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Abstract This paper develops newcontinuous sliding
mode controllers for multi-input multi-output mechan-
ical systems in the presence of unknown, but bounded
uncertainties in the given forces and in the masses.
Assuming the absence of the uncertainties, a reference
control input is first calculated using the fundamen-
tal equation of constrained motion that causes the sys-
tem trajectories to exactly track the reference while
minimizing a weighted L2 norm of the control effort.
Next, in the presence of realistic uncertainties in the
given forces and in the masses, two continuous sliding
mode controllers are derived according to whether the
mass matrix is diagonal or not. In the diagonal case,
each element of the control vector is independently
designed, while in the nondiagonal case the control
vector is handled as a whole because its elements are
coupled to one another. The two controllers are contin-

H. Cho (B)
Water Power Technologies Program, Sandia National
Laboratories, Albuquerque, NM 87123, USA
e-mail: hancho@sandia.gov

T. Wanichanon
Department of Mechanical Engineering, Mahidol
University, 25/25, Phutthamonthon, Nakorn Pathom 73170,
Thailand
e-mail: thanapat.wan@mahidol.edu

F. E. Udwadia
Departments of Aerospace and Mechanical Engineering,
Civil Engineering, Mathematics, and Information and
Operations Management, University of Southern
California, Los Angeles, CA 90089-1453, USA
e-mail: feuusc@gmail.com

uous because no signum functions are used. It is also
shown that various forms of control input are possible
depending on the control requirements among which a
simple proportional-integral-derivative-type controller
is exemplified in this paper. Two numerical examples
serve to demonstrate the accuracy and robustness of the
control methodology suggested herein.

Keywords Sliding mode control · Chattering
alleviation · Fundamental equation of constrained
motion · Multi-input multi-output systems

1 Introduction

The precision reference-tracking control problem in
the presence of system uncertainties has historically
attracted a number of researchers due to its great prac-
tical importance in real life. Over the past few decades,
there have been successful attempts to develop high-
performance linear or nonlinear controllers that track
given reference trajectories with high accuracy. Among
them, nonlinear adaptive control [1], model predictive
control [2], backstepping control [3], and sliding mode
control [4,5] areworthy of attention. Slidingmode con-
trol (SMC) is especially widely used to cope with such
uncertainties due to its simplicity and robustness. How-
ever, the robustness and high accuracy of SMC are
obtained at the expense of chattering which results in
high-frequency oscillations. This chattering problem,
which leads to high-speed switching about the so-called
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sliding surface, is caused by the discontinuous signum
function used in standard sliding mode control in order
to force the system’s trajectories to be attracted to the
sliding surface.

The most common way for reducing chattering is to
replace the discontinuous signum function by continu-
ous saturation or sigmoidal ones that approximately
mimic the signum function [6,7]. Li et al. [8] pro-
posed a proportional, integral, derivative (PID) con-
trol of sliding surface function to remove chattering.
The main drawback of this controller is that the exis-
tence of the PID control gains satisfying the reachabil-
ity condition is not always guaranteed.Another popular
method that circumvents chattering is to use higher-
order SMCs [9,10]. The second-order SMC (SOSMC)
or the super twisting algorithm [11] is widely adopted
for its simplicity and reduced information demand. The
main strategy of the SOSMC is to force a sliding vari-
able and its time derivative to zero using a discontin-
uous control. The actual control that is used is then
derived by integrating this discontinuous control sig-
nal, thereby producing continuous control.

Recently, Udwadia and Wanichanon [12] extended
the standard SMCmethod by using a number of contin-
uous functions instead of the signum function, thereby
eliminating the chattering problem.Although their con-
troller does not exactly place the system’s trajectories
onto the sliding surface, the errors can be made as
(arbitrarily) small as desired and an estimate of the
error bounds can be simply obtained. This approach
is applied to satellite formation flying in [13], and in
[14] a simpler continuous SMC is derived by Cho et
al. More general forms of continuous functions than
those used in [12,13] can be used and special attention
is paid to a PID-form, showing that the standard PID
controller can be successfully used to control uncer-
tain nonlinear systems with uncertainties in the given
forces without the occurrence of any chattering. How-
ever, [14] ignores the effects of uncertainties in themass
matrix of the mechanical system. Later on, the general
use of a SMC with the PID-form has been reinstated
in [15]. In that paper, both the effects of uncertainties
in the mass matrix and in the given force vector of
the mechanical system are considered. However, it is
assumed in [15] that the uncertainty in the mass matrix
is sufficiently small compared with the nominal mass
matrix and the validity of the proposed control strategy
is not guaranteed in the presence of large measurement
errors in the masses of the system.

