
ACCELERATION OF RUNGE-KUTTA
INTEGRATION SCHEMES

PHAILAUNG PHOHOMSIRI AND FIRDAUS E. UDWADIA

Received 24 November 2003

A simple accelerated third-order Runge-Kutta-type, fixed time step, integration scheme
that uses just two function evaluations per step is developed. Because of the lower number
of function evaluations, the scheme proposed herein has a lower computational cost than
the standard third-order Runge-Kutta scheme while maintaining the same order of local
accuracy. Numerical examples illustrating the computational efficiency and accuracy are
presented and the actual speedup when the accelerated algorithm is implemented is also
provided.

1. Introduction

The behavior of many systems in nature and society is described by sets of differen-
tial equations that are nonlinear in character. Obtaining closed-form solutions for these
equations is therefore, generally speaking, impossible, especially for systems where the
state vector has a high dimension. Thus numerical methods for solving such equations
become very important.

One of the most common methods for numerically integrating sets of nonlinear dif-
ferential equations is the Runge-Kutta (RK) family of single-step methods. The RK in-
tegrator of order n has a local error over a time step h of O(hn+1). For the third- and
fourth-order (RK3 and RK4, respectively) methods, the number of function evaluations
required over a single time step are three and four, respectively. In this paper, we pro-
pose a simple scheme that uses an RK-type third-order procedure [1, 2] but which uti-
lizes just two function evaluations at each step. The scheme has the same order of local
accuracy as the standard RK3 method and hence appears to provide improvement in
computational efficiency without any significant effect on computational accuracy. The
drawback of the scheme, however, is that it is, in reality, a two-step scheme and therefore
needs to be initially “started” using an accurate one-step method, like a higher-order RK
integrator.

Copyright © 2004 Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society 2004:2 (2004) 307–314
2000 Mathematics Subject Classification: 65D30, 65L05, 65L06
URL: http://dx.doi.org/10.1155/S1026022604311039

http://dx.doi.org/10.1155/S1026022604311039

308 Acceleration of Runge-Kutta integration schemes

2. Numerical scheme

Consider the ordinary differential equation

y′ := dy

dt
= f (y), (2.1)

where y ∈ Rn. We will assume that the function f is Lipschitz and the solution of the
equation starting with the initial conditions y(0) = y0 is unique. In this sequel, we will
consider the following RK-type scheme to integrate this equation. We denote

k1 = f
(
y
(
tn
))= f

(
yn
)= fn,

k−1 = f
(
y
(
tn−h

))= f
(
yn−1

)= fn−1,

k2 = f
(
yn +βhk1

)
,

k−2 = f
(
yn−1 +βhk−1

)
.

(2.2)

The approximate solution of (2.1) at time tn+1 is then given by

yn+1 = yn +h
[
a1k1 + a−1k−1 + b

(
k2− k−2

)]
, (2.3)

where h is the fixed time step. We will determine the four parameters a1, a−1, b, and β in
relation (2.3) by comparing relation (2.3) with the Taylor series of y(tn +h). Using (2.1),
we have

y′′
(
tn
)= y′′n = fyn fn,

y′′′
(
tn
)= y′′′n = [fyy f 2]∣∣

tn
+
[
f 2
y f
]∣∣

tn
.

(2.4)

The Taylor’s series expansion of y(tn +h) is simply

yn+1 := y
(
tn +h

)= y
(
tn
)

+hy′
(
tn
)

+
h2

2
y′′
(
tn
)

+
h3

6
y′′′
(
tn
)

+O
(
h4). (2.5)

Using relations (2.1), (2.2), and (2.4), we get

a1k1 = a1y
′(tn

)
,

a−1k−1 = a−1y
′(tn−h

)= a−1y
′(tn

)− a−1hy
′′(tn

)
+ a−1

h2

2
y′′′
(
tn
)

+O
(
h3),

bk2 = b f
(
yn
)

+ bβh fyn fn + b
β2h2

2
fyn yn f

2
n +O

(
h3)

= by′
(
tn
)

+ bβhy′′
(
tn
)

+ b
β2h2

2

[
y′′′
(
tn
)− f 2

y f
∣∣
tn

]
+O

(
h3),

P. Phohomsiri and F. E. Udwadia 309

bk−2 = b fn−1 + bβh fyn−1 fn−1 + b
β2h2

2
fyn−1 yn−1 f

2
n−1 +O

(
h3),

= by′
(
tn−h

)
+ bβhy′′

(
tn−h

)
+ b

β2h2

2

[
y′′′
(
tn−h

)− f 2
y f
∣∣
tn−1

]
+O

(
h3)

= by′
(
tn
)− bhy′′

(
tn
)

+ b
h2

2
y′′′
(
tn
)

+O
(
h3)

+ bβhy′′
(
tn
)− bβh2y′′′

(
tn
)

+O
(
h3)

+ b
β2h2

2
y′′′
(
tn
)− b

β2h2

2
f 2
y f
∣∣∣
tn

+O
(
h3).

