the Lagrangian formalism. However, the resulting
method is still quite cumbersome as seen from the
application of this approach to just a double pendulum
system [5].

All the equations of motion for pendulum systems
obtained to date deal solely with individual links/bodies
that are ‘straight’, i.e., the center of mass of each body
(forming the pendulum system) lies on the line joining
the hinges in the body (see Fig. 1). In this paper, we
present an explicit set of equations in compact form
for a more general situation wherein the center of mass
of each body (in the n-body pendulum) may lie at a
point that is not on the line joining the hinges in that
body. To the best of our knowledge, the equations of
motion for such systems have not been reported so far in
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the literature. More importantly, the derivation of these
equations is short and simple and relies on an approach
based on mathematical induction on the number of bod-
ies in the pendulum system. The authors are unaware of
the use of this sort of approach being applied to get the
nonlinear Lagrange equations of motion for an n-body
system that has this level of complexity. A significant
advantage of the approach (as compared with the direct
approach used in Refs. [1–4]) is that the resulting equa-
tions are obtained in a compact form so their general
structure can then be easily discerned. The equations
are then extended to include pendulum systems with
nonlinear (and linear) damping. It is these equations of
motion of the nonlinearly damped n-body pendulum
system that are used in the subsequent sections of the
paper.

The second part of this paper deals with the devel-
opment of a Lyapunov stable control methodology
that permits the nonlinearly damped pendulum sys-
tem to start from any given initial conditions and reach
a desired final state. It is assumed that the multi-
body system—called the ‘nominal system’—is pre-
cisely known. Based on a suitable Lyapunov func-
tion, a nonlinear controller is obtained in closed form
that simultaneously minimizes a user-specified norm
of the control effort [6]. The method is inspired by
results in analytical dynamics and is much simpler
than those inspired by LQ methods such as SDRE
[7], Sontag’s formula method, and related CLF-based
methods [8–10]. It has an advantage over the stan-
dard backstepping method [10,11] in that it not only
yields a Lyapunov stable control but also minimizes
a control cost at each instant of time while using a
user-desired Lyapunov function for the entire system.
Åström [12] considers the swing-up of a one-mass
pendulum using energy considerations providing a
novel physically based approach to its control. Aguilar-
Ibáñez and Azuela [13] have worked on stabilizing
the underactuated Furuta pendulum, and they obtain
local asymptotic stability around the vertical position
of the pendulum using a suitable Lyapunov function in
combination with partial feedback linearization. More
recently, Aguilar-Ibáñez et al. [14] have considered the
underactuated control of an inverted (planar) pendu-
lum mounted on a cart that moves along a straight line.
They develop an observer-based controller that makes
the time derivative of the energy semi-negative definite
and thereafter use Lasalle’s Theorem for the closed-
loop stability analysis. A quite different approach that

is inspired by analytical dynamics has been taken to
the control of mechanical systems in Refs. [15–18]. The
control objectives are cast in the form of nonholonomic
constraints that are enforced using the fundamental
equation of motion obtained from analytical dynamic
[18,19]. Successful applications of this approach for
various complex nonlinear mechanical systems can be
found in Refs. [19,20].

In contrast to the methods used in Refs. [12–14],
it is this control approach that is developed and used
in this paper. It does not use conventional methods of
control design and comes from recent developments of
the theory of constrained motion of mechanical sys-
tems. A user-defined Lyapunov function and a user-
specified rate of its decay are used as constraints on the
mechanical system, and the equations of motion of the
constrained (controlled) system are directly obtained
using the fundamental equation of mechanics (see
Refs. [6,15–17]). Exact closed-form expressions for
the (generalized) control force are obtained without
making any assumptions/linearizations on the nonlin-
ear system and without imposing any a priori struc-
ture on the controller. An important characteristic of
the nonlinear controller so obtained is that it is opti-
mal in the sense that it simultaneously minimizes a
user-defined quadratic control cost at each instant of
time. Various Lyapunov functions can be used; proper
choices of the Lyapunov function render the control
globally asymptotically stable [6]. Simulation results
in which a user-specified quadratic control cost is min-
imized and a 10-body pendulum is held stable in var-
ious so-called unstable equilibrium positions such as
the ‘inverted pendulum’ position are demonstrated. For
example, closed-form globally stable (optimal) con-
trol required for the 10-body pendulum system to: (i)
swing-up from its stable static equilibrium position, (ii)
then take a full circle past its vertically inverted posi-
tion, and (iii) come all the way around to finally stand
stably in the vertically inverted position, is obtained
with considerable simplicity and ease (see Fig. 3). The
current literature (see Refs. [12–14]) has been limited
to the validation of control methods for much simpler
types of motion control such as the swing-up of a pen-
dulum system from its static, stable, equilibrium posi-
tion directly to its vertically inverted position. In fact,
such studies have been reported for pendulum systems
made up of just two or three bodies.

It is important to note that the pendulum system
described (and controlled) in this paper is composed of
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Fig. 2 Geometry of the L-shaped body that forms the ith body
in the 10-body pendulum. The hinges are located at Oi and Oi+1.
For a = 0.4 m, b = 0.5 m and t = 0.1 m, the angle θi ≈ 52.125o

and the angle ψi shown in the figure is about 24.444o

individual bodies whose mass centers do not lie along
the line passing through their respective hinges (see
Figs. 1, 2). Besides being a better approximation of
reality, when such a pendulum system is being swung-
up to an ‘inverted’ position, considerably larger desta-
bilizing gravity-induced torques about the base pivot
O of the pendulum can be induced than when the cen-
ter of mass of each individual body is restricted to lie
along the line passing through its hinges. In addition,
the use of a 10-body pendulum system further increases
this instability induced by these torques, thereby mak-
ing the control problem addressed herein substantially
more challenging.

The third part of this paper deals with the question of
controlling an actual physical n-body pendulum whose

description is not precisely known. From a practical
standpoint, this is the situation that is most commonly
encountered in dynamical systems with even a mod-
erate degree of complexity. In what follows, our best
estimate (often an educated guess) of the description
of the actual system at hand will be referred to as the
‘nominal system.’ Thus, the nominal system comprises
our best assessment of the description of the actual
physical system, and therefore, the description that it
provides of the actual system is correct only to within
some uncertainty bounds. One would then want to con-
trol the actual physical system whose description is not
exactly known, so that it meets the dynamical expecta-
tions imposed on the nominal system, which in fact is
the only system whose description one has in hand. This
is done through the development of a simple additional
continuous controller, which is based on the concept
of a generalized sliding surface, that tracks to within
pre-specified error bounds (that can be made as small
as desired) the motion of the nominal system in the
presence of norm-bounded uncertainties in our knowl-
edge of the actual system. To preserve the thread of
thought, proofs related to the development of this con-
tinuous controller are given in Appendix. In Sect. 4, a
brief review of the literature on the control of uncertain
system is provided.

Closed-form controllers that stabilize a 10-body
nonlinearly damped pendulum system in the various
unstable equilibrium positions that were used earlier
with the nominal system are now obtained for the actual
system and their effectiveness is shown. Thus, the effi-
cacy of the control methodology and the simplicity of
its implementation for the nominal system and for the

Fig. 3 a Final configuration of the 10-body pendulum system in
Cases (i) and (iii) in which the system is required to come to rest
in the upside-down ‘inverted’ position. b Final configuration of

the system in Case (ii) in which the pendulum system is required
to come to rest so that θ f inal

i = 5π/4,∀i
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actual system, whose description may be uncertain, are
demonstrated.

2 Derivation of the general equations of motion of
an n-body pendulum

Consider the n-body pendulum that undergoes planar
motions suspended from the point O (see Fig. 1). The
ith body in the pendulum has mass mi , and its moment
of inertia about its center of mass (CM), which is
located at Ci , is Ji . The coordinates of the point Ci

in the inertial coordinate frame OXY are (xi , yi ). The
distance between the upper and the lower hinges in the
ith body is li , and the distance from the upper hinge to
its CM is bi li . The line joining the two hinges in the ith
body makes an angle θi with the vertical, measured in
the counterclockwise direction (see Fig. 1). Similarly,
the angle made by the line joining the upper hinge to
the CM of the ith body makes an angle ψi with the
line joining the two hinges; as shown in the figure, this
angle is again measured counterclockwise from the line
joining the two hinges.

