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Abstract: This article develops a methodology for the dis-
tributed active control of large structural systems. The cen-
tral idea is to use a set of active members in a structural
system, each locally controlled. The method relies on an un-
derstanding of (1) the peculiar interaction of force feedback
and velocity feedback in an active member and (2) the inter-
action between such active members, as well as that between
active and passive members in a structural system. Using a
commonly occurring MDOF model of a structural system,
we show that the distributed-local-control design is robust.
Locating the active members so that all the eigenvalues of
the damping and stiffness matrices of the controlled system
are assuredly increased leads to several results on where and
how active members might be located in such a structure.

Controlling large-scale structures in dynamic loading envi-
ronments so that they fulfill the needs for which they are built
is a challenge to both the structural dynamics community and
the controls community. As such, the task is a difficult one.
The purposes for structural control are varied and depend on
the goals or objectives for which the structural system is de-
signed. For example, in precision structures that are deployed
for the purpose of making accurate measurements from or-
biting satellites, the aim might be to ensure that the relative
displacements and distortions in the structure are sufficiently
small to maintain certain “lines of sight” to within prescribed
tolerances. In the control of structures such as dams and tall
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buildings that may be subjected to strong earthquake ground
shaking, the aim of structural control is to maintain the re-
sponse of the structure to within safe and acceptable limits in
terms of both the stresses induced and the story drifts.
Depending on the goals to be achieved, different control
methodologies have been investigated by various researchers.
Yet there are certain underlying features that are common to
most situations where structural control is employed. Any
successful methodology has to contend with them. They are

1. Uncertainty in the structural model

2. Uncertainty in the nature of the dynamic loading envi-

ronment

Economics and reliability of the control system

4. Power requirements and the response time of the control
system

5. Ability to operate successfully (or at least nondetrimen-
tally) under conditions of complete or partial sensor
and/or actuator failure

6. Possible instabilities caused by the noncollocation of
sensors and actuators in large structural systems

7. Actuator dynamics and feasibility issues

w

In addition, for large structures such as dams, bridges, and
buildings, massive control forces may need to be generated
to fulfill the purposes of structural control, thus calling for
multiple actuators and thus the problem of their possible in-
teraction and possible instabilities. Precision shape control
of large structures such as antennas is another area where
interaction between actuators may be significant.
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The approach offered in this article attempts to provide a
control methodology that is robust in the sense of the issues
just mentioned and which, we believe, is feasible in terms
of today’s technology. We show that through the use of ac-
tive structural members in a structural system, i.e., members
that can actively generate forces between their points of con-
nection, we can effectively control the response of structural
systems while still being cognizant of the issues mentioned
earlier. The methodology proposed is that of distributing such
members throughout the structure to both reduce its global
response to vibrations and dampen them out rapidly, each
active member being locally controlled through the measure-
ment of the force acting through it and the relative motion of
its ends.

The use of control systems that employ displacement feed-
back and velocity feedback has been well researched in the
past. This includes the use of proof masses and pulse con-
trol. It originated in the control community and has been
employed, with some degree of success, in certain structural
systems. Yet it leaves several of the issues that we have stated
earlier unattended or only partially so at best. The follow-
ing summary of some references supports our argument. In
this article, we propose the combination of force feedback
along with velocity feedback. Such a feedback methodology
was first proposed by G.-S. Chen and B. Lurie,* who used
a bridge feedback concept to feed back a combination of
signals from sensors of the axial force and relative velocity
across the active member. Experimental results using multi-
ple active members in a truss structure can be seen in refs. 2
and 3. Another technique that has been investigated is called
positive-position feedback control, and this makes use of gen-
eralized displacement measurements to accomplish vibration
suppression using piezoelectric materials for actuators and
sensors.® Development of active members using piezoelectric
and electrostrictive actuation has been worked out by Ander-
son, Moore, and Fanson. ! The problem of optimal placement
of active/passive members in large-scale structures is consid-
ered in refs. 4 and 5. These authors have attempted to solve
the problem on the basis of engineering judgment, in which
they have adopted the maximization of the cumulative energy
dissipated over a finite time interval as the measure of opti-
mality. An interesting approach to increase the low inherent
damping of large-scale structures is given in ref. 7. These au-
thors have considered two types of passive and active joints
and have shown that these joints are able to give the struc-
ture higher levels of passive damping without significantly
increasing the structure’s weight or complexity. In this arti-
cle, by analyzing the stability of the entire structure in the
presence of the active members, we show the robustness of
the distributed-local-control methodology and how the pos-
itive force feedback leverages the damping. These have not
been looked at by other researchers and make our approach
significantly different from others.