The current paper extends the results of [14] and
[15] to a larger class of nonlinear uncertain multi-input
multi-output (MIMO) systems. In addition, the pro-
posed approach allows for various continuous func-
tions in the control signal depending on practical con-
trol requirements, and good performance can still be
achieved even with a poor estimate for the uncertain-
ties in the mass matrix and/or in the given force vec-
tor. First, when trajectory requirements on a nonlinear
nominal system are given assuming no uncertainties,
the reference control input is analytically derived. The
strategy is based on a new result, called the fundamen-
tal equation of constrained motion (FECM), proposed
in the field of analytical dynamics [16–19]. The control
requirements are recast as constraints on the mechani-
cal system. With this methodology, the reference con-
trol forces can be expressed succinctly in closed form
whether the constraints are holonomic and/or nonholo-
nomic, while all the nonlinearities inherited from the
original system are carriedwithout any approximations
and/or linearizations. Next, additional sliding mode
controllers are designed to compensate for the uncer-
tainties in the mechanical system’s mass matrix as well
as in the given force (and/or torque) vector that the sys-
tem is subjected to [20]. In the current study, two differ-
ent sliding mode controllers are developed according
to whether the mass matrix is diagonal or not that use
continuous functions to remove chattering. Recently,
there has been a great interest in the new SMC design
to be insensitive to so-called mismatched uncertainties
[21–23] where uncertainties exist in different channels
from the control input. However, it is assumed in this
paper that every degree of freedom of the mechanical
system is controlled, and therefore there are no mis-
matched uncertainties in the system.

This paper has two main objectives. First, new con-
tinuous slidingmode controllers are proposed to ensure
arbitrarily small errors as desired for a class of nonlin-
earMIMO systems affected by the uncertainties both in
the mass matrix and in the given force vector. Second,
the proposed sliding mode controllers are composed
of continuous functions, thereby effectively removing
chattering, and hence are suitable for various practical
applications.

This paper is organized as follows. Section 2
describes the first controller that provides reference
control input for given reference trajectories for a nomi-
nal systemwhere no uncertainties are considered. Such
a nominal system may be thought of as being our best
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description of a given physical system using the avail-
able information about it. In Sect. 3, new sliding mode
controllers are developed and augmented for robust-
ness in the presence of uncertainties in the masses and
in the given forces in our nominal system. Effectiveness
of the proposed controllers is demonstrated in Sect. 4
by simulating two examples, and conclusions are pro-
vided in Sect. 5.

2 Exact reference-tracking control for nonlinear
nominal systems with no uncertainties

In this paper, two different controllers will be com-
bined to track the desired reference trajectory in the
presence of system uncertainties. In this section, the
first controller will be developed to provide a refer-
ence control input for the nonlinear nominal system.
This nominal system is our best mathematical model of
the actual physical system, given the information avail-
able. Without any constraints, the equation of motion
of a dynamical system is described by the Lagrange’s
equation:

M (q, t) q̈ = Q (q, q̇, t) , (1)

or

a (t) := q̈ (t) = M−1 (q, t)Q (q, q̇, t) , (2)

where t represents time, q (t) = [
q1(t) q2(t) · · ·

qn(t)
]T is a generalized displacement vector,M > 0 is

an n by n mass matrix, Q is the n by 1 ‘given’ general-
ized force vector, and a (t) is the n by 1 unconstrained
acceleration vector. The superscript “T ” denotes the
transpose of a vector or a matrix, and n is the number
of the generalized coordinates.