For purposes of uniformity in our formulation of the
equations of motion, we have used two hinges within
each body. When viewed in the stable static equilibrium
position of the n-body pendulum, the upper hinge in
each body is the location, where it is connected to the
body immediately above, and the lower hinge, where it
is connected to the body immediately below. However,
since the nth body has nothing below it, we can locate
an imaginary ‘lower hinge’ (shown by the square in
Fig. 1) at any point in it. Specifically for convenience,
were this imaginary lower hinge placed at the CM of
this nth body, then we would have ψn = 0; if, further,
bn were set to unity, then the distance from the CM of
the nth body to its upper hinge, which is given by bnln ,
would then simply be ln .

A similar situation arises when the pendulum sys-
tem comprises of just a single body suspended from the
point O. An imaginary ‘second hinge’ can be placed at
any location in this body other than at O, say at the
point O1 as shown in the figure. The line OO1 joining
the two hinges is shown by a dashed line. The purpose
of this second hinge is simply to provide a direction
so that the angle θ1 can be measured in the counter-
clockwise direction from the vertical. Using elemen-
tary Newtonian mechanics and taking moments about
the fixed origin O, we get the equation of motion for
this one-body pendulum as

[
J1 + m1(b1l1)

2
]
θ̈1 + m1g(b1l1) sin(θ1 + ψ1) = 0.

(1)

Alternatively, as discussed before, the point O1 could
have been chosen to coincide with the location C1 of
the CM of the body so thatψ1 = 0. Now θ1 is the angle
made by the line OC1 with the vertical. If, further, one
sets b1 = 1, then l1 can now be interpreted as simply
the distance of the CM of the body from the hinge at
O. Setting b1 = 1 and ψ1 = 0 in Eq. (1), we get
the equation of motion of the pendulum in its standard
form, namely[

J1 + m1l2
1

]
θ̈1 + m1gl1 sin θ1 = 0. (2)

where l1 is now the distance of the CM of the body
from O. Though a trivial result, it is required in the
proof of our general result where we will be interested
in obtaining the equations of motion of a planar n-body
pendulum, with n > 1 .

The algebraic complexity of the derivation of the
Lagrange equations of motion increases greatly as the
number of bodies in the system increase, and here, we
use a new and novel approach that utilizes mathematical
induction on the number of bodies (degrees of freedom)
of the system. We begin by stating our result.

Result: The Lagrange equations of motion of the
undamped n-body pendulum described above (see
Fig. 1) are given by

M (n)(θ (n)) θ̈ (n)+S(n)(θ (n))
[
θ̇ (n)

]2+F (n)(θ (n))=0,

(3)

where the n-vector (n by 1 vector) θ(n) = [θ1, θ2, . . . ,

θn]T , and the n-vector
[
θ̇ (n)

]2 := [θ̇2
1 , θ̇

2
n , . . . , θ̇2

n ]T .
The superscripts ‘(n)’ in Eq. (3) explicitly point out that
the equations are for an n-body pendulum; the matri-
ces M (n) and S(n) are therefore n by n matrices, and
the vector F (n) is an n by 1 column vector (n-vector).
The elements, m(n)

i, j , of the symmetric matrix M (n) are
explicitly given by the relations

m(n)
i, i = Ji + l2

i {mi b
2
i + m̄i }, 1 ≤ i ≤ n, (4)

and,

m(n)
i, j = li l j [m j b j cos(θi j − ψ j )+ m̄ j cos(θi j )],
1 ≤ i < j ≤ n, (5)

where we define

θi j = θi − θ j , m̄i =
n∑

k=i+1

mk, and m̄n = 0. (6)
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The elements, s(n)i, j , of the skew-symmetric matrix S(n),
whose diagonal elements are of course all zero, are
given by the relations

s(n)i, j = li l j [m j b j sin(θi j − ψ j )+ m̄ j sin(θi j )],
1 ≤ i < j ≤ n, (7)

and the elements, f (n)i , of the n-vector F (n) are given
by the relations

f (n)i = gli {mi bi sin(θi + ψi )+ m̄i sin(θi )},
1 ≤ i ≤ n. (8)

Proof We note, using Eqs. (4) and (8), that the result is
trivially true for n = 1 as seen from Eq. (1). To proceed
with our proof by induction, we assume that Eqs. (3)–
(8) are true for any n = N ≥ 1, i.e., for an N -body
pendulum. We then need to prove that they are true for
n = N + 1, i.e., for an (N + 1)-body pendulum.

A comparison of elements of the symmetric matrices
M (N ) and M (N+1) using Eqs. (4) and (5) reveals that
if these equations are correct for N ≥ 1, then

m(N+1)
i, j

− m(N )
i, j

= m(N+1)
j, i

− m(N )
j, i

:= �mi, j

= m N+1li l j cos(θi j ),

1 ≤ i, j ≤ N ,

m(N+1)
i, N+1

= m(N+1)
N+1, i

= m N+1li bN+1lN+1 cos(θi N+1 − ψN+1),

1 ≤ i ≤ N ,

m(N+1)
N+1,N+1

= JN+1 + m N+1l2
N+1

b2
N+1
. (9)

Similarly, a comparison of the elements of the skew-
symmetric matrices S(N ) and S(N+1) using Eq. (7)
shows that if this relation is correct then

s(N+1)
i, j − s(N )i, j := �si, j

= m N+1li l j sin(θi j ), 1 ≤ i, j ≤ N ,

s(N+1)
i,N+1 = −s(N+1)

N+1, i

= m N+1li lN+1bN+1 sin(θi N+1 − ψN+1),

1 ≤ i ≤ N . (10)

Lastly, a comparison of Eq. (8) for the vectors F (N )

and F (N+1) shows that, if correct, then we must have

f (N+1)
i − f (N )i := � fi = m N+1gli sin θi , 1 ≤ i ≤ N ,

f (N+1)
N+1 = m N+1gbN+1lN+1 sin(θN+1 + ψN+1). (11)

Hence, we are required to show that in going from an N -
body pendulum to an (N+1)-body pendulum (N ≥ 1),

the changes in the matrices M and S and in the vector
F must be as prescribed by relations (9)–(11). Showing
this would then complete our proof.

But the difference between the N -body pendulum
and the (N + 1)-body pendulum is just the addition of
the (N+1)th body! And hence all the terms on the right-
hand side of relations (9), (10), and (11) must come
solely from the Lagrangian L of only the (N + 1)th
body. Since the coordinates (xN+1, yN+1) of the CM
of the (N + 1)th body are (for N ≥ 1),

xN+1 =
N∑

j=1

l j sin θ j +bN+1lN+1 sin(θN+1+ψN+1),

yN+1 =−
N∑

j=1

l j cos θ j −bN+1lN+1 cos(θN+1+ψN+1),

(12)

its Lagrangian L is

L := T − V = 1

2
m N+1(ẋ

2
N+1

+ ẏ2
N+1
)

+ 1

2
JN+1θ̇

2
N+1

− m N+1gyN+1, (13)

where T denotes the kinetic energy of the (N+1)th body
and V denotes its gravitational potential energy.

Our aim is to find how this Lagrangian L ,through its
inclusion, alters the Lagrange equations of motion of
the N -body pendulum, thereby providing us with the
Lagrange equations for the (N + 1)-body pendulum.

