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ABSTRACT 

This paper deals with two computationally efficient iterative methods for determin- 
ing the response of nonclassically damped dynamic systems. Rigorous analytical 
convergence results related to these iterative methods are provided. Sufficient condi- 
tions under which these two iterative schemes are convergent are derived. Three 
different kinds of damping matrices, namely, (i) strongly diagonally dominant, (ii) 
irreducible and weakly diagonally dominant, and (iii) symmetric and positive definite 
damping matrices, are considered. Asymptotic rates of convergence are discussed. 
Theoretical results are illustrated with numerical examples that show vastly improved 
rates of convergence when compared to earlier iterative schemes. 

1. INTRODUCTION 

Nonclassically damped dynamic structural systems are modeled by the 

following linear second-order differential equations of motion. 

Mi(t) + Ci(t) + fi(t) = a(t); x(t,) =x0, x(t,) = i,, t E (t,,T) 

(1) 
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where the constant N X N matrices M, K, and C are the mass, the stiffness, 
and the damping matrices, respectively. The vectors x(t) and a(t) are N X 1 
vectors of displacement and force, respectively. For most of the physical 
systems arising in the area of structural dynamics, the mass matrix M is real, 
symmetric, and positive definite, and the stiffness matrix K is real, symmet- 
ric, and positive semidefinite. Under these circumstances, we can find a 
transformation matrix @ that simultaneously diagonalizes M and K; for this 
transformation to diagonalize C also, the matrix C has to be of a special form 
[l, 21. In the literature, this kind of damping is referred to as classical 
damping or proportional damping. The response of classically damped sys- 
tems is obtained by the modal superposition method. 

Yet in practice, proportional damping is usually a rare occurrence rather 
than a common one. This is because most large-scale, real-life, dynamic 
systems are comprised of different subcomponents. Even if we were to 
ascribe a viscous damping character to each of these subcomponents, the 
final damping matrix C, constructed through, say, a finite element model for 
the whole system, would generally be of the nonproportional type. This would 
of course be more so true when these subcomponents themselves are 
comprised of widely differing materials, as is found, for example, in the area 
of soil-structure interaction, and in the area of aerospace structures (which 
are usually optimized for their weight). 

We assume that C is a real general matrix. When the matrices M, K, and 
C cannot be simultaneously diagonalized by a suitable matrix transformation, 
one is left with the following coupled set of second-order linear differential 
equations. 

2(t) + Fqt) + hz(t) = h(t); z(q)) = Z(), i(t,) = i,, t E (t,,T) (2) 

where h(t) = aTa( The matrix @ has columns which are the eigenvectors 
of the undamped system; the damping matrix F, in general, is now a full 
matrix, and the diagonal matrix A = Diag(A,, A,, . . . , A~), where 

A,, A,,..., A, are the eigenvalues of undamped system. Over the years, a 
considerable amount of research effort has been expended in the determina- 
tion of the response of such MDOF systems whose damping is of non-classi- 
cal type. The reader may refer to the extensive literature survey on this topic 
provided in Udwadia and Esfandiari [s], Shahruz and Langari [4], Shahruz 
and Packard 151, Felszeghy [6], and Claret and Venancio-Filho [7]. 

In this paper, we introduce two different sets of iterative schemes for 
determining the response of non-classically damped dynamic systems. They 
are superior to the previously proposed scheme [3] in that they are applicable 
to a much wider class of matrices F, and/or are computationally more 
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efficient. The range of applicability of both schemes has been significantly 
extended to include; (a) irreducible and weakly diagonally dominant F 

matrices, and (b) all symmetric and positive definite F matrices. Analytical 
results guaranteeing convergence of these iterative schemes are provided. 
The first set of schemes results in an uncoupled set of equations; it thus 
yields additional insights into the physics of the structural response. The 
second set of schemes, while not uncoupling the system, is, in general, 
computationally far superior to the first. 

Section 2 of this paper introduces the basic underlying iterative approach 
for both sets of schemes. Section 3 provides the analytical results related to 
the convergence of these two sets of schemes. Section 4 provides conver- 
gence rates and error bounds. Section 5 contains some numerical examples to 
show the validity of the proposed methods. For the different cases covered in 
the paper, it is shown that the second set of schemes converges faster than 
the first. The examples considered have been chosen with some care, in the 
sense that these examples when handled by the usual uncoupling techniques 
used to date, have presented some measure of difficulty to previous investiga- 
tors. Finally, Section 6 contains a discussion and comparison of these two sets 
of schemes. We also compare them with some of the previously proposed 
iterative methods. 

2. ITERATIVE SCHEMES 

We start from equation (2) by partitioning matrix F as: 

F=cxD+A+B (3) 

where D = Diag(d,, d,, . . . , d,) is the diagonal matrix obtained by taking 
the diagonal elements of matrix F, and the real parameter (Y ((Y # 0) is as yet 
unspecified. Substituting this decomposition of the matrix F in equation (2), 
we get 

k-(t) + (CUD + A)t(t) + AZ(~) = h(t) - E?(t) 

z(q)) = zO, i(t,) = i”, t E (t”,T) (4 

Our purpose is to generate a cluster of iterative schemes depending on: (1) 
the specific split-down of the matrix F (i.e., the matrices chosen to be A and 
B) and (2) the value of the parameter cy chosen. 
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We first replace equation (4) by the folIowing system: 

ii(t) + (cd + A)zi(t) + Au(t) =f(t); 

u(t,) = .zo, U(q)) = i,, t E (t,,T) (5) 

where the function f(t) is an as yet unknown ftmction. Let s(t) = z(t) - u(t) 
denote the error vector in the responses determined from equations (4) and 
(5). Subtracting equation (5) from equation (4) we get 

ii’(t) + (all + A)8(c) + R6(t) = h(t) - S(t) -f(t) 

S(C”) = @to) = 0, t 6 (to,T) 
(6) 

Since equation (6) is a set of second order linear differential equations with 
zero initial conditions, we can conclude that 8(t) = 0, t E (to, T) for all 
functions, h(t), if and only if the right-hand side of equation (6) is zero, i.e., 

f(t) = h(t) - Si(l) (7) 

This implies that the solution of equations (21, (41, and (5) will be identical; 
i.e., z(t) = u(t), for all t, ifund only iff(t> IS as defined in equation (7). The 
only difficulty involved is that the time derivative of the response z(t) is not 
known, and in fact, is obtained through the solution of equation (21, which is 
what we want to solve for, in the fiist place. 