Now, it is assumed that the unconstrained system
described by Eq. (1) or (2) is subjected to p constraints
which are of the form

ϕ j (q, q̇, t) = 0, j = 1, 2, . . . , p. (3)

These constraints can be thought of as control require-
ments imposed on the dynamical system and will be
referred to later on in this paper as control constraints.
Equation (3) includes all the usual varieties of holo-
nomic and/or nonholonomic constraints and then some.
Differentiating Eq. (3) with respect to time once (for
nonholonomic constraints) or twice (for holonomic
constraints) yields the following constraint equation:

A
[
q (t) , q̇ (t) , t

]
q̈ = b

[
q (t) , q̇ (t) , t

]
, (4)

where A is a p by n matrix and b is a p by 1 vector.
From here on for brevity, the arguments of the various
quantitieswill be suppressed unless required for clarity.

Then, the aim is to obtain a vector q̈ in closed form
that satisfies the constraint equation, Eq. (4), and that
simultaneously minimizes an additional control cost.
First, the solution to Eq. (4) is explicitly given by [24,
25]:

q̈ = A+b + (
I − A+A

)
h, (5)

where I is the n by n identitymatrix, the superscript “+”
denotes the Moore–Penrose generalized inverse, and
h is an arbitrary n by 1 vector. From the perspective
of controller design, it is generally desired to obtain
this arbitrary h so that it minimizes the following cost
function at each instant of time:

J = (q̈ − a)T M (q̈ − a) . (6)

Substituting h that minimizes Eq. (6) back to Eq. (5),
one can finally obtain the following equation of motion
in the presence of the constraints as [25]

q̈ (t) = a (t) + M−1AT
(
AM−1AT

)+
(b − Aa)

=: a (t) + M−1Qc (t) , (7)

where the required (generalized) control forceQc (t) is
obtained in closed form:

Qc (t) := M (q̈ − a) = AT
(
AM−1AT

)+
(b − Aa) .

(8)

This control force minimizes the quadratic control cost
J (t) = [

Qc
]T M−1Qc or Eq. (6) at each instant of

time. (When using weighting matrices other thanM−1

in the control cost, see [19]).
Originally, this idea is inspired by a recent finding

in analytical dynamics [25,26] and Eq. (7) is called the
fundamental equation of constrained motion (FECM).
Equation (8) explicitly gives the control force, preserv-
ing all the nonlinearities of the original dynamical sys-
tem. In what follows, the constraints given in Eq. (3)
shall be interpreted as the trajectory requirements that
the dynamical system described in Eq. (1) is required
to track [18,19].

It is noted that the constraints, Eq. (3), have to be
satisfied at each instant of time including the initial
time (t = 0). However, it is generally difficult to meet
these constraints from the beginning since this requires
inserting the mass into the desired (constrained) man-
ifold with the exact initial conditions. Hence, we need
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to modify the constraint formulation in which new con-
straints are exactly satisfied over the whole time inter-
val. First, let us write Eq. (3) in a compact form:

ϕ = [
ϕ1 ϕ2 · · · ϕp

]T = 0. (9)

Now, it is assumed that Eq. (9) is not satisfied at the
initial time such that ϕ (0) �= 0. Then, we modify the
constraint equation, Eq. (9), to [18]

ϕ̈ + αϕ̇ + βϕ = 0, α = diag
{
α1, α2, . . . , αp

}
,

β = diag
{
β1, β2, . . . , βp

}
, (10)

where ϕ comprises holonomic constraints. If ϕ is com-
posed of nonholonomic constraints, then Eq. (9) is
modified to

ϕ̇ + αϕ = 0, α = diag
{
α1, α2, . . . , αp

}
. (11)

By properly choosing the parameters αi , βi > 0, i =
1, 2, . . . , p, ϕ approaches zero asymptotically in a
desired manner. More specifically, if Eq. (3) results in
Eq. (4), then the modified constraint equations, Eqs.
(10) and (11), respectively, yield

Aq̈ = b − αϕ̇ − βϕ, (12a)

and

Aq̈ = b − αϕ̇, (12b)

where the matrix A is unchanged and the vector b is
augmented by −αϕ̇ − βϕ or −αϕ̇, which still retains
the form of Eq. (4). In brief, using the new constraint
equations, Eqs. (12a) and (12b), and the corresponding
FECM, we can make the constraints satisfied at each
instant of time during the control action including the
initial time.