We denote the Lagrange operator Li (∗)= d
dt

(
∂∗
∂θ̇i

)
−(

∂∗
∂θi

)
. Then, from relation (12), we obtain

Li (L) = m N+1

[
d

dt

(
∂ ẋN+1

∂θ̇i
ẋN+1

)
− ∂ ẋN+1

∂θi
ẋN+1

]

+ m N+1

[
d

dt

(
∂ ẏN+1

∂θ̇i
ẏN+1

)
− ∂ ẏN+1

∂θi
ẏN+1

]

+ δi,N+1 JN+1θ̈N+1 + ∂V

∂θi

= m N+1

[
d

dt

(
∂xN+1

∂θi
ẋN+1

)
− ∂ ẋN+1

∂θi
ẋN+1

]

+ m N+1

[
d

dt

(
∂yN+1

∂θi
ẏN+1

)
− ∂ ẏN+1

∂θi
ẏN+1

]

+ δi,N+1 JN+1θ̈N+1 + ∂V

∂θi

= m N+1
∂xN+1

∂θi
ẍN+1 + m N+1

∂ yN+1

∂θi
ÿN+1

+ δi,N+1 JN+1θ̈N+1+ ∂V

∂θi
(14)
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where δi,N+1 is the Kronecker delta. In the second
and third equalities above, we have used the relations
∂ ẋN+1

∂θ̇i
= ∂xN+1

∂θi
and d

dt

(
∂xN+1
∂θi

)
= ∂ ẋN+1

∂θi
, and similar

relations for yN+1. Using relation (12), we then have

ẍN+1 =
N∑

j=1

[
l j cos θ j θ̈ j − l j sin θ j θ̇

2
j

]

+ bN+1lN+1

[
cos(θN+1 + ψN+1)θ̈N+1

− sin(θN+1 + ψN+1)θ̇
2
N+1

]
(15)

and similarly,

ÿN+1 =
N∑

j=1

[
l j sin θ j θ̈ j + l j cos θ j θ̇

2
j

]

+ bN+1lN+1

[
sin(θN+1 + ψN+1)θ̈N+1

+ cos(θN+1 + ψN+1)θ̇
2
N+1

]
. (16)

Using relations (12), (15), and (16) in Eq. (14) gives Li

for 1 ≤ i ≤ N , and we get

Li (L) = m N+1li bN+1lN+1

[
cos(θi ) cos(θN+1

+ψN+1)θ̈N+1 − cos(θi ) sin(θN+1

+ψN+1)θ̇
2
N+1

]

+ m N+1li cos(θi )

N∑
j=0

[
l j cos(θ j )θ̈ j

− l j sin(θ j )θ̇
2
j

]
+ m N+1li sin(θi )

×
N∑

j=0

[
l j sin(θ j )θ̈ j + l j cos(θ j )θ̇

2
j

]

+ m N+1li bN+1lN+1

[
sin(θi )

× sin(θN+1 + ψN+1)θ̈N+1

+ sin(θi ) cos(θN+1 + ψN+1)θ̇
2
N+1

]
+ ∂V

∂θi
,

(17)

which simplifies to

Li (L) =
N∑

j=1

m N+1li l j cos(θi − θ j )︸ ︷︷ ︸
�mi, j

θ̈ j

+ m N+1li bN+1lN+1 cos(θi − θN+1 − ψN+1)︸ ︷︷ ︸
m(N+1)

i, N+1

θ̈N+1

+
N∑

j=1

m N+1li l j sin(θi − θ j )︸ ︷︷ ︸
�si, j

θ̇2
j

+ m N+1li bN+1lN+1 sin(θi − θN+1 − ψN+1)︸ ︷︷ ︸
s(N+1)
i, N+1

θ̇2
N+1

+ m N+1gli sinθi︸ ︷︷ ︸
� fi

, 1 ≤ i ≤ N . (18)

This equation identifies the terms that need to be added
to the (i, j) elements of the matrices M (N ) and S(N ) to
obtain the corresponding (i, j) elements of the matri-
ces M (N+1) and S(N+1) for 1 ≤ i ≤ N and 1 ≤
j ≤ N + 1. They are the same as those shown in
Eqs. (9) and (10). Also, the elements � fi shown in
Eq. (18) need to be added to the N elements of the
N -vector F (N ) to obtain the corresponding (first) N
elements of the vector F (N+1); they too are the same
as those given in relation (11). The third term on the
right-hand side of Eq. (18) shows that the upper left
N by N submatrix of S(N+1) is skew symmetric; this
is because the N by N matrix S(N ) is assumed to be
skew symmetric and we are adding to this N by N
matrix another skew-symmetric matrix�si, j . In a sim-
ilar manner we compute the additional Lagrange equa-
tion that results when we go from an N -body pendu-
lum to an (N + 1)-body pendulum (N ≥ 1). We have
for

LN+1(L) = m N+1bN+1lN+1 cos(θN+1 + ψN+1)

×
N∑

i=1

[
li cos(θi )θ̈i − li sin(θi )θ

2
i

]

+ m N+1b2
N+1

l2
N+1

[cos2(θN+1 + ψN+1)θ̈N+1

− cos(θN+1 + ψN+1) sin(θN+1 + ψN+1)θ̇
2
N+1

]
+ m N+1bN+1lN+1 sin(θN+1 + ψN+1)

×
N∑

i=1

[
li sin(θi )θ̈i + l j cos(θi )θ

2
i

]

+ JN+1θ̈N+1 + ∂V

∂θN+1

+ m N+1b2
N+1

l2
N+1

[sin2(θN+1 + ψN+1)θ̈N+1

+ cos(θN+1 + ψN+1)i sin(θN+1 + ψN+1)θ̇
2
N+1

],
(19)
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which simplifies to

LN+1(L)

=
N∑

i=1

m N+1bN+1lN+1l j cos(θi − θN+1 − ψN+1)︸ ︷︷ ︸
m(N+1)

N+1, i

θ̈i

+
N∑

i=1

−m N+1bN+1lN+1li sin(θi − θN+1 − ψN+1)︸ ︷︷ ︸
s(N+1)

N+1, i

θ̇2
i

+ (m N+1b2
N+1

l2
N+1

+ JN+1)︸ ︷︷ ︸
m(N+1)

N+1, N+1

θ̈N+1

+ m N+1lN+1g sin(θN+1 + ψN+1)︸ ︷︷ ︸
f (N+1)
N+1

, (20)

On the right-hand side of Eq. (20), terms related to
the elements of the last row of the matrices M (N+1)

and S(N+1) are identified, which are the same as those
given in relations (9) and (10). We note from relations
(18) and (20) that s(N+1)

N+1, i = −s(N+1)
i, N+1, 1 ≤ i ≤ N +1,

and therefore, the matrix S(N+1) is skew symmetric.
Also, the (N + 1)st element of the vector F (N+1) is
given by f (N+1)

N+1 , as required from relation (11). We
observe from relations (18) and (20) that the mass
matrix M (N+1) is symmetric, yet one does not need
to prove this. Since the coordinates of the center of
mass (xi , yi ) of the ith body, 1 ≤ i ≤ N + 1, when
expressed in the θ coordinates do not contain time
explicitly, Lagrangian mechanics guarantees that the
matrix is symmetric! ��
Remark 1 For the n -th body (and only for the nth body)
of the n-body pendulum, we can set ψn = 0, and as
discussed before, also set bn = 1 so that ln is now the
distance of the CM of the nth body to the hinge in it.
The other l ′i s, 1 ≤ i ≤ n − 1, of course retain their
usual meanings. The angle θn (and only θn , none of
the other θ ′

i s) now denotes the angle (measured coun-
terclockwise) that the line joining the hinge in the nth
body to its CM makes with the vertical (see Fig. 1).

Then, from Eqs. (4)–(6), the elements m(n)
i, j of the

symmetric matrix M (n) in Eq. (3) are explicitly given
by

m(n)
i, i = Ji + l2

i {mi b
2
i

+ m̄i }, 1 ≤ i ≤ n − 1;
m(n)

i, j = li l j [m j b j cos(θi j − ψ j )

+ m̄ j cos θi j ], 1 ≤ i < j ≤ n − 1;

m(n)
i,n = li lnmn cos θin, 1 ≤ i ≤ n − 1;

m(n)
n, n = Jn + mnl2

n , (21)

where, as before, m̄i =
n∑

k=i+1
mk with m̄n = 0.