To overcome this problem, we consider the following iterative procedure 
which uses successive approximations for s(t). The scheme can be best 
described in the following equation form where the superscript n denotes 
quantities related to the nfi* iteration. 

ii’“‘(t) + (aLI + A)&“‘(t) + Au’“‘(t) =f+“(t), t E (b,T) (8) 

where 

py t) = h(t) - Bd”‘( t), t E (to, T) (9) 

and d”(t) = 0. 
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Different iterative schemes can now be generated from the general 
procedure outlined above by making different choices of the matrices, A and 
B, and the parameter a. In the sequel we shall, in particular, concentrate on 
two specific sets of iterative schemes. 

SCHEME I. The parameters that define this scheme are as follows: 

(1) A = 0; and, 
(2) B = (I - cr)D + P, where the matrix P contains the off-diagonal 

terms of the matrix F and has zeros along the diagonal. 

We note that different values of the parameter CY will generate different 
iterative schemes, all belonging generically to Scheme I. Thus, the matrix F 
is split as 

F=c-uDfB:=aD+{(l-a)D+P} (10) 

SCHEME II. The parameters that define this scheme are as follows: 

(1) A = L, where L is the lower triangular part of the matrix F, and 
(2) B = (1 - a)D + U, where U is the upper triangular part of the 

matrix F. 

Again, different values of the parameter (Y will generate different iterative 
schemes all generically belonging to Scheme II. In this set of schemes, the 
matrix F is split as 

F=aD+A+B:=aD+L+(l-a)D+U (11) 

The first set of iterative schemes gives rise to a set of uncoupled differen- 
tial equations. Therefore, it may be possible to think of the response of the 
system represented by equation (2) as being separable into different “modes” 
provided that it is subjected to the pseudo-force f(t) rather than the actual 
forcing function h(t). As pointed out in the work of Udwadia and Esfandiari 
[3], unlike in this scheme, past efforts for uncoupling equation (2) have 
concentrated mainly on diagonalizing the damping matrix F without making 
appropriate modifications to the forcing function, h(t), on the right-hand side 
of the equation. Without such an adjustment, it is obvious that, in general, 
inaccurate responses will result for nonclassically damped systems. 

We next investigate the conditions under which convergence to the exact 
response is guaranteed. In other words, conditions under which the error 
vector 6(“)(t) = z(t) - u(“)(t) + 0 as n -+ 00 will be investigated. 
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3. CONVERGENCE OF THE ITERATIVE SCHEMES 

The algorithm that was explained in the previous section can be written in 
an equation form as 

ii’“‘(t) + (aD + A)Ucn)(t) + Au’“‘(t) = h(t) - Bti’“-“(t) 

tP)(t,) = Z”, n = 1,2,3 ,..., (12) 

P( to) = i”) n = 1,2,3,... 

Subtracting equation (12) from equation (4) and noting that a(“) = z(t) - 
u(“)(t), we obtain the following error differential equation. 

i+‘(t) + (aD + A)&"'(t) + R6’“‘(t) = -K+-‘)(t) 

S’“‘( to) = 6(“)( to) = 0, n = 1,2,. . . , and, 

lP’(t) = z(t) -u(O)(t), t E (to,T), 
(13) 

syt) = S(t) - zP’(t), t E (t,,T) 

The vector 6(‘)(t) corresponds to the error in the initial iteration. Defining 
the Fourier transform as 

s’( 0) = pt)“-““‘dt (14 

we obtain from the first equality in the set of equation (131, 

[+D+A) +i( w”z - A)] +y w) = -wB6(“-1)( w) (15) 

where I is the identity matrix. When D is nonsingular, equation (15) yields 
the following recursion. 

ii’“‘(w) = [s(W)]nis(o)(0) (16) 

where 

S(w) = [w(aD + A) + iwG]-i[-oB] (I? 
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and 

OG = Diag{w’ - A,, co2 - A,, . . . . o2 - AN} (18) 

We now specify the iteration matrix, S(o), for the two sets of schemes 
described in Section 2. For the set of iterative methods described by Scheme 
I, noting equations (17) and (lo), the iteration matrix S(w), for different 
values of the parameter cr takes the form 

S,;,(O) = -w[wcrD + iwG]-i{(l - cx)D + P} (19) 

For the set of iterative methods described by Scheme II, after substituting 
A = L and B = (1 - cu)D + U in equation (171, we get the following 
iteration matrix for various values of the parameter /_L( /..L = I/a>: 

S,.+(W) = [o(D+pL) +io~G]-‘I-w~U+(l-I*)wDI (20) 

Having specified the iteration matrices (19) and (20) for these two sets of 
iterative schemes, we now present the following convergence results. 

THEOREM 3.1. ucn)(t) + z(t) almost everywhere if and only if either: 

(i) [S(o)]” + 0, fir aZZ 0, as n -+ a, or equivalently, 

(ii) the spectral radius of S(W), denoted by p,?(w), is less than unity for 
all w. 

PROOF. u(“)(t) + z(t) almost everywhere, as n -+ 00 implies that 
a(“)(~> + 0 for all w, and for arbitrary C?(~)(W). Noting equation (16) the 
result follows. Also if [ S( w)]” + 0, then S(“)(w) -+ 0. n 

LEMMA 3.1. Zf the matrix A = Diag(A,, A,, . . . , AN) is nonsingular and 

p # 0 then 

(i> ps,,_(0) = ps, $0) = 0, and, 
(ii> ps,, $ * m> = Ps,J f m) = 0. 