Up to now, the exact control force Qc (t) has been
developed assuming no uncertainties in the dynamical
system. In the next section, a new additional controller
will be derived and added in order to handle the effects
of uncertainties.

3 New sliding mode control to cope with system
uncertainties

A controller used in the real world is required to be
robust in the sense that it can successfully track the
reference trajectory regardless of uncertainty effects.
Since MIMO systems are handled in this study, there
must be interactions between themanipulated variables
(inputs) and the controlled variables (outputs). These

interactions can be quantified, for example, via the con-
cept of the relative gain array (RGA) [27]. Roughly
speaking, each element of the RGA is calculated as the
ratio of the open-loop gain between the i th output and
the j th input to the closed-loop gain between the i th
ouput and the j th input. Refer to [27] formore details to
compute the RGA. Plants with large RGA elements are
in general difficult to control due to high sensitivity to
uncertainties caused by strong interactions. However,
it is assumed in this paper that the plant to be controlled
does not have large RGA elements (at least at crossover
frequency) so that uncertainty effects are successfully
suppressed by the use of continuous sliding mode con-
trol techniques that will be developed in this section.

Sliding mode control is widely adopted to cope with
uncertainties due to its simplicity and high robust-
ness. However, one main drawback of the conventional
sliding mode control is the chattering problem: high-
frequency oscillations in the control forces and/or in
the system’s coordinates. In the present paper, hence,
it will be shown that instead of the existing signum
or saturation functions, many other continuous func-
tions can be used to effectively avoid the chattering
phenomenon, and one can have flexibility in prescrib-
ing values (or estimates) for the lower and/or upper
uncertainty bounds.

For the constrained nominal system with no uncer-
tainties, the equation of motion is given by

M (q, t) q̈ = Q (q, q̇, t) + Qc (t) , (13)

where M (q, t) is the nominal mass matrix of the sys-
tem, Q (q, q̇, t) is the nominal ‘given’ (generalized)
force vector, andQc (t) is the generalized control force
that is explicitly given in Eq. (8) and is based on the
description (and choice) of the nominal system. This
generalized control force is added to exactly satisfy the
given trajectory requirements (constraints) given in Eq.
(3).

In the real world, however, it may often not be
possible to exactly determine the actual mass matrix
Ma (q, t) and/or the actual ‘given’ force vector Qa(
q, q̇, t

)
to which the actual system is subjected.

Application of the control force Qc (t) to the actual
(unknown) systemwould result in the trajectory require-
ments (control constraints) given in Eq. (3) being, in
general, not satisfied. Moreover, if q (t), q̇ (t), and q̈ (t)
obtained from the solution of Eq. (13) were substituted
for q̂ (t), ˙̂q (t), and ¨̂q (t) in the equation

Ma
(
q̂, t

) ¨̂q �= Qa

(
q̂, ˙̂q, t

)
+ Qc (t) , (14)
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the left-hand side of this equation would, in general,
not equal the right-hand side. In Eq. (14), Ma and Qa
are the actual (unknown) mass matrix and the actual
(unknown) ‘given’ force vector, respectively. Thus, to
successfully track the given reference trajectory (i.e.,
satisfy the trajectory requirements) in the presence of
system uncertainties we add an additional controller
Qu (t) that compensates for the uncertainties, so that
the equation ofmotion of the uncertain systembecomes

Ma
(
qc, t

)
q̈c = Qa

(
qc, q̇c, t

) + Qc (t) + Qu (t) , (15)

where qc (t) and q̇c (t) denote the controlled, actual
generalized displacement and velocity vectors, respec-
tively.This additional (generalized) control forceQu (t)
will be developed by generalizing the concept of sliding
mode control.