Similarly, from Eq. (7), the elements s(n)i, j of the

skew-symmetric matrix S(n) in Eq. (3) can be explicitly
written as

s(n)i, j = li l j [m j b j sin(θi j − ψ j )

+ m̄ j sin(θi j )], 1 ≤ i < j ≤ n − 1,

s(n)i, n = mnli ln sin θin, 1 ≤ i ≤ n − 1. (22)

and the elements f (n)i of the column vector F (n) can be
written as

f (n)i = gli {mi bi sin(θi + ψi )

+ m̄i sin(θi )}, 1 ≤ i ≤ n − 1,

f (n)n = mngln sin θn (23)

��
Remark 2 If the n-body pendulum is made up of
all ‘straight’ links/bodies, as has nearly always been
assumed in the research literature hereto, then the cen-
ter of mass of each body will lie on the line join-
ing its hinges; hence, ψi = 0, 1 ≤ i ≤ n. The
equation of motion (3) then simplifies further since
in the relations given in Eqs. (4)–(8) and Eqs. (21)–
(23) for the elements of M (n), S(n), and F (n), we set
ψi = 0, 1 ≤ i ≤ n.

Remark 3 Consider a damped n-body planar pendu-
lum in which the hinges provide dissipative torques.
Assume that the torque generated at the ith hinge (the
first hinge is at O, the second at O1, etc., see Fig. 1) is
expressed as

ĉi (θ̇i − θ̇i−1)+ d̂i (θ̇i − θ̇i−1)
3, 1 ≤ i ≤ n,

with θ̇0 := 0, (24)

where the ĉi , d̂i , i = 1, . . . , n, are positive constants.
The above relation thus assumes ‘linear plus cubic’
damping. Then, the equation of motion of this damped
n-body pendulum is given by

M (n)(θ (n)) θ̈ (n) + S(n)(θ (n))
[
θ̇ (n)

]2 + C (n)θ̇ (n)

+ D(n)(θ̇ (n))+ F (n)(θ (n)) = 0 (25)

where the n-vector θ̇ (n) := dθ(n)/dt . The the elements
c(n)i, j of the n by n constant, symmetric, tridiagonal
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matrix C (n) are obtained by using the virtual work done
by the dissipative torques as

c(n)i,i = ĉi + ĉi+1, 1 ≤ i ≤ n,

c(n)i,i+1 = c(n)i+1,i = −ĉi+1, 1 ≤ i ≤ n − 1 (26)

where we define ĉn+1 := 0. Similarly, using virtual
work, the n-vector D(n) has elements d(n)i given by

d(n)i = d̂i (θ̇i − θ̇i−1)
3 − d̂i+1(θ̇i+1 − θ̇i )

3, 1 ≤ i ≤ n

(27)

where we again define θ̇0 = d̂n+1 = 0.
The term C (n)θ̇ (n) in Eq. (25) gives rise to linear

damping in the system, and the vector D(n)(θ̇ (n)) gives
rise to nonlinear cubic damping. Other damping models
can be similarly incorporated using the n-vector D(n)

in Eq. (25).

3 Control of an n-body damped planar pendulum

3.1 Explicit control of n-body pendulum

Our aim in this section to is obtain an explicit closed-
form control of the n-body pendulum described in the
previous section that simultaneously minimizes a user-
specified quadratic control cost. It is assumed that the
parameters that describe the pendulum system are pre-
cisely known and that the description of the system is
therefore accurate. From a practical standpoint though,
such precision might not be possible in the modeling
of even moderately complex mechanical systems. This
issue will be dealt with in the next section, where uncer-
tainties in the description of the pendulum system will
be considered. For the present, we assume that the sys-
tem’s description is precisely available.

We would prefer the control to be Lyapunov asymp-
totically stable, and global, so that we can control
the nonlinear system from any given initial state
(θ ini tial , θ̇ ini tial) to any final state (θ f inal , θ̇ f inal). To
do this, we use the fundamental equation of mechanics
(see Refs.[6,15–17]).

The n-body pendulum system is highly nonlinear.
Assuming further that it is also nonlinearly damped as
in Remark 3, the equation of motion of the controlled
system is given by (we now omit the superscript ‘(n)’
for clarity)

M(θ) θ̈+S(θ)
[
θ̇
]2 + C θ̇+D(θ̇)+F(θ)= QC (θ, θ̇ )

(28)

where θ is now an n-vector, and QC is the general-
ized control force n-vector that needs to be determined.
Equation (28) can be rewritten for further notational
convenience as

M θ̈=−{S
[
θ̇
]2+C θ̇+D+F} + QC := Q + QC

(29)

where we have suppressed the arguments of the various
quantities.

We begin by choosing a suitable Lyapunov function
V that is positive definite with V (θ f inal , θ̇ f inal) = 0
and is positive everywhere else and, utilizing the result
in Ref. [6], enforce the constraint on the controlled sys-
tem so that its trajectory always satisfies the relation

dV (θ, θ̇ )

dt
= −αV (θ, θ̇ ), (30)

where α > 0 is a suitable constant. From Lyapunov’s
second method, we know that if the equality (30) is
satisfied, the system will have an asymptotically sta-
ble equilibrium point at (θ f inal , θ̇ f inal) [10]. Further-
more, if the choice of our Lyapunov function is such
that it is radially unbounded, then we are assured global
asymptotic stability. Our control methodology is based
on enforcing Eq. (30) as a nonholonomic constraint
on the mechanical system. Note that our methodol-
ogy consists of exactly specifying the rate at which
the Lyapunov function decays which is different from
the control methods available in the literature for gen-
eral dynamical systems that only ensure that the rate of
change of Lyapunov function is negative at each instant
of time [8–11].

Equation (30) can be written as

A(θ, θ̇ )θ̈ = b(θ, θ̇ ) (31)

where the row n-vector A and the scalar b are, respec-
tively, given by

A = ∂V

∂θ̇
, and b = −∂V

∂θ
θ̇ − αV . (32)

The explicit generalized control force that enforces the
constraint Eq. (31) while simultaneously minimizing
the control cost

J (t) = [QC ]T N (θ)QC (33)

for a given positive definite weighting matrix N (θ) is
obtained, using the fundamental equation of mechanics
[6], as

QC = N−1/2G+(b − AM−1 Q) (34)
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where the matrix G = A(N 1/2 M)−1 and G+ denotes
the Moore–Penrose inverse of the matrix G. It is impor-
tant that the function V and the parameter α be cho-
sen so that the constraint given by Eq. (31) is consis-
tent at all times. As mentioned before, if V is radi-
ally unbounded, the equilibrium point (θ f inal , θ̇ f inal)

is globally asymptotically stable. In the following sub-
section, we provide a numerical example.

3.2 Numerical example

We consider a 10-body damped, planar pendulum in
which all the bodies are identical and each body is L-
shaped. Figure 2 shows the geometry of the ith body.
The dimensions of the outer edges of the arms of each
L-shaped body are taken to be a and b, and the width, t .
See Fig. 2. We assume that all the bodies are of uniform
(and constant) thickness th perpendicular to the paper
and that the density of the material of each body is ρ.

For simplicity, the Lyapunov function V is chosen
to be

V = 1

2
a1(θ − θ f inal)T (θ − θ f inal)+ 1

2
a2θ̇

T θ̇

+ a12θ̇
T θ (35)

so that the equilibrium point is (θ f inal , 0). To ensure
that V is positive definite, we require that a1 > 0,
a1a2 > a2

12.
The parameter α in Eq. (30) is chosen to be equal to

2a12/a2 to ensure consistency of this equation (see Ref.
[6] and the Appendix of Ref. [29]), and the weighting
matrix N in Eq. (32) is set to M−1. With this weigh-
ing matrix, noting that A is a row vector, relation (34)
simply becomes

QC = AT

(AM−1 AT )
(b − AM−1 Q) . (36)

Equation (36) explicitly gives the control torque that is
required to be applied to each hinge of the pendulum
system. We note in passing that this would be the con-
straint torque that nature would apply to the pendulum
system were it required to satisfy the constraint given in
Eq. (31); it is the constraint torque given directly by the
fundamental equation of motion in analytical dynamics
[15–17].