PROOF. Using relation (19) and taking appropriate limits we see that 
ps,, =(O> = 0 and ps,, =( f m> = 0. Similarly, from equation (20), after taking 
the appropriate limits the results follow. 
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We note from equation (16) that s(“‘(w = 0, w = f m) + 0 as R + ~0. 
So far, we have shown that if w is equal to 0 or tends to fm, both sets of 
iterative schemes converge to the exact response results. We now obtain 
results for 0 < 1011 < 00. n 

LEMMA 3.2. The spectral radius of the matrix S,; ,(o) has the following 
property. 

Ps, ,( 0) I(1 - +-&I + 2 lpi,1 
j=l 

=G u - 4 + %- := ~(a) 

I aI 1 

where 

rr= max 
Vi 

(21) 

(22) 

(23) 

and pij is the (i, jYh element of the matrix P. 

PROOF. The matrix (ocuD + iwG) is diagonal, and the matrix D con- 
tams the diagonal entries of the matrix F. The matrix P contains the 
off-diagonal elements of F and has zeros along the diagonal. Hence, the 
(i,j>“h element of [S,; ,(w)], 

ffwhi + i( 0’ - Ai) ’ 
i Zj 

1 <i, j < N. (24) 
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Using 

PSJ @) G lk afIfJD + ~wG)-‘(-~II, =IIS,&411m~ (25) 

the first inequality in equation (21) is obtained. Since for any row i, and all 

w, Ic#+ >, ) audiI, the result follows. n 

THEOREM 3.2. 

(0 If F = (fij>, ’ < i, j < N, is a strictly diagonally dominant matrix 

then Scheme I is convergent for all values of (Y > (1 + ~)/2, where rr is 
defined in equation (23). Specifically, for CY = 1, n,(a) is a minimum and 

then we have ps,, (w) < rTT1 = rr < 1. 

(2) gF = (f$, 1 < i, j < N, is an irreducible matrix with weak diagonal 

dominance, then Scheme 1 is convergent for all values of CY > 1. 

PROOF. 

(1) Since F is strictly diagonally dominant, rr as defined in equation (23) 
is less than unity. Noting relation (211, a sufficient condition for ps, a(~> < 1, 
for all w, is that 

7r1( a) := 
I(1 - 4 + = < 1 

IaI . 

When cx is nonpositive, r,(a) is greater than unity. Thus (Y must be 
positive. Now, from the above equation, we have 

1 - IaI + 77 ~ I(1 - a>I + 7r < 1 

Ial Ial ’ (27) 

which readily yields 

1+7r 
a>--- 

2 (28) 

Recalling that CY is positive, the first result follows. 
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Furthermore, if (Y is less than unity then 

1--a+7r 
7rTTI( cx) := 

CY ’ 
(29) 

or 

1+?r 
%-r(o) := - - 1. 

CY (30) 

Differentiating equation (30) with respect to (Y, we get 

dTl(ff) 1+7-r -= -- 
da cl2 . 

(31) 

This shows that the slope of the function ~,(a!) for values of CY less than 
unity is negative. Similarly, it can be proved that for cr = 1 and (Y > 1, the 
slope of the function ITS is 0 and positive, respectively. Therefore, the 
minimum of rr( LY) is achieved when CY = 1 and the value of this minimum 
(from equation (26)) . 1s 7~. We note that this approximate optimum value of (Y 
(i.e., o = 11, corresponding to which the bound on the spectral radius is a 
minimum, is independent of frequency, w. 

(2) For irreducible and weakly diagonally dominant matrices F, GT in 
equation (23) is unity [S]. N ow, to satisfy relation (26) (Y should be greater 
than unity. From relation (21), for all CY > 1, rr = 1 and ~s,,~( w) < 1. 
Again, from equation (24) we have for 1 < i < N, 

or 

C$llWfijl +I(1 - a)IIwf,il 

E IIS1,a(W)lijI G jzi 1~1 lofti 
. 

j=l 

Noting that F is irreducible and weakly diagonally dominant, we get 

j=l 

(33) 
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But cr > 1, therefore: 

IT I[sl;m(w)lijl < 1 for all w and for all 1 < i < N. (35) 
.j= 1 

Denoting by IS,; ,(w)l th e nonnegative matrix whose entries are the modulii 
of the corresponding entries of the matrix S,; ,(w), we then have from 
equation (24) that for a! > 1, IS,; ,( w 1s irreducible because F is irreducible >I 
and hence p(lS,;,(w>l> < 1 [91. Since 0 < lS,i,(w>l < IS,,,(w)l, we there- 
fore get 

L+,;,(w)) G P(IS,:+N < 1. (36) 

Hence the result. n 

The application of these two results is shown in numerical Examples 1 and 

2, respectively. 

LEMMA 3.3. The spectral radius of the matrix S,; F(o) has the following 

property. 

Ps, ,(4 2 
I1 - PI 

[rlc I( 1 + p”gf,)] 1’2N 
(37) 

and dj is thejth diagonal element of the matrix F. 

PROOF. We know that the product of the eigenvalues of S,: F(w) is equal 
to det[ S,; PL( w)]. By equation (20) and assuming that D-’ exists, we have 

s,;,(w) = (I + pL, + ipG1)-l(-dJl + (1 - E.L)I) (38) 

where L, = D-lL, U, = D-‘U, and G, = D-lG. And recalling that deter- 
minant of the inverse of a matrix is the inverse of the determinant of the 
matrix, we get 

det[ %,( w>] = (1 - PIN 
Tlj?,(l + ipgll) ’ (39) 
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Let yi, i = 1,2, . . . , N be the eigenvalues of the matrix S,: .(w> then 

which yields 

ly,l IY,l... IYNI = 
I(1 - P>l” 

l--$,)(1 + %l,)l 

Now it follows that 

mv~lyiI 2 
11 - /.A 

I rIJJ(l + iygl,)ll’N. 