Pre-multiplying both sides of Eq. (15) by M−1
a ,

the acceleration of this controlled system can then be
expressed as

q̈c = aa + M−1
a Qc (t) + M−1

a Mu. (16)

Here, aa := M−1
a Qa and Q

u := Mu.M is the nominal
mass matrix, and u is the additional generalized accel-
eration vector provided by the additional control force
Qu that compensates for uncertainties in our knowledge
of the actual system.

The aim is to control the actual (uncertain) system
so that it tracks (mimics) the behavior of the nominal
system, thereby making the actual system behave as
though there was no uncertainty in the description of
the nominal system.

Defining the tracking error as

e (t) = qc (t) − q (t) (17)

[where q (t) is the response of the nominal system
given by Eq. (13)], and differentiating Eq. (17) twice
with respect to time, one has

ë = q̈c − q̈ (18)

which upon use of Eqs. (7) and (16) yields

ë = [
aa

(
qc, q̇c, t

) − a (q, q̇, t)
]

+
[
M−1

a

(
qc, t

) − M−1 (q, t)
]
Qc (t)

+M−1
a

(
qc, t

)
M (q, t) u

= : δq̈ + M−1
a Mu, (19)

where the following has been defined:

δq̈
(
q, q̇, qc, q̇c, t

) := [
aa

(
qc, q̇c, t

) − a (q, q̇, t)
]

+
[
M−1

a

(
qc, t

) − M−1 (q, t)
]
Qc (t) . (20)

Equation (19) points out that uncertainties in the actual
system’s description cause the dynamical mass matrix
Ma

(
qc, t

)
and the (generalized) given force vector

Qa

(
qc, q̇c, t

)
of the actual system to differ, in general,

at each instant of time from those of the nominal system
because of three reasons:

(1) the parameters (e.g., the masses, moments of iner-
tia in the mass matrix, and the given forces in the
generalized force vector) describing the actual sys-
tem are different from those of the nominal system,

(2) the elements of the actual mass matrix and the
actual given force vector may be different functions
of their respective arguments from those of the cor-
responding elements of the nominal mass matrix
and nominal ‘given’ force vector, and

(3) the controlled response of the actual system, qc (t),
is different from that of the nominal system, q (t).
The former depends on the actual (generalized)
forces acting on the system and the parameters that
describe the actual system, both of which are only
imprecisely known, aswell as the additional control
Qu (t).

It should be noted that even if the parameters in the
elements of the mass matrix are known with high pre-
cision along with their functional forms, uncertainties
in the (generalized) given forces that act on the system
will, in general, cause the mass matrixMa of the actual
system at any instant of time to differ from that of the
nominal systemM at that time, sinceM andMa are in
general functions of q (t) and qc (t), respectively.

Since Ma and Qa are uncertain, the value of δq̈ at
any instant of time is also uncertain. However, here
it is assumed that one has a ‘guestimate’—a guessed
estimate based on experiments, experience, intuition,
or otherwise—of a bound on it, so that

‖δq̈‖∞ < �, (21)

where � is a positive constant and ‖·‖∞ denotes the
infinity norm of a vector or a matrix.

Now, let us consider the following two cases: 1)
when the nominal mass matrix M and the actual mass
matrixMa are both diagonal and positive definite, and
2)when the nominalmassmatrixM and the actualmass
matrixMa are both positive definite, but not necessarily
diagonal.
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3.1 Diagonal mass matrices

We assume that the i th diagonal elements of the matri-
ces Ma and M are μi

(
qc, t

)
> 0 and mi (q, t) > 0,

respectively, for i = 1, 2, . . . , n. Consider the general-
ized sliding surface s (t) given by

s (t) = ė (t) + Be (t) + K
∫

e (t) dt, (22)

where s (t) = [
s1 (t) s2 (t) · · · sn (t)

]T
and the n by n

diagonal constant matrices B and K are given by

B =

⎡

⎢⎢
⎢
⎣

b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn

⎤

⎥⎥
⎥
⎦

, K =

⎡

⎢⎢
⎢
⎣

k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...