Our methodology relies on two things: (1) the simultane-
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Fig. 1. Mechanical model of active member AB.

ous use of several active members distributed throughout the
structure and (2) the peculiar interaction between force feed-
back and velocity feedback in every active member. It is these
two elements that provide a viable approach that ensures ro-
bustness and high reliability while using local control.

This article is divided into two sections. The first deals with
the mechanical modeling of an active member. The second
deals with the use of such members in a simple structure
modeled as an MDOF system to show the interaction between
different active members and between active members and
passive members; here, we present several stability results
related to the distributed-local-control methodology that is
proposed in this article.

1 THE ACTIVE MEMBER

Consider a structural element that is active in the sense that it
can generate a force between the two points to which it is con-
nected. Such members have been developed and used recently
in structural systems, though so far in only a limited, experi-
mental capacity. A description of an as-built active member
using piezoelectric wafers to create the internally generated
active force is provided in Appendix 1.

A simple mechanical model of such amember supporting a
mass is shown in Figure 1. The active member A B is capable
of generating an internal force F@ between its two ends that
can be controlled. We assume that the internal force F@ can
be generated instantaneously, and for this study, we ignore
the detailed actuator dynamics. When this force equals zero
for all time, the member becomes a passive member with
stiffness k and viscous damping c¢. The load cell L measures
the force transmitted to the mass. The relative displacement
between the two ends of the active member is measured by
the displacement cell D and later differentiated to provide
the relative velocity between the ends A and B of the active
member.

The mass m may be thought of as composed of the ex-
ternal mass that the active member is connected to, as well
as a contribution from the member’s own lumped mass, as
is commonly done in structural modeling. The equation of
motion of the mass m is then simply

mx +cx + kx = F@ (1)
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If the feedback force F@ is made a function of (1) the force
f1 measured by the load cell L, (2) the relative velocity x be-
tween the two ends of the active member, and (3) the relative
displacement x between its ends, then we have the relation

F@ = fi(f1) + f() + f3(x) ©)
where the force f; measured by the load cell L is given by
fo=F% —kx —cx 3)

and the functions f1(-), f2(-),and f3(-) are as yet unspecified.

A simple feedback relation would have these functions
simply as multiplicative constants so that f(f7) = g(F@ —
kx—cx), f,(x) = —rx,and f3(x) = —sx.Theconstants g, r,
and s are then the force-feedback gain, the velocity-feedback
gain, and the displacement-feedback gain, respectively. Us-
ing these relations in Eq. (2), we get

FO=-—2 (xtei)-——i-——x (4
1—g 1—g l—g
Equation(1) now becomes
mi +c 9% +k“x =0 Q)

where the effective stiffness &, and the effective damping c,
of the active member AB are given by
k s

k@ =
i-9 -9

(6)

and
@__ ¢ 4 r
1-g A-9

We note that though we are actively controlling the system,
the active member is “fooled” into thinking that it is a pas-
sive member with an effective stiffness k, and an effective
damping c,! Behaving as though it were passive has obvi-
ous advantages from a control stability viewpoint, especially
when dealing with MDOF systems containing several active
members.

The feedback thus causes the effective undamped natural
frequency of the active member to be altered so that

(@) _ Wy N
oIV e ®

and its effective percentage of critical damping to be altered
so that

)

C

;.(a) _ n [14+ (2mw,sy)] 9)
T VO=g 1+ (simed)

where w, = Vkim and ¢n = c/2mw, are the characteristics
of the member when passive.

When g < 1, the effective stiffness constant of the member
is reduced (k@ < k) if s < —kg; also, the effective damping

constant of the member is reduced (¢¥ < ¢) if r < —gc.
Usually the gains r and s are taken to be positive, thereby
providing both negative velocity and negative displacement
feedback.

In particular, Eq. (6) indicates that with no displacement -
feedback (s = 0), the effective stiffness is always reduced
when the force-feedback gain g is negative. The active mem-
ber appears “softer,” and the displacement response typically
increases. Similarly, with no velocity feedback (r = 0), the
effective damping in the system reduces (¢” < ¢) when the
force-feedback gain g is negative.