Therefore, from the definition of spectral radius, we get 

P&w 2 
I1 - PI 

rI;@ + ipg,,)II/N 

(41) 

(42) 

(43) 

and the lemma follows. Moreover, if Scheme II converges, then for all w we 
should have 

I1 - PI 

[rIfl_,(l + pzg:,)]l’zM 
< 1. (44) 

Noting that p and g,,, j = 1,2, . . . , N are real quantities, the above inequal- 
ity will be satisfied for 0 < p < 2. n 

THEOREM 3.3. If F is an irreducible and weakly diagonally dominant 

matrix, then Scheme II is convergent for 0 < p < 1, 0 < [WI < cc, i.e., 

ps, p> < 1. 
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PROOF. Let us assume the contrary, namely that the spectral radius of 
S2,,(w) is greater than or equal to unity and 0 < Z.L < 1. Then for some 
eigenvalue A of S,; ,+(w>, we have IAl > 1 and 

det[ S,;,( w) - hZ] = det Q = 0, (45) 

where, 

Q= 
A+/_-1 

PA 
D+iG+L+$u. (46) 

Let h = reis, where r and 8 are real. We have 

since r > 1 and 0 < p < 1. Now IAl > 1 and the diagonal matrix iG has all 
its elements as imaginary quantities; thus, the matrix Q is weakly diagonally 
dominant since F is weakly diagonally dominant. Also F is irreducible and 
from equation (46) and relation (47), so is Q. Hence, the determinant of Q 
cannot be zero. We therefore have a contradiction pointing out that our 
assumption is incorrect. Hence, the result. n 

Example 2 of Section 5 illustrates the result of this theorem. 

THEOREM 3.4. Zf F is strictly diagonally dominant matrix, then Scheme 

ZZ is convergent for 0 < I_L < 1, 0 < I WI < m, i.e., ps, $w> -C 1. 

PROOF. The proof follows exactly as in Theorem 3.3, and finally we say 
the following. If F = D + L + U is strongly diagonally dominant matrix, 
then from relations (46) and (47) it is evident that Q is also strongly 
diagonally dominant, and hence its determinant cannot be zero. We therefore 
have a contradiction pointing out that our assumption of IAl > 1, is incorrect. 
Hence, the result. n 

The result of Theorem 3.4 has been applied to a 60 degree-of-freedom 
nonclassically damped system in Example 1 of Section 5. 

So far, we have shown that when the damping matrix F is strongly 
diagonally dominant, and irreducible and weakly diagonally dominant, the 
iterative schemes are convergent. We next consider the convergence of the,, 



74 F. E. UDWADIA AND R. KUMAR 

two sets of schemes when the matrix F is symmetric and positive definite. 
We start with the following lemmas. 

LEMMA 3.4. When the matrix F is symmetric and positive definite, the 

spectral radius psL,_(o) < P~~~)-I~,, where N, = (1 - cu)D + P. 

PROOF. Let A be the eigenvalue corresponding to the spectral radius of 
S,; ,(w) and x be the corresponding eigenvector. Then writing the eigen- 
value problem as 

S,:,( w)x = -( CWD + iG)-‘N,x = Ax, (48) 

or 

-A( CXD + iG)x = N,x. (49) 

Premultiplying equation (49) by x H and noting that I Al = ps,, O( WI, we get 

P&J) = IAl = 
IWP~ XII IPh x> I 

I(aDx,x) +i(Gx,x)I ’ I(c~Dx,x)/ 

n 

LEMMA 3.5. 

P(d-‘N, < 1 - P(aiy’F < 2. 

PROOF. Let A be any eigenvalue of (cxD)-‘N, and y be the correspond- 
ing eigenvector. Then since F = N, + (YD, we get 

(cwD)~‘FY =(A + l)y, (51) 

so that (A + 1) is an eigenvalue of ( (Y D)-‘F. The result now follows. n 
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LEMMA 3.6. When the matrix F is symmetric and positive definite, for 

(y > 41Laz(D-1F) 
2 ’ 

the spectral radius pCaDj-lN, < 1. (52) 

n 

PROOF. Noting Lemma 3.5 and the fact that ~~~~-1~ = P~-I~/cY, the 
result follows. n 

LEMMA 3.7. When the matrix F is symmetric and positive definite, the 
value of cy for which pCaDjm~N, is a minimum is given by 

Lz,( D-‘F) + Lin( D-‘F) 
o! opt = 2 (53) 

and the value of this spectral radius, for this approximate optimum value of 

a = c&t, is given by 

L,,( D-IF) - Li,,( D-‘F) 
K = A,,,( D-lF) + hmi,( D-‘F) (54) 

PROOF. See [lo]. Note that K is always less than unity. n 

THEOREM 3.5. When the matrix F is symmetric and positive definite, the 
set of methods described by Scheme I will always converge for (Y > 
(A,,,(D_lF))/2. Specijcally for (Y = aopt, where aopt is dejned in equa- 
tion (531, we have 

Ps, _,,J w) G K < l. (55) 
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&ID)-hJ,IVa > A,,,(D-'F) < l, and, 
2 

lc = P(%,, D)-‘N, =G P(cd-‘N]~Va ’ A\,,,(D-‘F) < 1, 
2 

(56) 

where the first inequality follows from Lemma 3.4, the second from Lemma 
3.6 and the last from Lemma 3.7. The theorem now follows. We note that the 
approximate optimum value of (Y (i.e., CY = (Y,~~), which makes the bound on 
spectral radius a minimum, is independent of frequency, w. n 

The results of this theorem are illustrated in Example 3. We also show the 
effect on the convergence rate of choosing a value of LY that is widely 
different from the approximate optimum value obtained here. 

LEMMA 3.8. Let the matrix F be symmetric and positive definite. Let h 

be an eigenvalue of the matrix S,, I.L(o) and x be the corresponding eigenvec- 
tor. Then 

IhI = 
la(l - P) - w + i{Wl 
la+w+iiI(g+b)dl 

where p > 0, and 

XHUx = a( p, w) - ib( p, w), 

xHLx = a( p, o) + ib( JL, w), 

xH~ = a( p, W) > 0, and, 

“HG~=g(~,~). 

PROOF. Using equation (20), we get the relation 

(57) 

(58) 

hxH[w(D + pL) + ip,uwG]x =xH[-wpU + (1 - /A)WD]X (59) 
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Taking the modulus on both sides and noting equation (581, the result 
follows. n 

We note that the quantities a, b, g, and u in equation (58) are real 
functions of p and w. 