0 0 · · · kn

⎤

⎥⎥
⎥
⎦

, (23)

with bi > 0, ki ≥ 0 (i = 1, 2, . . . , n) so that B is
positive definite and K is positive semi-definite. From
Eq. (22), one has

si (t) = ėi (t) + bi ei (t) + ki

∫
ei (t) dt , i = 1, 2, . . . , n. (24)

It is noted that if si ≡ 0, then ei converges to zero
asymptotically as t → ∞.

Now, let us define a Lyapunov function V by:

V := 1

2
sTs = 1

2

n∑

i=1

s2i . (25)

Its time derivative is given by

V̇ = sT ṡ =
n∑

i=1
si ṡi = ∑n

i=1 si (ëi + bi ėi + ki ei )

=
n∑

i=1
si

(
δq̈i + mi

μi
ui + bi ėi + ki ei

)
,

(26)

where u := [
u1 · · · un

]T
and mi

μi
is the i th element of

the n by n matrixM−1
a M which is diagonal, so that

M =

⎡

⎢⎢⎢
⎣

m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn

⎤

⎥⎥⎥
⎦

, Ma =

⎡

⎢⎢⎢
⎣

μ1 0 · · · 0
0 μ2 · · · 0
...

...
. . .

...

0 0 · · · μn

⎤

⎥⎥⎥
⎦

,

(27)

where mi (q, t) , are the known diagonal elements of
the nominal mass matrix, whereas μi

(
qc, t

)
are the

corresponding unknown elements of the actual mass
matrix. We shall assume that the infinity norm of the
inverse of the unknown actual mass matrixM−1

a (qc, t)
has lower and upper bounds so that

0 < μm <

∥∥∥M−1
a

∥∥∥∞ < μM , (28)

where μm and μM are positive constants, and it is
assumed that one has their guestimates. Noting that
Ma is diagonal, Eq. (28) can be rewritten as

μm <
1

μi
(
qc, t

) < μM , i = 1, 2, . . . , n. (29)

Then, the aim is to find an additional control force ui so
that V̇ in Eq. (26) is negative. The conventional sliding
mode controller utilizes the following control force ui :

ui = − 1

mi

[
bi ėi + ki ei√

μmμM
+ Ki sgn (si )

]
, (30)

wheremi is the i th element of the nominal mass matrix
M, and the gain Ki is given by [28]:

Ki =
� +

(
1 −

√
μm
μM

)
|bi ėi + ki ei |

μm
. (31)

However, the discontinuity of the sgn (·) function in
Eq. (30) generally results in undesirable chattering.
Instead, let us first consider a region where the condi-
tion |si | > ε holds where ε is a (small, user-prescribed)
positive number. As shown in Appendix, the following
inequality is then satisfied:

siδq̈i <
�

ε
s2i . (32)

Then, using relation (32), Eq. (26) becomes

V̇ =
n∑

i=1

si

(
δq̈i + mi

μi
ui + bi ėi + ki ei

)

<

n∑

i=1

[
�

ε
s2i + si

(
mi

μi
ui + bi ėi + ki ei

)]
. (33)

Let us choose the additional acceleration ui according
to the relation

ui = − 1

mi

[
�

εμm
si + 1

Di
(bi ėi + ki ei ) + fi (si )

]
, (34)

where fi (si ) is a function to be determined and the
constant Di is chosen by the following rule:

Di =
{

μm, when si (bi ėi + ki ei ) ≥ 0,
μM , when si (bi ėi + ki ei ) < 0.