For the simulations shown below, the following
parameter values are used for the geometry of each
of the L-shaped bodies: a = 0.4 m, b = 0.5 m, t =
0.1 m (see Fig. 2). The mass of each body is then

0.08thρ, and its moment of inertia about its center of
mass is 0.002833thρ. For numerical computations, we
take th = 0.01 m, and ρ = 7850 kg/m3. Thus, each
body has a mass of 6.28 kg. The parameters describing
the nonlinear damping (see in Remark 3 of Sect. 2) are
chosen to be ĉi = 0.01 N-m-s/rad, i = 1, . . . , n, and
d̂i = 0.001 N-m-s3/rad3, i = 1, . . . , n. These parame-
ters describe the pendulum system, and in this section,
it is assumed that they are precisely known. (In the
following section, the masses of all the bodies will be
taken to be uncertain, assuming measurement errors in
their determination.)

The parameters used to describe the Lyapunov func-
tion in Eq. (34) are a1 = 1, a2 = 1, a12 = 0.5 so
that α = 1 in Eq. (30). Three different simulations are
presented. Each simulation starts from the stable static
equilibrium position, and in each simulation, the 10-
body damped pendulum is “swung-up” from rest. The
following three cases are shown:

(i) The system is swung-up and is required to come
to rest upside down in the ‘inverted pendulum’
position with all its hinges aligned vertically above
the fixed pivot O (see Fig. 3a) so that θ f inal

i =
π, θ̇

f inal
i = 0,∀i ;

(ii) the system is swung-up and is required to come
to rest past its inverted ‘upside-down’ position so
that all the hinges lie along the line x + y = 0 in
the second quadrant in the XY plane with θ f inal

i =
5π/4, θ̇ f inal

i = 0,∀i (see Figs. 1, 3b); and,
(iii) the system is swung-up and is required to perform

one complete revolution around the fixed pivot O
before coming to rest again in the upside-down
‘inverted pendulum’ position with all the hinges
again aligned vertically above the pivot O so that
θ

f inal
i = 3π, θ̇ f inal

i = 0,∀i .

In Fig. 3, the black dot at the bottom indicates the
position of the pivot O at which the pendulum system is
connected to its fixed base of support (see Fig. 1 also).
The vertical diamond shows the tip of the last (10th)

body, and the other dots indicate the locations of other
hinges. The dashed line indicates the line going through
the hinges.

The equation of motion (29) of the controlled sys-
tem, with QC explicitly specified by relation (36), is
integrated in the abovementioned three cases using
ode15s using a relative error tolerance of 10−7 and an
absolute tolerance of 10−9. Each simulation is run for
25 s.
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Fig. 4 Case (i). Variation of
angles (degrees) with time.
a θi , i = 1, 3, 5.
b θi , i = 7, 9, 10

Fig. 5 Case (i).
a Variation of errors
ei=(θi −θ f inal

i ), i =1, 5, 10
(degrees) with time.
b Variation of Lyapunov
function V with time

Fig. 6 Case (i). Variation of
control torques (N-m) with
time. a QC

i , i = 1, 3, 5.
b QC

i , i = 7, 9, 10

Figure 4a shows the results of the simulation for
Case (i) in which the angles θi , i = 1, 3, 5, are plot-
ted as functions of time; Figure 4b similarly shows the
variation in the angles θi , i = 7, 9, 10. Figure 5a shows
the errors ei = (θi − θ

f inal
i ), i = 1, 5, 10. The inset

plot shows these errors over the time interval from 20
to 25 secs; as seen, the errors are of the order of 10−3.
For brevity, in what follows we do not show plots for
θi = 2, 4, 6, and 8. Figure 5b shows the variation of
the Lyapunov function with time. Figure 6a shows the
control torques (in N-m) required to be applied at the
first, third, and fifth hinges, while Figure 6b shows those

needed at the seventh, ninth, and tenth hinges. Though
the control QC is a continuous function of time, as
seen from these figures, it resembles a kind of bang-
bang control in the initial part of the time history. The
final position of the inverted pendulum at the end of
this simulation is shown in Fig. 3a.

Figures 7, 8, and 9 similarly show results for the
swing-up described in case (ii) above in which the final
state is a stable position with θ f inal

i = 5π/4, θ̇ f inal
i =

0,∀i . The final position acquired by the 10-body
pendulum at the end of the simulation is shown in
Fig. 3b.
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Fig. 7 Case (ii). Variation
of angles (degrees) with
time. a θi , i = 1, 3, 5.
b θi , i = 7, 9, 10

Fig. 8 Case (ii). a Variation
of errors ei , i = 1, 5, 10,
with time. b Variation of
Lyapunov function V with
time

Fig. 9 Case (ii). Variation
of control torques (N-m)
with time.
a QC

i , i = 1, 3, 5.
b QC

i , i = 7, 9, 10

Fig. 10 Case (iii). Variation
of angles (degrees) with
time. a θi , i = 1, 3, 5.
b θi , i = 7, 9, 10
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Fig. 11 Case (iii).
a Variation of errors
ei , i = 1, 5, 10, with time.
b Variation of Lyapunov
function V with time

Fig. 12 Case (iii). Variation
of control torques (N-m)
with time.
a QC

i , i = 1, 3, 5.
b QC

i , i = 7, 9, 10

Figure 10 shows the changes in θi with time for case
(iii) wherein the pendulum system makes one complete
revolution about the fixed pivot before coming to rest
in its final ‘inverted’ state. The final position of the
pendulum is shown in Fig. 3a. Figure 11a shows the
errors ei = (θi − θ

f inal
i ), i = 1, 5, 10, and Fig. 11(b)

shows the change in the Lyapunov function with time.
Figure 12 shows the requisite control torques that need
to be applied to the corresponding hinges as functions
of time for achieving this.

We note that since the Lyapunov function given in
Eq. (35) is radially unbounded, the explicit control
given in Eq. (36) is, theoretically speaking, globally
stable.

4 Control of an uncertain n-body pendulum
system

4.1 Sliding mode controller for uncertain pendulum
system

In the previous section, it was assumed that the vari-
ous parameters that specify the characteristics of the
pendulum system are all perfectly known. However, in

practical situations, there is always an uncertainty in
our knowledge of the system. Control of the pendulum
system in which all its parameters are not precisely
known is explored in this section. For example, val-
ues of the dimensions of the various bodies compris-
ing the system, and/or values of the mass of each body
(and therefore the density of the material of each body),
and/or values of the damping coefficients are usually
known with only certain (and often different) degrees
of certainty.

Our best estimates of these parameters for a given
particular pendulum system are of course available to
us (often by an educated guess). From here on, the
actual pendulum system—in which some or all of its
parameters may be known only imprecisely—will be
referred to as the ‘actual system.’ The system with
our best estimate/assessment of its description (and its
parameter values) will be called the ‘nominal system.’
Control of the nominal system (whose parameters are
known) is dealt with in Sect. 3.1 and demonstrated
in Sect. 3.2. But if these nominal control torques are
to be applied on the actual system, one might not get
the desired result because the actual system is differ-
ent from the nominal system; in fact, the control could
even drive the system unstable. One way of approach-
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ing this problem is through the use of an additional
controller that ensures that the controlled actual system
tracks the trajectories of the controlled nominal sys-
tem. This additional controller needs to be robust, and
hence, sliding mode control is a natural choice because
of its robustness against norm-bounded uncertainties
[21,22]. However, there are a few well-documented
disadvantages associated with discontinuous sliding
mode control, like, possible damage to actuators due
to high frequency switching, excitation of unmod-
eled dynamics [22,23], and the presence of ‘chatter.’
The higher-order sliding mode (HOSM) method [24]
attempts to address some of these problems by using
a higher-dimensional sliding manifold consisting of
higher-order derivatives of the sliding variable. But
it has the disadvantage that the controller needs the
knowledge of the higher-order derivatives of the state
variable which are not always readily available and/or
reliably measureable. A quite different approach from
the above is taken in Ref. [25] for systems that admit
two Lyapunov functions whose null sets only have a
trivial intersection. A limitation of this approach is that
it requires certain assumptions on the system including
the assumption that the controlled system has contin-
uous solutions and that the control does not exhibit
intense chattering.