LEMMA 3.9. The quantity (see equation (58)) (U + 2a) > 0. 

PROOF. The result follows because F is symmetric and positive definite 
and therefore x ” Fx > 0. n 

LEMMA 3.10. Let A be the eigenvalue corresponding to the spectral 

radius of S,; P(o>, and x be the corresponding eigenvector. A necessary and 

suflcient condition for IAl < 1, is: 

w(g) :=~2g2+2~2bg--~(~-2)(~+2a) >O. (60) 

PROOF. The result follows by taking the modulus of the numerator and 
denominator on the right-hand side of equation (57) and then requiring that 
Ihl < 1. w 

LEMMA 3.11. When w + 0, f 00, relation (60) is satisfied for p # 0. 

PROOF. The eigenvectors, x, can always be normalized so that xHx = 1. 
As w -+ 0, and & m, g2 + 00 because (see equation (18)) the elements of the 
matrix G -+ ~fl. W 

LEMMA 3.12. Relation (60) will always be satisfied as long as 

2 b2 

O<P< 5+1’ where t( p, W) := 
~(a+ 2a) 

> 0. (61) 
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PROOF. By Lemma 3.11, we know that relation (60) is satisfied for 
w + 0, &- or). For this relation not to be satisfied for 0 < 101 < to, we require 
that for some g, 

u(g) = 0. (62) 

But this is impossible if the discriminant of the quadratic equation (62) is 
negative. This requires 

b2p4 < a( (T + 2a)p3(2 - p). (63) 

Noting that quantities o and ((T + 2~) are positive, we see that equation (63) 
cannot be satisfied if p < 0 and /.L 2 2. Using equation (63), the result now 
follows. n 

THEOREM 3.6. When F is a symmetric and positive definite matrix, the 

set of iterative methocls represented by Scheme II will converge for all w, as 
long as 

2 b” 
O</.Lu< 

6( P> 0) + 1’ 
where <( I_L, w) := 

a(a+ 2a) 
> 0. (64) 

where the quantities a, b, and (T are defined in equation (58) and x is taken 
to be the eigenvector corresponding to the eigenvalue that yielcts the spectral 

radius of S,; LL( w). 

PROOF. The proof follows from the previous lemmas. We note that a 
sufficient condition for convergence, is that 0 < p < 2/(5 + 1) < 2. 

Since the eigenvectors and eigenvalues of S,; /L(o) are dependent on the 
parameter p, the quantities a, b, and (T are functions of /.L. This explicit 
dependence of 5 on p is shown in equation (64). Thus we note that equation 
(64), which yields th e upper bound on Al. for convergence, requires to be 
solved in an iterative fashion. These results are verified in numerical Exam- 
ple 3. n 

4. CONVERGENCE RATES AND ERROR BOUNDS 

Let e!“) be the L, norm of error s/“)(t) in the ith component at the nfh 
iteration: Then 

e(“’ = 1 ( @$n)(t)}2 dt)“‘- 
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Assuming that ei”’ as n + ~0 and e$ for all i are bounded and defining 

lle(“)ll as the L, norm of the error vector whose components are as in 
equation (65), we have 

lle(n)ll2 = ,fjl (ef”‘)“. (66) 

Noting that for t < 0, Scn)(t) = 0 for i = 1,2, . . . , N, from equations (66) 

and (65) 

(67) 

Now from Parseval theorem 

Substituting equation (68) into (671, we get 

(68) 

(69) 

Interchanging the order of the summation and integration, we obtain 

IIdn)I12 = & _/ym[ ( c?:“)( w) 1’ + (@n)(w) I2 + ..- + (ii;)< w> I”] dw, (70) 

or 

11~(“)11* = &/,[I Sn)( 0) II2 dw. 

From equation (161, the error vector at the nth iteration is given as 

C?W( LO) = [ S( o)]” W( W). 

Taking L, norm of the above equation, we get 

II w a) II G II [ S”( ~>I1111 i(O)( w) II. 

(71) 

(72) 

(73) 
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From equations (73) and (711, we have 

(74) 

Now for an arbitrary N X N complex matrix S(o) for which p(S(o)) > 0 
[9], we have 

II~“Wll N u( p “_ I)[ PmJ)N”-(p-l)~ n+* (75) 

where p is the largest order of all diagonal submatrices Jr of the Jordan 

normal form of S(w) with p(J,) = p(S(w)), (p ” i) is the binomial coeffi- 

cient, and v is a positive constant. Now from equations (75) and (74) for 
n + 00, we have 

[ p”( S( ~))]‘“+‘)il~(~)( 0)1/~ dw. (76) 

If p(S( w)) < k < 1, where k is the upper bound on the spectral radius 
p( S( w)), then we have as n + 00 

Noting that the expression in the curly brackets in the above relation is 
nothing but (le @II” then we will have as n + w, , 

Ile(“)ll n 

jJGy i i p-1 
An-(p-1). (78) 

When 0 < k < 1, for n + 00, the right hand side of relation (78) goes to 
zero, and hence the absolute error in the calculated response goes to zero. 

Defining 

R = I1” (79) 
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as the average rate of convergence over n iterations [9], then 

lim R,, = lim - -log 0 
7l-m n-m 

; [ ip”_ I)k”+ (80) 

or 

lim R,, = -1ogk = R,, (81) 
?l+m 

where R, is the lower bound on the asymptotic rate of convergence. Thus, 
we are able to establish a relation between the lower bound on the asymp- 
totic rate of convergence and the upper bound on the spectral radius of the 
iteration matrix, S(w). Now we can particularize this relation for the follow- 
ing cases. 