(2.6)

Using (2.6), we obtain

yn+1− yn := y
(
tn +h

)− y
(
tn
)

= (a1 + a−1
)
hy′
(
tn
)

+
(− a−1 + b

)
h2y′′

(
tn
)

+
(
a−1− b+ 2bβ

)h2

2
y′′′
(
tn
)

+O
(
h4).

(2.7)

Comparing (2.7) with (2.5), we require

a1 + a−1 = 1, −a−1 + b = 1
2

, βb = 5
12

(2.8)

so that our numerical scheme is O(h4).
Using b as a free parameter, we now obtain some sample formulae using the scheme

proposed in (2.2) and (2.3):

a1 = 1
4

, a−1 = 3
4

, b = 5
4

, β = 1
3

, (2.9a)

a1 = 1
2

, a−1 = 1
2

, b = 1, β = 5
12

, (2.9b)

a1 = 3
4

, a−1 = 1
4

, b = 3
4

, β = 5
9

, (2.9c)

a1 = 1, a−1 = 0, b = 1
2

, β = 5
6
. (2.9d)

Each set of values given in (2.9) represents an O(h4) RK-type scheme. We note that our
integration scheme (2.2) and (2.3) requires just two function evaluations at each time
step. To compute yn+1, we need to calculate at time t = tn only the two quantities k1

310 Acceleration of Runge-Kutta integration schemes

and k2; the quantities k−1 and k−2 are already known at time tn since they were computed
at the previous time tn−1. A two-step computational algorithm is thus obtained. To start
the integration process, one would need a one-step integrator like RK4. However, after
the start-up, only two function evaluations are required cutting the computation cost
when compared to the standard RK3 algorithm, which is also accurate to O(h4), by about
a third.

It should be noted that each of the specific accelerated RK3 schemes obtained by using
the numerical values illustrated in (2.9) will have, in general, different truncation errors
(which will also depend on the specific differential equations being integrated) and dif-
ferent numerical stability characteristics. The examples described here seem to indicate
that the parameters given in (2.9a) and (2.9b) may be an adequate set to use. Further
investigation of these aspects will be taken up in a later communication.

3. Numerical examples

We consider two numerical examples to illustrate the accuracy of the method proposed
herein. Comparisons of the error with the standard RK3 (see [1]) method are presented.
The two equations considered are

y′ = −y, y(1)= 1, (3.1)

y′ = − ty

1 + t2
, y(1)= 1, (3.2)

whose solutions are y = e1−t and y =√2/
√

(1 + t2), respectively.
The differential equation (3.2) is nonautonomous. We represent it, in the usual way,

as a coupled set of ordinary nonlinear differential equations as

ẏ =− yz

1 + z2
, ż = 1, (3.3)

where the dots refer to differentiation with respect to the parameter τ, and the initial
conditions are taken to be y(τ = 1)= z(τ = 1)= 1. In fact, in the results presented below,
(3.1) and (3.2) are both simultaneously solved as a system of three first-order differen-
tial equations by augmenting (3.1) with (3.3). The results described below refer to the
implementation of the standard RK3 algorithm [1] and the accelerated RK3 algorithm
proposed in (2.2) and (2.3). All computations are done in the Matlab environment.

In each case, the accelerated RK3 scheme was started by using an RK 45 variable step
size scheme (ODE45 in Matlab) with a relative error tolerance of 10−13 to compute the
solution at the end of the first time step of duration h.

Figures 3.1 and 3.2 show the relative errors in the solution y(tn) over a 10- second in-
terval of time using a time step of 0.01. Our accelerated RK3 scheme is compared with
the standard RK3 scheme provided in [1]. Both schemes give the same order of magni-
tude of the relative local error. Figure 3.1 corresponds to the solution of the first example

P. Phohomsiri and F. E. Udwadia 311

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
×10−6

Time

R
el

at
iv

e
er

ro
r

Figure 3.1. The solid line shows the accelerated RK3 scheme given in (2.9b) for (3.1). The dashed
line is for the standard RK3 algorithm that uses three function evaluations. The time step for the
integration is h= 0.01.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
×10−8

Time

R
el

at
iv

e
er

ro
r

Figure 3.2. The solid line shows the accelerated RK3 scheme given in (2.9b) for (3.2). The dashed line
is for the standard RK3 algorithm that uses three function evaluations per step.