References [26] and [27] provide alternate control
methodologies that also take into account model uncer-
tainties. They differ from the approach presented herein
in the following aspects: (i) While control of the nomi-
nal system in [26] and [27] is of the PD-type, the control
obtained herein for the nominal system is derived from
a user-defined Lyapunov function and its specified rate
of decay; no a priori structure (e.g., PD) on the con-
troller is imposed, and use is made of recent results from
analytical dynamics instead of conventional control
theory [15–17]. More importantly, this control simul-
taneously minimizes a user-specified quadratic control
cost at each instant of time [6]. The control methods
developed in [26] and [27] do not simultaneously min-
imize a user-prescribed control cost; they simply pro-
vide stable controllers. (ii) The additional control that
takes care of the uncertainty in the system’s description
in this paper is simpler in that different expressions are
not required to evaluate this additional control inside
and outside the so-called bounding region. In fact, the
additional controller in this paper causes the dynamics
to never leave the bounding region. Also, the controller
used herein is neither discontinuous, nor does it use reg-

ularization (to make it continuous), nor any saturation
function.

A continuous controller has been proposed in Ref.
[28] using the concept of generalized sliding surfaces
where uncertainties in both the parameters describing
the system and in the given forces are included. In this
approach, a user supplied smooth function is utilized
in the control design instead of the signum function
that is traditionally used in sliding mode control meth-
ods. This control methodology has been successfully
applied for nonlinear decentralized systems [29] and
formation-keeping control of satellite systems under
uncertainty [30]. However, in this approach, the max-
imum allowable uncertainty in the system parameters
reduces as the number of degrees of freedom of the
system increases. Hence, it is not well suited for large
systems with significant uncertainties in their system
parameters.

In the current work, an additional controller is
designed to compensate for the uncertainties in the
actual system wherein the maximum allowable uncer-
tainties do not depend on the number of degrees of free-
dom of the system. This additional controller ensures
that the controlled actual system tracks the trajecto-
ries of the nominal system within user-specified error
bounds. Since the nominal system and the actual sys-
tem start out with the same initial conditions, the track-
ing errors in the generalized position and generalized
velocity start within these error bounds and stay within
them thereafter. Thus, the actual system always remains
in an attracting region around the trajectory of the nom-
inal system; this attracting region can be specified by
the user and made arbitrarily small. The approach pre-
sented in Ref. [28] is modified to obtain the controller
developed here. Instead of a user supplied smooth func-
tion in the control design as in Ref. [28], attention is
focused here on the use of a linear function.

The equation of motion of the controlled ‘actual’
n-body pendulum system is

Ma(θa)θ̈a = Qa(θa, θ̇a)+ QC (t)+ Qu(θa, θ̇a). (37)

The subscript ‘a’ under various quantities denotes that
they refer to the actual system. The nominal control
force is shown here as only a function of time; it does
not depend on the state of the actual system. Its depen-
dence is only on the state of the nominal system as
shown in Eq. (34). Qu is the additional generalized
control force applied to the actual system, which is
not known precisely, so it can track the nominal sys-
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tem within a certain error bound. In what follows, the
method to compute Qu will be described. Details of the
proof are provided in the Appendix.

Since uncertainties in the mass of a mechanical
system have perhaps the most pervasive effect on its
response, we consider below the situation wherein the
uncertainty in our description of the pendulum system
resides in our lack of exact knowledge of the mass of
each body, or alternately, of the density of the material
of which each body of the pendulum is made.

The tracking error between the actual and the nom-
inal system is

ea(t) = θa(t)− θ(t), ėa(t) = θ̇a(t)− θ̇ (t). (38)

where (θ, θ̇) is the state of the nominal system. A slid-
ing surface is defined as,

s(t) = ėa(t)+ kea(t) (39)

where k > 0 is an arbitrary positive number. When the
actual system can be restricted to stay on the sliding
surface s = 0, it tracks the trajectories of the nomi-
nal system exactly, since they both start out with same
initial conditions. However, since we intend to use a
smooth function (instead of the signum function that is
used traditionally), we can only ensure that the actual
system stays within a small region around the origin,
s ∈ 
ε. This region 
ε, defined as


ε := {
s ∈ Rn| ‖s‖ ≤ ε

}
, (40)

can be made arbitrarily small, as will be seen shortly.
On defining,

δq̈ = M−1
a (Qa + QC )− M−1(Q + QC ), (41)

where M is the mass matrix of the nominal system,
the method requires the computation of the following
estimates,

(i) λmin := min{eigenvalues of M−1
a }, (42)

(ii) β ≥ ‖δq̈‖ + k ‖ė‖
λmin

,∀t . (43)

In the above relations, ‖ · ‖ denotes the L2 norm. Hav-
ing obtained these quantities, the simple closed-form
expression for the additional control force is given as,

Qu = −β(s/ε). (44)

In this expression, ε is a positive number, which can be
chosen by the user so as to meet desired tracking toler-
ances. The tracking errors are guaranteed to be within
the bounds given by (for a Proof, see the Appendix),
∣∣ea,i

∣∣ ≤ 1

k
ε,

∣∣ėa,i
∣∣ ≤ 2ε, i = 1, 2, · · · , n. (45)

Thus, as seen from the above equation, decreasing the
value of ε has the effect of shrinking the region
ε and
reducing the maximum possible errors in tracking.

Remark 4 It must be noted that the Lyapunov con-
straint (Eq. 30) is no longer strictly satisfied by the
controlled actual system described by Eq. (37). How-
ever, the controlled response, at each instant of time,
remains in a small region around the response of the
nominal system, and this region can be made arbitrar-
ily small.

Remark 5 In the preceding discussion, we have
assumed that there is no uncertainty in the measurement
of the initial conditions of the actual system. Were such
an uncertainty to exist, then all the arguments made
in the Appendix would go through for the controller
described by Eqs. (42)–(44) to show that the region
ε
will be asymptotically attracting. The error estimates
given in Eq. (45) will now be valid asymptotically.

4.2 Numerical example

A 10-body pendulum system is again considered. The
nominal system—our best guess of the actual system—
is identical to the one laid out in Sect. 3.2. The mass
of each body of the nominal system is 6.28 kg. If the
uncertainty in the measurement of the mass of each
body is about 0.1kg, this will result in about a 1.6%
discrepancy in the calculation of the mass density of
the material, or about 125 kg/m3. In what follows, the
maximum possible error in the estimate of the density
of each body is conservatively taken to be 150 kg/m3.

For the purpose of demonstrating the efficacy of the
control approach, ten samples are drawn from a uni-
form distribution of density over the range 7, 850 ±
150 kg/m3 for each of the ten bodies of the actual 10-
body pendulum system. The densities of these bodies
(correct to two decimal places) starting from the first to
the tenth are, respectively, 7863.02, 7783.51, 7827.35,
7953.44, 7701.41, 7736.47, 7901.23, 7947.76, 7741.01,
and 7872.53 kg/m3. It is important to note that these
specific density values are used only to demonstrate
the effectiveness of the control approach; the control
method would work for all other possible values of
the densities that lie in this specified range. The other
parameters describing the 10-body pendulum system
are the same as those given in Sect. 3.2. Thus, the
mass of the ith body of the actual system is 0.08thρa,i
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Fig. 13 Case (i). Variation
of angles (degrees) of the
actual pendulum with time.
a θa,i , i = 1, 3, 5.
b θa,i , i = 7, 9, 10

Fig. 14 Case (i). Variation
of the error in tracking the
nominal system with time
a ea,i , i = 1, 5, 10.
b ėa,i , i = 1, 5, 10

and its moment of inertia about its center of mass is
0.002833thρa,i , where ρa,i is the density of the ith
body. The value of the thickness of each body, th , is
taken to be 0.01m as before.