On the other hand, when s > —kg, the effective stiffness
constant k@ is increased, and when r > —gc, the effective
damping constant ¢® is also increased. With negative dis-
placement feedback (s > 0), a positive force-feedback gain,
0 < g < 1, always causes the right-hand side of Eq. (6) to in-
crease. Also, for a positive force-feedback gain, 0 < g < 1,
the first term on the right-hand side of Eq. (7) increases,
leveraging the inherent damping of the passive member by
the factor 1/(1—g). Similarly, if  is positive (i.e., we are using
negative velocity feedback), then a positive force-feedback
gain g < 1 again leverages the effect of the velocity feedback
by the factor 1/(1—g), thereby causing the second term on the
right-hand side to be larger than r. Thus the damping of the
active member is increased dramatically due to increases in
both the terms on the right-hand side of Eq. (7). The increased
effective stiffness of the member in this situation results in
a “stiffer” member, and the displacement response typically
reduces.

To illustrate the effect that this leverage has on changing the
damping characteristics of the active member, we consider a
system whose passive characteristics are as follows: mass m
equal to unity, natural period equal to unity, and percentage
of critical damping equal to %%. We consider no displace-
ment feedback, i.e., s = 0. Figure 2 shows the locations of
the poles of the transfer function corresponding to Eq. (5) as
the force-feedback gain g is varied from 0.8 through 0 to —1
and the velocity-feedback gain r is varied from O to unity in
steps of 0.2 units. The figure shows five curves each for a
different value of . The right-most curve corresponds to the
value of r = 0; each succeeding curve going toward the left
corresponds to a value of r that is 0.2 units greater than the
preceding one. The plus signs mark the locations of the roots
for g = 0.8, the small oh’s mark the locations where g = 0,
and the asterisks mark the locations where g = —0.8. Ob-
serve that along any one of the lines, the poles on the plot do
not change their locations very much when g changes from 0
to —0.8; the damping remains essentially unaltered, while the
stiffness decreases. As g is gradually increased from zero to-
ward 0.8, the roots change substantially, due to the leveraged
interaction between the force feedback and the velocity feed-
back, shifting the poles leftward and dramatically increasing
the damping in the system.

Figure 3 shows how the percentage of critical damping
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Fig. 2. The poles of the system described by Eq. (5) as g and r are varied.

Fig. 3. The interaction between velocity feedback and force
feedback.

¢@ changes with the parameters g and r. We observe the
interaction between the velocity feedback (r ranging from
0 to 1) and the force feedback (g ranging from —1 to 0.8).
For positive values of g, the percentage of critical damping
¢@ is increased substantially by the presence of the veloc-
ity feedback. The figure shows how positive force feedback
leverages the damping. The percentage of critical damping
has increased from %% t0 20%.

Figure 4 shows the displacement response of the mass m
when attached to the active member and subjected to an im-

pulsive force of 5 units. The passive characteristics of the
member are m = 1, natural period = 1, and percentage of
critical damping = 1%. We compare here the effects of pos-
itive force feedback, with g = 0.75, and an equal negative
force feedback, with g = —0.75, keeping the velocity feed-
back a constant, with = 0.5. The solid line represents the
response of the passive member, the dashed line represents
the response of the active member with positive force feed-
back, and the dot-dash line represents the response of the
active member with negative force feedback. As expected,
positive force feedback stiffens the active member, reduces
the amplitude of motion, and because of the increased damp-
ing caused by the interaction between the force and velocity
feedback, brings the system to rest rapidly. The frequency
of the response increases when compared with the response
of the passive member. The negative force feedback causes
increased displacements and shows a softening of the mem-
ber. The response decays slowly when compared with that
obtained using positive force feedback.

Figure 5a shows the response of the same system to the uni-
formly distributed random base acceleration shown in Fig-
ure 5b. The initial displacement and velocity of the system
are taken to be zero. We again compare the effectiveness of
positive force feedback (with g = 0.75) and negative force
feedback (with g = —0.75), keeping the velocity-feedback
gain fixed with r = 0.5.

The response of the passive member is shown by the solid
line, the response of the active member with positive force
feedback is shown by the dashed line, and the response with
the negative force feedback is shown by the dot-dash line.
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Fig. 4. The difference in impulse response between positive force feedback and negative force feedback to the active member.

The response with positive force feedback is substantially
reduced compared with that using negative force feedback.
The structure is stiffened by positive force feedback and soft-
ened by negative force feedback.