CASE 1. When F is a strictly diagonally dominant matrix, then for the 
approximate optimum value of parameter (Y (Scheme I), we have k = T, 

where ‘in is defined in equation (23). The lower bound on the asymptotic rate 
of convergence is then 

R, = -1ogrr (82) 

CASE 2. When F is a symmetric and positive definite matrix, then for the 
approximate optimum value of parameter (Y (Scheme I), we have k = K, 

where K is defined in equation (54). The 1 ower bound on the asymptotic rate 
of convergence is then 

R, = -1OgK 
(83) 

In addition to the lower bound on the asymptotic rate of convergence for 
Scheme I, when F is a strictly diagonally dominant matrix, we can also give 
the upper bound on the error for the individual components. We follow as 
below. Taking the 0~ norm of relation (16), we get 

II @(w) IL G II S”( w) Lll i(O)( w> IL, (84) 

or (from the definition of m norm of a vector) 
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For the approximate optimum value of a, from equations (21) and 
then have 

KUMAR 

(25), we 

(86) 

From the above inequality, we note that the upper error bound is frequency 
dependent. 

5. NUMERICAL RESULTS 

This section covers some numerical results for nonclassically damped 
systems to show the effectiveness of the two iterative schemes proposed in 
this paper. These results belong to systems having large degrees of freedom 
and serve as supplements to the numerical results provided in Udwadia and 
Kumar [17]. For the examples considered here, the system responses are 
strongly coupled through the damping terms. Customary uncoupling methods 
in N-space fail miserably in these situations [ll, 121. We find that in all 
examples studied, the iterated results, after only a few iterations are almost 
the same as those obtained from using the fourth-order Runge Kutta integra- 
tion scheme [IS]. In what follows, we will refer to the results obtained by the 
fourth-order Runge Kutta integration scheme as “exact” for short. For all the 
matrices F that have been covered in our numerical examples, Scheme II 
converges faster than Scheme I. Some of the results produced here corre- 
spond to the approximate optimum values of the parameter (Y that make the 
bounds on the corresponding spectral radius a minimum. The approximate 
optimum values of (Y for different kinds of matrices F are analytically 
obtained in Section 3. It has also been verified through numerical experi- 
ments that these theoretical estimates of the approximate optimum values of 
cr do yield rapid convergence, 

Direct use of the fourth-order Runge Kutta procedure to obtain response 
results requires approximately (12 N2 -t 18 N) multiplications for each time 
step, where N is the number of equations. The iterative techniques, devel- 
oped in this paper, utilize the Nigam-Jennings algorithm [14] for numerical 
integration. This algorithm requires SN multiplications per iteration for each 
time step. In addition to this, Scheme I needs N” multiplications per 
iteration for each time step to uncouple the set of equations, i.e., to compute 
[(l - a>D + P]zicn- ‘). Scheme II also requires an additional N’ multiplica- 
tions per iteration per time step to compute Lti’“’ and [(l - a)D + U]ti(n-l). 
We note that these additional number of multiplications are the same for 
both the schemes. Thus, for each time step, a total of (N2 + 8 N )I multipli- 
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cations are required to obtain the response results, where I is the number of 
iterations. Hence, for large N, when Z is less than 12 for achieving the 
required convergence, the two iterative schemes developed herein become 
computationally efficient. Throughout this section it is assumed that the 
various parameter values are provided in consistent physical units. 

EXAMPLE 1. Consider a 60 degree-of-freedom nonclassically damped 
system whose parameters are defined in the Appendix. The initial time t, and 
final time T are taken to be zero and 10 units, respectively. The matrix F, 
chosen, is nonsymmetric and strongly diagonally dominant. 

It should be noted that the diagonal elements of matrix A (which 
correspond to the squares of the undamped natural frequencies of vibration) 
are clustered, several of them being equal to 20 units. The choice of identical 
values for these diagonal elements causes us to expect intense interaction [I21 
through the coupling created by the matrix F. This would be even more 
prominent because the excitation is also taken to have a frequency of m 
units [15]. We will see later that Examples 2 and 3 also have these critical 
features. Standard uncoupling methods used to date have been known to 
provide erroneous results in such situations [12, 151. 

We define the normalized root mean square (RMS) error in the response 
at the nth iteration in component i as 

normalized RMS error at RMS of {@ - zfK} 

iteration n in component i = RMS of {Zp} ’ (87) 

where u$“) is the nth iterate of component i, and .z,FK is the ith component 
of the response of equation (2) calculated using the Runge-Kutta integration 
scheme. 

In all the numerical examples, we have shown the graphs of the normal- 
ized RMS error for those components of the response which converge most 
slowly. Therefore, the normalized RMS error (Figures 1 and 2) in these 
components at various iterations gives a bound on the error for other 
components at corresponding iterations. The RMS values of the displacement 
responses obtained using the Runge-Kutta method are also provided in the 
figures. For this example, the stopping criterion for our iterative schemes is 
that the right hand side of equation (87) be less than 10P4. We also have 
provided the time history plots for the most slowly convergent velocity 
component for all the examples. These plots include exact results by the 
Runge-Kutta method and the results corresponding to the first iteration, and 
to some other iterations. 



84 F. E. UDWADIA AND R. KUMAR 

0.25 - 

g 0.2- 
W 

Y 

2 0.15- - Component 14 
2 --- Component 15 
‘- 

2 
-.- Component 16 

p 0.1 - 

0.05 - 

0 
0 1 2 3 4 5 6 

Number of Iterations 
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Scheme I) versus number of iterations. 
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In our numerical results, we also have given the estimates of average rates 
of convergence. In terms of actual computations, the significance of average 
rate of convergence [9], R,,, is the following. The quantity 

(88) 

is the average reduction factor per iteration for the successive error norms, 
where [Ie(” is the Euclidean norm of the error vector at nth iteration and 
lIe( is the Euclidean norm of initial error vector. The components of the 
error vector are as defined in equation (65). Now, from equation (79), we get 

Again, defining N,, = Rio,‘, we see from the previous equality that 

VN, = l/10, (90) 

so that N,, is a measure of the number of iterations required to reduce the 
Euclidean norm of the initial error vector by a factor of 10. We have 
compared the two iterative schemes on the basis of their average rates of 
convergence, R,, , over a specified number of iterations. 