(35)

Then, Eq. (33) becomes

V̇ <

n∑

i=1

[
�

ε
s2i + si

(
mi

μi
ui + bi ėi + ki ei

)]

=
n∑

i=1

[
�

ε

(
1 − 1

μmμi

)
s2i

+si (bi ėi + ki ei )

(
1 − 1

Diμi

)
− si

μi
fi (si )

]
. (36)
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It is noted that the first term �
ε

(
1 − 1

μmμi

)
s2i and the

second term si (bi ėi + ki ei )
(
1 − 1

Diμi

)
in Eq. (36) are

always negative. In brief, in the region |si | > ε, V̇ < 0
is guaranteed by using Eq. (34) when fi (si ) = 0 or,
when si and fi (si ) have the same sign. Conventionally,
the discontinuous signum function is used as noted in
Eq. (30), resulting in the chattering problem, but now
one can find a number of continuous functions fi (si )
that do not suffer from such chattering. Though the dis-
continuity of Di in ui could cause chattering, the chat-
tering effect can be effectively diminished by allow-
ing the first term in Eq. (34) to dominate the second
term; else, one can freely use a suitable function fi (si )
(and/or gain) for the third term so that it dominates the
second.

Selection of the function fi (si ) will depend on, for
example, the control performance associated with the
control requirements. In this paper, special attention is
paid to the case where

fi (si ) = ηi si , (ηi ≥ 0) (37)

so that si and fi (si ) have the same sign and V̇ < 0 is
guaranteed. Then, using Eqs. (34) and (37) the control
law ui (t) is given by

ui (t) = − 1

mi

[
�

εμm
si + 1

Di
(bi ėi + ki ei ) + ηi si

]

= 1

mi

[
−

(
ki
Di

+ �bi
εμm

+ ηi bi

)
ei

− ki

(
�

εμm
+ ηi

) ∫
ei dt −

(
bi
Di

+ �

εμm
+ ηi

)
ėi

]

=: 1

mi

(
GPi ei + GIi

∫
ei dt + GDi ėi

)
, (38)

where ki ≥ 0, bi > 0, ε > 0, � > 0, and ηi ≥ 0.
Equation (38) shows that the control ui (t) is nothing
but conventional PID control with the control gains
given by

GPi = −
(
ki
Di

+ �bi
εμm

+ ηi bi

)
,

GIi = −ki

(
�

εμm
+ ηi

)
,

GDi = −
(
bi
Di

+ �

εμm
+ ηi

)
. (39)

Up to now, it has been shown that in the region |si | >

ε, V̇ < 0 is guaranteed if the control law, Eq. (34),
is used where fi (si ) = 0 or si and fi (si ) have the
same sign. If, on the contrary, |si | ≤ ε, V̇ < 0 is
not guaranteed and the errors may not converge to zero

(although they are bounded). This is because the control
ui (t) forces the states into the region bounded by |si | ≤
ε instead of onto the sliding surface |si | = 0. However,
ε can be made as small as desired, so that the errors can
accordingly be controlled to user-prescribed demands.

3.2 Positive definite mass matrices

IfM andMa are not diagonal, the procedure introduced
in Sect. (3.1) does not apply because the elements in the
additional control vector, u, get coupled to one another.
In this case, a different approach is used, which should
encompass the previous case where the mass matrix is
diagonal. However, unlike the previous case the matrix
2-norm will be used to prove Lyapunov stability.

When M and Ma are positive definite, we again
define the Lyapunov function as Eq. (25) and its first
derivative satisfies
V̇ = sT ṡ = sT

[
δq̈ + M−1

a Mu + (Bė + Ke)
]

< �
ε
sTs + sT

[
M−1

a Mu + (Bė + Ke)
]
,

(40)

whereB andK are defined in Eq. (23). The last inequal-
ity is proved in Appendix for the case |si | > ε. As in
[29], we assume that the 2-norm of the unknown actual
mass matrix is bounded by

0 < ‖Ma‖2 < λM , (41)

where‖·‖2 denotes the 2-normof amatrix and the lower
bound of ‖Ma‖2 need not be known. Since the matrix
Ma is positive definite, Eq. (41) implies that the largest
eigenvalue associatedwithMa is bounded by a positive
constant λM . Many analytical or numerical approaches
[30,31] are known to estimate this upper bound. Next,
we choose the additional control vector, u, as

u = −M−1
(

λM�

ε
s + λM ‖Bė + Ke‖∞

ε
s + f (s)

)
.