(equation (3.1)) and Figure 3.2 to that of the second (equation (3.2)). For both examples,
the accelerated RK3 scheme uses the parameters given in (2.9b).

Figure 3.3 shows the absolute value of the errors in the computed results for the first
example problem at the end of 10 seconds, for 20 different values of the time step h.
These errors are obtained by comparing the computed solution with the exact solution for

312 Acceleration of Runge-Kutta integration schemes

10−3 10−2
10−14

10−13

10−12

10−11

10−10

10−9

Time step h

A
bs

ol
u

te
va

lu
e

of
er

ro
r

Figure 3.3. Absolute value of error at t = 10 in solution of (3.1) versus step size. The pluses show
results for the accelerated RK3 scheme using the parameters given in (2.9b) and the circles show the
standard RK3.

10−3 10−2
10−13

10−12

10−11

10−10

10−9

Time step h

A
bs

ol
u

te
va

lu
e

of
er

ro
r

Figure 3.4. Absolute value of error at t = 10 in solution of (3.2) versus step size. The pluses show
results for the accelerated RK3 scheme using the parameters given in (2.9b) and the circles show the
standard RK3.

(3.1). The pluses indicate results for the accelerated RK3 scheme and the circles indicate
those for the standard RK3. The linear least-squares fits to the computed data points are
shown by the dashed lines. The slopes of these dashed lines are 3.004 (for the pluses)
and 3.005 (for the circles) in close conformity with the expected accuracy of O(h4) per

P. Phohomsiri and F. E. Udwadia 313

10−3 10−2
0.71

0.715

0.72

0.725

0.73

0.735

0.74

0.745

Time step h

R
at

io
of

co
m

pu
ta

ti
on

al
ti

m
es

Figure 3.5. Ratio of computational time required for the accelerated RK3 scheme to that required
for standard RK3 (see, [1]), showing an acceleration of at least 25% when the accelerated scheme is
implemented.

integration step for each of the schemes. This leads to an accumulated error than ofO(h3),
as portrayed in the figure. Figure 3.4 shows similar data for the second example problem
(equation (3.2)). The least-squares lines that fit the two sets of data for the accelerated
RK3 (pluses) and the standard RK3 (circles) are shown in Figure 3.4. Their slopes are
3.08 (pluses) for the accelerated RK3 scheme and 2.99 (circles) for the standard RK3.

Figure 3.5 shows the (approximate) ratio of the computation time required for the
accelerated RK3 scheme compared with that required for the standard RK3 scheme (at
τ = 20) when using 80 different time steps h. The Matlab function “etime” that was used
gives the elapsed time approximately. While this ratio will differ from machine to machine
and is dependent to some extent on the actual computer code used, it is indicative of
the extent of acceleration one might expect when the accelerated RK3 scheme is actually
implemented. In each case, the three first-order differential equations (3.1) and (3.3) are
simultaneously solved as a system. The least-squares fit line to the data has a slope of
about 0.004 and shows that the accelerated RK3 is on average about 27% faster than the
standard RK3 algorithm while maintaining the same order of local accuracy.

4. Conclusions

A simple third-order, fixed time step Runge-Kutta-like scheme has been developed for
numerical integration that requires just two function evaluations per time step. It requires
that the procedure be initially started by a more accurate, higher-order one-step method.
While being of the same order of local accuracy as the standard RK3 scheme, the method
proposed herein is computationally more efficient. Truncation error analysis and stability
analysis of the scheme will be presented in a later communication as will extensions to
similar accelerated fourth- and higher-order RK schemes.

314 Acceleration of Runge-Kutta integration schemes

References

[1] B. Carnahan, H. Luther, and J. Wilkes, Applied Numerical Methods, John Wiley & Sons, New
York, 1969.

[2] L. Lapidus and J. H. Seinfeld, Numerical Solution of Ordinary Differential Equations, Mathe-
matics in Science and Engineering, vol. 74, Academic Press, New York, 1971.

Phailaung Phohomsiri: Department of Aerospace and Mechanical Engineering, University of
Southern California, Los Angeles, CA 90089-1453, USA

Firdaus E. Udwadia: Departments of Civil Engineering, Aerospace and Mechanical Engineering,
Mathematics, and Operations and Information Management, University of Southern California, Los
Angeles, CA 90089, USA

E-mail address: fudwadia@usc.edu

mailto:fudwadia@usc.edu