2 INTERACTION BETWEEN ACTIVE MEMBERS

We consider here the interaction that may result between
several active members placed in a structure. We consider
a simple structure that might represent the model of a tall
building subjected to strong earthquake ground shaking. Fur-
thermore, such a model, intuitively speaking, promises a rich
interaction between the active and passive members as well
as interactions among the active members themselves.

2.1 The structural model

Figure 6 shows an MDOF model that utilizes active mem-
bers. The passive stiffness and damping constants for the ith
member are k; and ¢;, respectively, fori = 1,2, ..., n. The
n lumped masses are m;, i — 1,2, ..., n, as shown. The mo-

tion of the n degree of freedom system is described by the
equation

MX + Cx+ Kx=F9(t) — Miii(t) + F9@)  (10)
where ii(¢) is the base acceleration, X is the n vector of motion
relative to the base, and the n vectori = [1 1 1 177,
The n by n matrix M = Diag{m,, ma, ..., m,}. The external

forces applied to the system (if there are any) are denoted by
vector F© ().

The n vector F@ (¢) on the right-hand side of Eq. (10) is

a consequence of the fact that we are using active members.

Its ith component can be expressed as

FO) = Fi(t)— Fin(®) 1<i<n (11

where we define F, () = 0. The active force created by

the ith active member is denoted here as F;(¢). The matrices

K and C are each symmetric and tridiagonal, with elements

Kii=ki+kiy Cii=ci+cin 1<i<n (12)
and
Kiiy1=—kiq Ciiv1=—Cis1 1<i<n-1 (13)

where we define k,41 = c,4+1 = 0.

The force F; in the ith active member can be written in an
analogous fashion to the preceding section as

Fi = glF —ki(xi — xi—1)

—ci(X; — Xi—)] —ri(xi — Xi—1)

—si(xi — Xi=1) (14)
for 1 < i < n (with xp = xo = 0). The constants g;, r;,
and s; in Eq. (14) are, respectively, the force-feedback gain,
the velocity-feedback gain, and the displacement-feedback
gain corresponding to the ith active member. Hence the force
F; generated by the active member in view of the feedback

381
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Fig. 5. (a) Response to random excitation. (b) Base acceleration.
relation [Eq. (14)] becomes forl <i <n.
In what follows, unless explicitly stated, we will assume
F, = — _& (ki (x; — xi—1) + ¢i (% — %i-1)] that the active members are used with positive force feedback
(1—g) sothat0 < g; < 1,i =1,2,...,n,andnegative velocity and
T Gi—gi)——2 (x; —x,_y) (15)  displacement feedback so that r;, s;, > 0,i = 1,2,...,n.

l—g,' l—g,
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Fig. 6. The structural model of the MDOF system with active
members.

Using Eq. (15) in Eq. (11) to determine the n vector F@ (¢),
Eq. (10) now becomes
Mx + CO% + K9x = —Miii(t) + F (1) (16)

The elements of the symmetric tridiagonal matrices K “ and
C@ are given by

K@ _ ki+si  Kivi+ Siv1
. l—g 1 —gin
Cc@ — Ci+ri | Cit1+Titl
o 1 —g 1 —gip
1<i<n (17)
and
kiy1 + i
(@ _ i+1 i+1
Kt = A —
8i+1
@ _ Citl T riq1
Ci,i+1 - 1— o
8i+1
1<i<n-1 (18)

where in Eq. (17) we define g,4+1 = rp+1 = Sp41 = 0.

We are now ready to look at the interaction between the
active members and between the active members and passive
members. We observe that to convert the ith active member
to a passive member, all we need do, then, is set the gains g;,
ri, and s; to zero.

2.2 Stability of the distributed-local-control methodology

We begin by investigating whether the system composed of
active and passive members, where one or more of the ac-
tive members may be located at any of the n possible lo-
cations, can become unstable because of the local feedback
control that is used in each active element. We note that the
feedback force in any active member is only cognizant of
the local variables related to that particular member, i.e., the
force measured by the load cell in that active member and
the relative displacement and velocity between its two ends.
Thus the control is of a distributed /ocal nature throughout
the structure. Investigation of the stability of the entire sys-
tem under the influence of these local controllers is therefore
necessary to establish if our methodology is to be viable. We
will assume that 0 < g; < 1, Vi € any subsetof {1,2,...,n}
and that r;, s; > 0, Vi € any subset of {1,2,...,n}.