This uncertainty in the density leads to uncertainties
in the mass and the mass moment of inertia of each
individual body. This ultimately leads to uncertainties
in the system’s response that are not just confined to the
mass matrix, Ma , in Eq. (37) but indeed percolate into
the force vector, Qa , of the pendulum system as well.

The equation of motion of the controlled nominal
system is,

M θ̈ = Q + QC , (46)

where the nominal generalized control force QC is
computed using Eq. (36). The equation of motion of
the controlled actual system is,

Ma θ̈a = Qa + QC + Qu (47)

where the additional control torque Qu is computed
using Eq. (44). We choose the parameters for the addi-
tional controller to be ε = 10−4, k = 10 . Estimating
conservatively ‖δq̈‖ to be of O(102) over the duration
of the simulation, and λmin and ‖ė‖ to be of O(10−3),
we choose β = 105. For these chosen parameters, we

are guaranteed that the tracking errors in position and
velocity as given by Eq. (45) are,
∣∣ea,i

∣∣ ≤ 1

k
ε = 10−5,

∣∣ėa,i
∣∣ ≤ 2ε = 2 × 10−4,

i = 1, 2, · · · , n. (48)

Equations (46) and (47) are numerically integrated
simultaneously using the ode15s package on the MAT-
LAB platform. The relative and absolute tolerances for
integration are chosen to be 10−7 and 10−10, respec-
tively.

Computations for the three cases simulated in
Sect. 3.2 are again carried out in which the actual pen-
dulum system starts from rest in its static stable equi-
librium position and is required to come to rest so that
(i) θ f inal

a,i = π,∀i , (ii) θ f inal
a,i = 5π/4,∀i , and, (iii)

θ
f inal

a,i = 3π,∀i . Recall, the subscript ‘a’ denotes the
actual system.

Figures 13, 14 and 15 deal with Case (i). Figure 13a
shows the results of the simulation in which the angles
θa,i , i = 1, 3, 5, of the actual system are plotted as
functions of time; Fig. 13b similarly shows the vari-
ation in the angles θa,i , i = 7, 9, 10. These can be
compared with similar figures for the nominal sys-
tem shown in Fig. 4a, b. Figure 14a shows the error
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Fig. 15 Case (i). Additional
control torques (N-m) on
the hinges as a function of
time. a Qu

i , i = 1, 3, 5.
b Qu

i , i = 7, 9, 10

Fig. 16 Case (ii). Variation
of angles (degrees) of the
actual pendulum with time.
a θa,i , i = 1, 3, 5.
b θa,i , i = 7, 9, 10

Fig. 17 Case (ii). Variation
of the error in tracking the
nominal system with time.
a ea,i , i = 1, 5, 10.
b ėa,i , i = 1, 5, 10

ea,i = (θa,i − θi ), i = 1, 5, 10, in tracking the nominal
system, and Fig. 14b shows the error in tracking the
(generalized) velocity ėa,i = (θ̇a,i − θ̇i ), i = 1, 5, 10,
of the nominal system. These values are seen to be
much smaller than the bounds of 10−5 and 2 × 10−4

guaranteed (see Eq. (48)) due to our choice of the
parameter ε. Figure 15a shows the additional control
torques required to be applied at the first, third, and
fifth hinges, while Fig. 15b shows those applied at the
seventh, ninth, and tenth hinges. It is seen that the addi-
tional control torques needed to compensate for uncer-
tainty in our knowledge of the system are small when
compared to those found for the nominal system (see
Fig. 6).

Figure 19a shows the variation of the Lyapunov
function with time. As mentioned in Remark 4, the
Lyapunov function of the actual system is not guaran-
teed to satisfy Eq. (30). But since the trajectories of
the actual system lie within a tight region around the
nominal system, the plot for the time history of the Lya-
punov function V for the actual system looks almost
exactly the same as that for the nominal system (com-
pare Fig. 19a with Fig. 5b). The rate of decay of the
Lyapunov function and hence the rate of convergence
of the system to the desired equilibrium point can be
tuned by increasing or decreasing the parameter α.

Figures 16, 17, and 18 similarly show results for
the swing-up described in the second case in which
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Fig. 18 Case (ii).
Additional control torques
(N-m) on the hinges as a
function of time.
a Qu

i , i = 1, 3, 5.
b Qu

i , i = 7, 9, 10

Fig. 19 Variation of
Lyapunov function for the
actual system with time.
a Case (i). b Case (ii)

Fig. 20 Case (iii). Variation
of angles (degrees) of the
actual pendulum with time.
a θa,i , i = 1, 3, 5.
b θa,i , i = 7, 9, 10

the final state is a (stable) position with θ
f inal

a,i =
5π/4, θ̇ f inal

a,i = 0,∀i . Figure 16a shows the time his-
tory of angles of the actual system θa,i , i = 1, 3, 5,, and
Fig. 16b shows the same for angles θa,i , i = 7, 9, 10.
These can be compared with corresponding figures
for the nominal system, 7(a), 7(b). Figure 17a and b
show the tracking errors in the generalized position
and velocity for the first, fifth, and tenth body. The
tracking errors are found to be much smaller than the
prescribed values of 10−5 and 2 × 10−4. Figure 18a
shows the time histories of additional control torques
applied at the first, third, and, fifth hinges of the actual
system. Figure 18b shows the same for the seventh,
ninth, and tenth hinges. These additional torques are

also small when compared with the nominal torques
shown in Fig. 6a and b. Figure 19b shows the plot of
Lyapunov function for this case. Again, the plot looks
closely like the one in Fig. 8b.

Figures 20, 21, and 22 show the corresponding plots
for Case (iii) in which the desired final state is at
θ

f inal
a,i = 3π, θ̇ f inal

a,i = 0,∀i . The response of the
actual pendulum system is shown in Fig. 20a, b. These
plots can be compared with the corresponding plots for
the nominal system in Fig. 10a and b. Figure 21a and
b shows the variation in the tracking errors with time
and it is again seen to be much smaller than the val-
ues predicted by theoretical analysis. Figure 22a and b
shows the additional control torques that, when applied
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Fig. 21 Case (iii). Variation
of the error in tracking the
nominal system with time.
a ea,i , i = 1, 5, 10.
b ėa,i , i = 1, 5, 10

Fig. 22 Case (iii).
Additional control torques
(N-m) on the hinges as a
function of time.
a Qu

i , i = 1, 3, 5.
b Qu

i , i = 7, 9, 10

in conjunction with the control torques shown in Fig.
12a and b, stabilize the controlled actual system to a
small region around the desired equilibrium position.
The plot of the Lyapunov function for this case is very
similar to the plot for the corresponding nominal sys-
tem (Fig. 11b) and is not shown. In all the three cases,
the controlled actual system closely tracks the trajecto-
ries of the nominal system, thus satisfying the control
objective. Also, the additional control torques needed
to compensate for the uncertainty in the knowledge of
the actual system are small compared with the control
torques needed to control the nominal system.

5 Conclusions

The salient contributions of this paper are the following.

(1) It demonstrates the use of mathematical induc-
tion to derive the equations of motion for an n-
body planar pendulum system in a compact form.
This method simplifies the procedure for obtaining
the equations of motion by significantly reducing
the (near-exponentially increasing) algebraic com-
plexity involved in their derivation. The center of
mass of each body comprising the n-body pendu-

lum system is not assumed to lie on a straight line
joining the hinges, as is the common practice in
the literature hereto. Hence, the equations are more
general than those hereto reported in the literature,
and they provide a better approximation to reality.