Figures 1 and 2 show the convergence pattern of representative displace- 
ment components, as mentioned previously, for Scheme I and Scheme II, 
respectively. Figure 3 shows the time history of velocity component 15 (for 
Scheme I) at the first and fourth iterations including the exact results 
obtained by the Runge-Kutta method. The results from the 4th iteration 
cannot be distinguished in the graph from those of the Runge-Kutta method. 
Similarly, Figure 4 shows velocity component 15 at various iterations for 
Scheme II. The approximate optimum value of the parameter cr, which has 
been used in this example, is 1.0 (see Theorem 3.2). The effect of the values 
of (Y, other than the approximate optimum value, on convergence of Scheme 
I is shown in Figure 5. It is observed that if the value of (Y is chosen as two 
times the approximate optimum value, the convergence rate slows down 
roughly two times. It is also noted that the approximate optimum value of cy 
is very close to the numerically determined optimum value. The value of the 
parameter p(= l/a> for Scheme II has been taken as 1.0. Note that in 
Scheme I when cr = 1.0, the normalized RMS error which results at the first 
iteration provides a measure of the extent of the error in the system’s 
response were all the off-d’ g la onal terms of the matrix F ignored. 
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FIG. 4. Time history of the velocity component 15 (Example 1, Scheme II) corresponding to 
the exact response, first, and third iterations. 



Iterative Methods for Damped Systems 

=s 

87 

14. 

12- 

? 
i' 

/ 
.;10- i-*-d 

/ 
'm *-l( 
= 
B 8- z' 

$ !U--S-*-* *' 

5 
\ 

6- r-rc-!q jd' 
Z ‘x’ 

4- 

2- 

0. 
0 0.5 1 1.5 2 

FIG. 5. Parameter (Y versus number of iterations required to converge to the exact response 

results (Example 1, Scheme I). 

In this example, the average rates of convergence CR,,) for displacement 
components for Scheme I and Scheme II over 5 iterations (i.e., n = 5 in 
equation (88)) are 0.873 and 1.04, respectively. The reciprocals (N,) of these 
average rates of convergence show that Scheme I takes approximately 1.15 
iterations to reduce the norm of the initial error vector by a factor 10 while 
Scheme II needs 0.97 iterations to do the same. Hence, it can be concluded 
that for this case Scheme II converges approximately 1.2 times faster than 
Scheme I. The lower bound on the asymptotic rate of convergence for 
Scheme I turns out to be 0.135. 

EXAMPLE 2. Here we consider an irreducible and weakly diagonally 
dominant damping matrix F given as below: 

0.60 0.30 0.20 0.10 

F 0.10 0.60 0.10 0.30 = 

0.10 0.30 0.50 0.10 ’ 
0.10 0.20 0.10 0.40 I 

A = Diag{20.0,20.0,20.0,20.0) (91) 
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FIG. 6. Normalized RMS error of displacement components 1, 2, and 3 (Example 2, 

Scheme I) versus number of iterations. 

The parameters t, and T are taken to be zero and 10 units, respectively. The 
initial conditions are 

~~(0) = 0.0, 1 < i < 4; and ii(O) = 1.0, 1 < i < 4. 

And the system is subjected to the forcing vector h(t) given by 

(92) 

h,(t) = 2sinGt, h,(t) = -2sinJ20t, and 

h3(t) = sinmt, h4(t) = -sin&%?t, t E (0,lO) 
(93) 

Once again the undamped natural frequencies are taken to be identical. 
The frequency of excitation is taken to be the same as the undamped natural 
frequency to ensure intense interaction of the response through the coupling 
caused by the nondiagonal matrix F. 

Parameter (Y = 1.1 (see Theorem 3.2) and ,u = 1.0 (see Theorem 3.3) 
have been used for the computations. The stopping criterion for this example 
and for Example 3 is that the right-hand side of equation (87) be less than 
6. X 10m4. Figures 6 and 7 show the convergence pattern of the most slowly 
convergent displacement components with increasing iteration numbers for 
the two iterative schemes. Figure S shows the velocity component, i,(t), at 
different iterations along with the exact response obtained by the Runge-Kutta 
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FIG. 9. Time history of the velocity component 1 03xample 2, Scheme I) corresponding to 
the exact response, first, and third iterations. 

method (Scheme I). Similarly, Figure 9 depicts the convergence of the most 
slowly convergent velocity component 1 for Scheme II. It is noted here that 
the results at the third iteration are very close to the results obtained using 
the Runge-Kutta method. The average rates of convergence over five itera- 
tions for Schemes I and II turn out to be 0.49 and 0.89, respectively. Thus, 
for this example Scheme II converges approximately 1.8 times faster than 
Scheme I. 

EXAMPLE 3. Let F be a 12 X 12 symmetric and positive definite matrix 
with the elements as defined in the Appendix. The other parameters of the 
system are also defined in the Appendix. Here it should be noticed that F is 
no longer diagonally dominant. The minimum and maximum eigenvalues of 
matrix Dp’F are 0.6911 and 2.0445, respectively, where D is the diagonal 
part of the matrix F. Therefore, convergence for Scheme I (see Theorem 3.5) 
is guaranteed as long as CY > 2.0445/2. H ere, we have given the results for 
CY = 1.3678, the approximate optimum value which has been calculated using 
equation (53). For Scheme II, convergence will occur if 0 < /.L < 1.9532 (see 
Lemma 3.12), but for the computations the value of F, which has been used, 
is 1.0. 
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Figures 10 and 11 show the normalized RMS error versus iteration 
number for the representative displacement components for Schemes I and 
II, respectively. Figure 12 contains time history plots of velocity component 
10 (the most slowly converging component) at the first and fifth iterations 
along with the exact time history obtained by the Runge-Kutta method. 
Similarly, Figure 13 shows velocity component 1 (the most slowly converging 
component) for Scheme II at different iterations. The average rates of 
convergence over five iterations for Schemes I and II, for the above men- 
tioned parameters, are calculated as 0.516 and 0.892, respectively. Thus, 
Scheme II converges approximately 1.7 times faster than Scheme I. 