Remark 1: The local control described above, with positive
force feedback 0 < g; < 1, Vi € any subsetof {1, 2, ..., n},
and negative velocity and negative displacement feedback
ri,s; > 0,Vi € anysubsetof {1, 2, ..., n}, cannot destabilize
the system, provided that the passive system is stable. By
passive system, we mean the corresponding system whose
members are all passive. In this remark we will not include
the possibility of the first member being an active member.
(This case is taken up in Remark 2 and yields a stronger
result.)

We prove this by showing that the stiffness matrix of the
controlled structure K@ is always such that K > K and
the damping matrix C“ > C. We consider first that only
the ith member (i > 1) in the structure is active, the other
members being all passive. Then it is easy to see that

K@ =K+ AK (19)

where the matrix AK has zeros everywhere except for the 2
by 2 symmetric block whose elements are

k45
AKi_1i-1 = AK;; = M (20)
1—g
and
iki +s;
AK;_1;=AK;;i1 = S 21
l—g;

This 2 by 2 block has rank 1, and its eigenvalues are zero
and [2(g;k; + 5:))/(1 — g;). The latter eigenvalue is positive
as long as s; > —g;k;, a condition that is satisfied. Thus the
matrix AK > 0; i.e., it is positive semidefinite. If we were
to arrange the eigenvalues of K and K@ in ascending order,
then the eigenvalues of the active system are greater than or
equal to the corresponding eigenvalues of the passive system.

Similarly, the elements of the matrix AC = C@ —C are all
zero except for the 2 by 2 symmetric block, whose elements
are

_ &G+t

ACi_1i-1 =AC;; = (22)
I—g
and
ACi_,; = ACi i1 = _g,lc,i—i-r, (23)
— &8

The eigenvalues of this 2 by 2 block are again zero and
[2(gici + )1/ (1 — g;). The latter eigenvalue is positive be-
cause r; > 0 and 0 < g; < 1. Hence the matrix AC is
positive semidefinite. Taking E (1) = (xT K@x + x7 Mx)
as the energy of the active system when subjected only to an
initial disturbance [i.e., with F) = 0, and ii(t) = 0], we
find that E(t) = —xTC@x < —xT Cx, and hence the active
system is stable if the passive system is stable.

Consider next two active members that are not adjacent
to each other. We exclude the first element being an active
member (this case is taken up later). The elements of AC



384 F. E. Udwadia, M. Hosseini and B. Wada

will be all zero now except for two disjoint 2 by 2 symmetric
blocks each of a form similar to those described in Egs. (22)
and (23). Our results would again hold, the proof being sim-
ilar. The same reasoning can be extended to several active
members no two of which are adjacent to each other.

Now consider the case where two active members are ad-
jacent to each other; say, the ith and (i 4+ 1)st members are
active. Then the elements of AC will all be zero except for
a 3 by 3 symmetric block that is positive semidefinite. Again
AC will be positive semidefinite, and the result follows.

Remark 2: The eigenvalues A;(C@) > A;(C) whenever the
member closest to the base of the structure is active. Similarly,
1i (K@) > ;(K), and the structure is globally stiffened by
the presence of this active member.

For the member closest to the base, i = 1. To prove this
result, we first note that the eigenvalues of the matrix C® are
continuously dependent on the parameters that describe the
elements of the matrix. Furthermore, by looking at a pertur-
bation study of the eigenvalues of C® = C + AC, we show
in Appendix 2(a) that for small perturbations,

Ap(C@) x4, (C) + a,pX] ACKX, (24)

where 1, (C) is the pth eigenvalue of C, x,, is the correspond-
ing eigenvector of C, and «,, is a positive number.

When the only active element in the system is the first
number, the elements of AC are all zero except the (1, 1)
element, which is (g;c; + r1)/(1 — g1). Equation (24) then
implies that

gic1 +r

Ap(C@) = 1, (C) + a, T
— &1

x)*  (@25)

where x; is the first element of the pth eigenvector of the
matrix C. In Appendix 2(b), however, we show that x}, #0
for all p. Hence every eigenvalue of C@ is greater than the
corresponding eigenvalue of C, so AC is strictly positive
definite. Starting from some initial state, the rate of energy
dissipation therefore assuredly increases compared with the
passive system.

A similar argument follows for the matrix K@, The struc-
ture is “globally” stiffened, and all the “natural” frequencies
of the system [Eq. (16)] are higher than those of the system
(Eq. (10)].