(2) In the case when the properties of the system
are assumed to be perfectly known—the nominal
system—a simple control method inspired by ana-
lytical dynamics is suggested for controlling the
nonlinear system to drive it to any desired final
state. The method is different from those based
on conventional control theory. It makes no sim-
plifying assumptions/linearizations related to the
nonlinear dynamical system; nor does it impose
any a priori structure on the nature of the non-
linear controller. The approach makes use of the
fundamental equation of mechanics that enforces
a user-prescribed Lyapunov constraint on the sys-
tem to obtain an explicit expression for the con-
trol force. An important feature of the control so
obtained is that it simultaneously minimizes a user-
specified quadratic control cost at each instant of
time. Through a proper choice of the Lyapunov
function, the control can be made globally asymp-
totically stable.
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(3) Further, when the parameters of the system are
known with bounded uncertainty, an additional
continuous controller is used, which forces the
controlled system to track the trajectories of the
nominal system within user-prescribed bounds.
This ensures that the controlled actual (uncertain)
system is stable in the sense that it is asymptotically
attracted to a region, which can be made arbitrarily
small, around the desired equilibrium point. This
additional continuous controller, though substan-
tially different from that proposed in Ref. [28], is
inspired partly by the generalized sliding surface
controller developed there.

(4) Numerical examples are provided showing the
simplicity and efficacy of the control methodology.
A nonlinearly damped 10-body pendulum whose
description may or may not be precisely known is
considered. This system has a substantially larger
number of degrees of freedom than those reported
to date in the literature. Each body in the pendu-
lum is taken to be L-shaped. The pendulum starts
from its static equilibrium position and is ‘swung-
up’ in a controlled fashion to be brought to rest so
that it remains in various ‘inverted positions.’ Sta-
ble (optimal) control of the nominal system and
the actual (uncertain) system are demonstrated.
Global asymptotic control of the nonlinear system
is achieved.

This paper illustrates the power of analytical dynamics.
Its use provides novel ways of controlling highly non-
linear dynamical systems without making any simpli-
fying assumptions/linearizations regarding either the
description of system’s dynamics or the structure of
the controller. It is interesting that by using the theory
of constrained motion of mechanical systems closed-
form robust controllers can be designed with consid-
erable ease, thereby yielding a simple methodology
for nonlinear control that has perhaps been overlooked
thus far. Finally, we point out that the approach used
here can be easily extended to other complex dynamical
systems.

6 Appendix

In this section, the proofs for the results regarding the
additional controller used in Sect. 4 are provided. For
convenience, we recall the following.

The equation of motion of the controlled nominal
system is

M(θ)θ̈ = Q(θ, θ̇ )+ QC (t). (49)

The equation of motion of the controlled actual system
is

Ma(θa)θ̈a = Qa(θa, θ̇a)+ QC (t)+ Qu(θa, θ̇a). (50)

In the above equation, the additional (generalized) con-
trol force Qu is computed using the expression

Qu = −β(s/ε) (51)

where ε is a small positive number, s is the sliding
variable

s := ėa + kea, k > 0, (52)

and β is a positive number satisfying the condition

β ≥ ‖δq̈‖ + k ‖ėa‖
λmin

,∀t, where

λmin := min{eigenvalues of M−1
a }. (53)

In Eq. (53), δq̈ is a quantity defined as,

δq̈ := M−1
a (Qa + QC )− M−1(Q + QC ), (54)

and ‖.‖ represents L2 norm of a vector.
Result 1: The additional control force Qu given by

Qu = −β(s/ε) (55)

where ε is a small positive number and β is a posi-
tive number satisfying the condition given in Eq. (53)
ensures that the controlled actual system

Ma(θa)θ̈a = Qa(θa, θ̇a)+ QC (t)+ Qu(θa, θ̇a). (56)

stays with in the region 
ε defined by


ε := {
s ∈ Rn| ‖s‖ ≤ ε

}
. (57)

Proof Noting the definition of the sliding manifold in
Eq. (52), its derivative with respect to time is,

ṡ(t) = ëa + kėa . (58)

Upon differentiating the tracking error ea(t) = θa(t)−
θ(t) twice, we have

ëa(t) = θ̈a(t)− θ̈ (t). (59)

Using the equations of motion of the controlled nominal
system (Eq. 49) and the controlled actual system (Eq.
56), Eq. (59) becomes

ëa = M−1
a (Qa + QC )− M−1(Q + QC )+ M−1

a Qu

= δq̈ + M−1
a Qu . (60)
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The last equality above is obtained from the definition
of δq̈ in Eq. (54). Thus, the time derivative of the sliding
manifold can be simplified using Eq. (60) as,

ṡ(t) = ëa + kėa = δq̈ + M−1
a Qu + kėa . (61)

Considering the Lyapunov function

Va = 1

2
sT s, (62)

its rate of change along the trajectories of the dynamical
system is given by

V̇a = sT ṡ

= sT (δq̈ + M−1
a Qu + kėa)

= sT (δq̈ − M−1
a β

( s

ε

)
+ kėa). (63)

Observing that sT M−1
a s ≥ λmin ‖s‖2, we have

V̇a ≤ ‖s‖ ‖δq̈‖ + k ‖s‖ ‖ėa‖ − βλmin
‖s‖2

ε

= ‖s‖
(

‖δq̈‖ + k ‖ėa‖ − βλmin
‖s‖
ε

)
. (64)

The region 
ε is defined such that ‖s‖ ≤ ε, and we
have ‖s‖ /ε > 1 outside 
ε. Hence outside 
ε, the
right-hand side of Eq. (64) is strictly negative when
β ≥ ‖δq̈‖+k‖ėa‖

λmin
. Since the controlled actual system

starts inside the region
ε, it stays within this attracting
region and cannot escape from it. ��

As pointed out in Remark 5, if the nominal system
and the uncertain system do not start with the same
initial conditions, then any trajectories of the controlled
uncertain system that start from outside
ε are globally
attracted to the region 
ε.

Result 2: If the controlled actual system is restricted
to stay within the region 
ε, the errors in tracking the
nominal system are bounded by,

∣∣ea,i
∣∣ ≤ 1

k
ε,

∣∣ėa,i
∣∣ ≤ 2ε, i = 1, 2, · · · , n. (65)

Proof Inside the region 
ε, ‖s‖ ≤ ε and hence,

|si | ≤ ε, i = 1 · · · n. (66)

From the relation si = ėa,i + kea,i , we get,
∣∣ėa,i + kea,i

∣∣ ≤ ε, i = 1 · · · n. (67)

This inequality can be alternatively expressed as,

− ε ≤ ėa,i + kea,i ≤ ε, (68)

which can further be simplified to

− ε − kea,i ≤ ėa,i ≤ ε − kea,i . (69)

Considering ea,i as a dynamical system, if we can prove
that ea,i ėa,i < 0 (which is the derivative of the Lya-
punov function 1

2 ea,i ea,i ) outside a region Li
ε, we can

conclude that the region Li
ε is an attracting region.

Defining Li
ε as,

Li
ε :=

{
ea,i ∈ R| ∣∣ea,i

∣∣ ≤ 1

k
ε

}
, (70)

there are two possible cases in which ea,i could lie
outside Li

ε. Let us look at both of them.

Case 1: If ea,i >
1
k ε > 0, then ε − kea,i < 0. From

Eq. (69), we then have

ea,i ėa,i ≤ ea,i
(
ε − kea,i

)
< 0. (71)

Case 2: If ea,i < − 1
k ε < 0, then ε + kea,i < 0. Also,

ea,i < 0 and so from the left inequality in (69), we
have,

ea,i ėa,i ≤ −ea,i
(
ε + kea,i

)
< 0. (72)

We note that initially ea,i = 0, and therefore, it will
remain inside the region Li

ε thereafter, or in other
words,

∣∣ea,i
∣∣ ≤ 1

k ε. From relation (67), we observe
that
∣∣∣∣ėa,i

∣∣ − ∣∣kea,i
∣∣∣∣ ≤ ∣∣ėa,i + kea,i

∣∣ ≤ ε, (73)

which further yields
∣∣ėa,i

∣∣ ≤ ε + ∣∣kea,i
∣∣ ≤ 2ε. (74)

��
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