Furthermore, Figure 14 depicts the nature of convergence for Scheme I, 
when the value of the parameter CY is other than the approximate optimum 
value. This figure shows that choosing a value of (Y, which is two times of the 
approximate optimum CY slows down the convergence process by almost a 
factor of two. Once again, we note that for this example also, oopt represents 
the numerically computed optimum value of (Y fairly well. The lower bound 
on the asymptotic rate of convergence for Scheme I, using the approximate 
optimum value of (Y, is computed as 0.306. Note that, for this example, the 
iterative scheme given by Udwadia and Esfandiari [3] does not promise 
convergence because h,,,(D-IF) > 2, where A,,,, denotes the maximum 
eigenvalue. 

-6 
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Eme 

FIG. 12. Time history of the velocity component 10 (Example 3, Scheme I) corresponding 

to the exact response, first, and fifth iterations. 
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6. CONCLUSIONS AND DISCUSSION 

A rigorous convergence analysis for the two computationally efficient 
iterative schemes, proposed for the numerical solution of rather general, 
linear dynamic systems modeled by coupled differential equations, is pre- 
sented. Sufficient conditions, under which these two schemes are convergent, 
are provided for three different kinds of damping matrices F. Unlike the 
previous work of Udwadia and Esfandiari [3] and Clart and Venancio-Filho 
[7], these results guarantee convergence for a wide variety of problems which 
are commonly met in the field of structural dynamics. We include in our 
considerations systems with clustered undamped natural frequencies. 

For Scheme I, the approximate optimum values of the parameter CY are 
provided for two cases: (1) when the damping matrix F is strongly diagonally 
dominant and (2) when it is symmetric and positive definite. These approxi- 
mate optimum values can be easily computed and when used help achieve a 
faster convergence to the exact response results for any arbitrary forcing 
function. Again, these approximate optimum values of the parameter (Y are 
independent of the forcing function frequency w. Lower bounds on the 
asymptotic rates of convergence for the aforementioned damping matrices 
are also provided for Scheme I. 

For symmetric and positive definite damping matrices F, the iterative 
scheme given by Udwadia and Esfandiari [3], which is a special case of 
Scheme I, guarantees convergence as long as h,,,,,(D-IF) < 2. In this 
paper, we have shown that Scheme I always guarantees convergence in this 
situation as long as the parameter (Y is chosen to be greater than 
A,,&-‘F)/2. Th e numerical results reported here and in Udwadia and 
Kumar [17] show that, in general, Scheme II is faster and computationally 
superior than Scheme I. However, as evident from Theorem 3.6, for symmet- 
ric and positive definite matrices F, care should be taken in selecting the 
value of the parameter /J because convergence is guaranteed as long as 
0</.L<2/(5+1)<2. 

APPENDIX 

1. The damping matrix F for Example 1 is defined as 

F(i, i) = 0.15 l<i<60 

F(i, i + I) = -0.05 I < i < 59 

F(i+l,i)= -0.06 IGiG 
(94) 
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and the modal stiffness matrix is given by 

A = L&g{ 1.0,1.2,1.2,1.21,1.6,1.7,1.9,2.0,2.2,2.25, 

2.3,2.31,2.5,2.55,2.6,2.7,2.8,2.9,3.0,3.1, 

3.2,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.2,4.3, 

4.6,4.8,5.0,5.2,5.5,5.6,5.7,6.0,6.5,7.0, 

8.0,10.0,19.0,20.0,20.0,20.0,20.0,21.0,28.0,28.0, 

32.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,42.0,43.0}, (95) 

with the initial conditions 

z,(O) = 1.0, and ii(O) = 0.0, 1 <i ,<60. (96) 

This system is subjected to the forcing function h(t) given by 

hi(t) = 2 sin&it, i = 1,3,5,7,9,10, 

hi(t) = -2sin&%t, i = 2,4,6,8,and 

hi(t) = 0, 11 < i < 60, t E (0,lO) 

2. The damping matrix F for Example 3 is [16] as follows: 

(97) 

1.55 0.18 - 0.25 -0.11 0.26 0.16 - 0.20 -0.20 0.06 0.08 0.20 - 0.28 

0.18 1.33 0.06 0.00 0.05 0 .a5 - 0.03 - 0.12 - 0.10 -0.12 - 0.17 - 0.17 

-0.25 0.06 1.61 0.23 - 0.24 - 0.17 0.15 0.10 - 0.30 - 0.35 - 0.06 0.15 

-0.11 0.00 0.23 1.37 0.02 -0.13 - 0.04 - 0.02 -0.15 - 0.24 - 0.03 0.12 

0.26 0.05 - 0.24 0.02 1.48 0.14 - 0.31 -0.29 0.05 0.17 -0.06 - 0.18 

0.16 0 .a5 -0.17 -0.13 0.14 1.31 -0.10 - 0.24 0 .a4 0.22 0.03 - 0.18 

- 0.20 -0.03 0.15 -0.04 -0.31 - 0.10 1.38 0.22 - 0.06 -0.11 0.11 0 20 
-0.20 -0.12 0.10 - 0.02 - 0.29 - 0.24 0.22 1.55 0.07 -0.18 0.07 0.28 

0.06 - 0.10 - 0.30 - 0.15 0.05 0.04 - 0.06 o.oi 1.44 0.25 0.00 -0.14 

0.08 -0.12 - 0.35 -0.24 0.17 0.22 -0.11 -0.18 0.25 1.61 0.05 - 0.28 

- 0.20 - 0.17 - 0.06 - 0.03 - 0.06 0.03 0.11 0.07 0.00 0.05 1.33 0.18 
- 0.28 -0.17 0.15 0.12 - 0.18 -0.18 0.20 0.28 -0.14 - 0.28 0.18 1.61 

And the modal stiffness matrix is given by 

A = Diag{20.0,20.0,25.0,20.0,20.0,15.0,20.0,20.0,23.0,20.0,21.0,22.0} , 

(99) 
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with the initial conditions 

~~(0) = 1.0, and ii(O) = 0.0, 1 < i < 12. ( 100) 

This system is subjected to the forcing function h(t) given by 

hi(t) = sinmt, i = 1,3,5,7,9,11,12; and 

hi(t) = -2sin&Zit, i = 2,4,6,8,10, t E (0,lO) 
. (101) 
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