Remark 3: 1f a set of active members is contiguous with the
first member (i = 1), which is also active, then 1;(C@) >
2 (C), (K@) > A;(K), for all i.

Say the first ¢ members are all active. Then the matrix
AC has elements that are zero except for the first g by g
symmetric tridiagonal block. This block is positive definite.
Using Eq. (24), we find that

Ap(COY~ 1y (C)+apX) ACX, >4,(C)  forall p (26)

and hence our result is proved, noting that the first ¢ elements
of any eigenvector x,, of C cannot all be zero. A similar proof
follows for the matrix K @. Hence in this case too the struc-
ture is globally stiffened, and the rate of energy dissipation
is increased.

Remark 4: If two (or more) active members are contiguously
placed, then, again, the matrices C® and K@ are such that
1i(C@) > 1;(C), 1; (K@) > A;(K), for all i.

Let us say that the ith and (i + 1)st elements are active.
Then the elements of AC will all be zero except the 3 by 3
symmetric tridiagonal block given by

iCi +1i iCi +Fi
ACi_1i = gicithi ACi_1; = _EaTh 27
1—gi 1—-g
AC, = 8iCi+ri  &i+1Ci+1 T Tit1
1—gi 1—gin
i+1Ci+1 T Ti
AC; 4y = —ElGr Tl (28)
I —gi+1
and
i+1Ci Ti
ACis1iv1 = 8i+1Cit1 + vl (29)

1 —gis
This block has rank 2 and is positive semidefinite, and the

eigenvector corresponding to the zero eigenvalue of this block
is[1 1 1]7. Now Eq. (24) yields

Ap(C@) ~ 2p(C) + apX] ACX, (30)

But the second term on the right must be positive, for it could
only be zero if three consecutive components of the eigenvec-
tor are each unity, which by Appendix 2(c) is impossible. A
similar argument holds for the matrix K @. Hence the result.

Remark 5: If the nth element is an active member, then
2 (C@D) > A;(C), A (K@) > A;(K), for all i, resulting
in a global stiffening of the structure.
Here the elements of AC will all be zero except for the 2
by 2 symmetric block given by
nCn + 7,
ACy 11 = AC,, = 2220 (31)
1- &n
and

1 - 8n (32)

ACn—l,n = ACn,n—l = -

Again, we note that the 2 by 2 symmetric block is positive
semidefinite and that the zero eigenvalue for this block results
only for the eigenvector [1 1]7. However,

1, (C@) ~ 1, (C) + apX] ACKX, (33)

and the second term on the right can only be zero if the
(n — 1)th and nth elements of the eigenvector x,, are identi-
cal. Appendix 2(d) shows that this can never happen. Hence
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Figure A.1. Drawing of the active member.

the second term on the right must be positive, and hence
Ap(C@) > A,(C) forall p. The result for K@ can be proved
similarly.

Remark 6: If a set of active members is contiguous with
the last member (i = n), which is also an active member,
then A;(C@) > A;(C), 1;(K@) > A;(K), for all i. This is
obvious using Eq. (33) and noting the result of Appendix 2(c).

3 CONCLUSIONS

In this article we have considered the use of active mem-
bers for the distributed local control of large-scale structures.
We have shown that some of the currently available active
members can be modeled in a simple manner in which the
force feedback interacts with the velocity feedback. This in-
teraction can be used to good advantage through the use of
positive force feedback, which leverages not only the velocity
feedback but also the inherent damping of the passive mem-
ber. We show that the active member can be stiffened and its
damping can be increased dramatically using this approach.

We next use such active elements locally controlled, and
distributed throughout an MDOF system. Such MDOF sys-
tems commonly occur in many areas of structural dynamics.
We assess the global stability of the MDOF system under
the type of distributed localized control that we consider in
this article. We conclude that such distributed local control
cannot destabilize the system.

The active control alters the stiffness and damping matri-
ces of the structure from its passive values of K and C, to
K@ and C@. All the eigenvalues of the matrices K@ and
C@ are increased (when compared with those of K and C,
respectively) through the use of positive force feedback and
negative velocity feedback, resulting in a global stiffening
of the structure and, generally speaking, an increased rate of
energy dissipation when

1. The member connecting the system to the base of sup-
port is active

2. Two or more active members are placed contiguously
anywhere in the system

3. Active members are placed contiguously with the mem-
ber connecting the system to its base of support or they
are placed contiguously with the member farthest from
the base of support.

When a single isolated active member is placed in the system,
unless it is the member closest to or farthest away from the
base of support, the global stiffness is not assuredly increased,
nor are the eigenvalues of the damping matrix assuredly in-
creased.

These results may have considerable significance in the
control of large structures whose models are uncertain and
which operate in uncertain dynamic loading environments.
The methodology is robust with respect to actuator power
failures, for should one or more of the active members no
longer remain active, the structure is not destabilized. We do
away with the necessity of a centralized control unit that could
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then be susceptible to failure. The application of the force
being collocated with the sensor leads to no spillover effects.
The interaction between the active members and between the
active and passive members can be designed so as to greatly
increase the damping in the system without any detrimental
side effects. Procedures for doing this, and ways of choosing
the various parameters that describe the active and the passive
members, will be taken up in subsequent work.
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APPENDIX 1

Figure A.1 shows a drawing of one active member! built
to replace members of truss structures for its control. The
specifications for the member are

Overall length: < 8 inches (200 mm)

Nominal diameter: 1.0 inch (25 mm)

Zero displacement force: > 100 pounds (450 N)
Zero force displacement: +1 mil (£25um)
Displacement sensing range: £4 mils (+100um)
Displacement sensing resolution: 1 pin (25 nm)
Stiction: (zero)

The piezoelectric stacks are built up of annular wafers with
15 mm outer diameter and 8 mm inner diameter. The thick-

ness of each wafer of 1 mm, requiring a maximum operating
voltage of 1000 V with a bias of 500 V. The mechanical
preload in the wafers retains the piezoelectric material in
compression during its contraction motion. The active mem-
ber provides relative displacement information and actua-
tion. The stroke is adjustable by controlling the length of the
piezoelectric stack (almost 0.1% maximum strain from the
piezoelectric material), and the diameter establishes the force
capability.

APPENDIX 2

(a) Let C be an n by n symmetric matrix with eigenvalues A,
i =1,2,...,n, and corresponding orthogonal eigenvectors
xi,i =1,2,...,n. Consider the eigenvalue problem

(C+ AO)(x; + Ax;) = (A + AL (X + Ax;) (Al

where we have the perturbation AC added to the matrix C,
causing the new eigenvalues to be (A; + AA;) and the new
eigenvectors to be x; + Ax;. Noting that Cx; = A;X;, and
ignoring terms of second order, we then obtain

(C — MDAX; = (AN — AC)x; (A2)

Let the vector y; = Z;’=1bjxj‘ = (AN — AC)X; and
Ax; = )i, a;X; because the orthogonal eigenvectors x;,
i =1,2,...,n, span the space R". Using these relations in
Eq. (A2), we get

n n
aj(C = nD)x; =Y byx; (A3)
j=1 j=1

j
which implies that

aj()\,j—)\,,')=bj j=1,27-~,n (A4)

For the equation set (A4) to be consistent, we require, then,
that b; = 0, and hence y; must be orthogonal to x;. Thus

x'y; =x! (AMI — AC)X; =0 (AS)

which yields
AA; = a;x! ACX; (A6)

where o; = (x! x;)~! so that
)»i(C-I-AC)=)»,-(C)+(X,-(XiTACX,-) i=12,...,n (A7)

(b) Since C (and C'?¥) is a symmetric tridiagonal matrix and
has the structure described in Eqgs. (12) and (13), if the first
element of any eigenvector is zero, then the entire vector must
be zero.

(c) Consider the eigenvectors of C, where C has the structure
described in Eqs. (12) and (13). The matrix is positive definite,
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and hence all the eigenvalues are positive. If an eigenvector
x exists such that its ith, (i — 1)th, and (i + 1)th components
are identical (say, normalized to unity), then the ith equation
of the set Cx = Ax would be

—ci—ji +(Cii T Ciigi) —Ciit1 =0=24 (AB)

implying that an eigenvalue of C is zero, therefore leading
to a contradiction. Hence no eigenvalue of C can have an
eigenvector with three consecutive components equal.

(d) Suppose that the (n — 1)th and nth components of an
eigenvector of C are identical (say, normalized to unity). As
in part (c) above, the last equation of the set Cx = AX is
simply

— Cn,n—1 + Cnn = 0=A (A9)

implying that zero is an eigenvalue of C and hence a contra-
diction because C is a positive definite matrix.