(42)

Substituting Eq. (42) into Eq. (40) yields

V̇ <

(
�

ε
sTs − λM�

ε
sTM−1

a s

)

+
(
sT (Bė + Ke) − λM

‖Bė + Ke‖∞
ε

sTM−1
a s

)

−sTM−1
a f (s) . (43)

The first term,
(

�
ε
sTs − λM�

ε
sTM−1

a s
)
, is less than

zero because

sTM−1
a s >

1

λM
sTs. (44)
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Similarly, the second term on the right in relation (43),
when |si | > ε holds, yields

sT (Bė + Ke) − λM ‖Bė + Ke‖∞
ε

sTM−1
a s

< sT (Bė + Ke) − ‖Bė + Ke‖∞
ε

sTs

=
n∑

i=1

[

si (bi ėi + ki ei ) − ‖Bė + Ke‖∞
s2i
ε

]

< 0.

(45)

In brief, the first and the second terms in Eq. (43) are
less than zero, so if the third term, −sTM−1

a f (s), is
zero or negative, V̇ < 0 is guaranteed. The selection
of f (s) will again depend on the control requirements,
and let us consider the following case as in the previous
subsection:

f (s) = ηs, (η ≥ 0) (46)

where η is a nonnegative constant. Then −sTM−1
a s is

negative, since M−1
a > 0. Now using Eqs. (42) and

(46), the control law is explicitly given by

u = −M−1
(

λM�

ε
s + λM

‖Bė + Ke‖∞
ε

s + ηs
)

= −M−1
(

λM�

ε
+ λM

‖Bė + Ke‖∞
ε

+ η

)
s

= M−1
[
−

(
λM�

ε
+ λM

‖Bė + Ke‖∞
ε

+ η

)

×
(
ė + Be + K

∫
edt

)]

=: M−1
(
GPe + GI

∫
edt + GD ė

)
. (47)

Equation (47) shows that the control u (t) is again a
simple PID control with the control gains given by

GP = −ρB, GI = −ρK, GD = −ρI, (48)

where ρ := λM�
ε

+ λM
‖Bė+Ke‖∞

ε
+ η.

As in the previous subsection, V̇ < 0 has been
proved when |si | > ε. By choosing ε small enough,
one can achieve a user-prescribed level of the tracking
error. Since the control is a continuous function, the
chattering problem is circumvented.

In conclusion, two different additional controllers,
u, have been developed according to whether the mass
matricesM andMa are both diagonal and nondiagonal
but positive definite. Thefirst controller uses the infinity
norm of the matrix, M−1

a , and only applies when the
mass matrices are known to have a diagonal structure.

Fig. 1 Spherical pendulum under air drag

Also, it may have a small amount of chattering because
of the discontinuity of the gain Di given by Eq. (35),
but the other high gains in the expression for u can
be used to successfully mitigate this chattering effect.
The second controller uses the 2-norm of the matrix
Ma (i.e., the largest eigenvalue) and is more general
in that it can be applied regardless of whether the mass
matrix is diagonal or not. Also, chattering is completely
eliminated because only continuous functions are used.

4 Numerical examples

In this section, two numerical examples are given to
illustrate the controlmethodology developed in the pre-
vious sections.

4.1 Spherical pendulum

In the first example, we first consider a nominal system
(with no uncertainty) which comprises a 3-dimensional
pendulum that has a bob of mass m that is suspended
from a massless rod of length L . Besides the force
of gravity, it is also affected by air drag (see Fig. 1).
An inertial frame of reference is fixed at the point of
suspension, O , of the pendulum, and the equation of
motion of the pendulum without any constraint on its
motion is given by

a (t) =
⎡

⎣
ax (t)
ay (t)
az (t)

⎤

⎦ =
⎡

⎣
0
0
−g

⎤

⎦ + gz − ẋ2 − ẏ2 − ż2

x2 + y2 + z2

×
⎡

⎣
x
y
z

⎤

⎦ − 1

2
CD

Sref
m

ρ0 ‖v‖2
⎡

⎣
ẋ
ẏ
ż

⎤

⎦ , (49)
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Fig. 2 Nominal trajectories
a in the x − y plane, b along
the z-axis, and c in 3
dimensions
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where g is the gravitational acceleration,
[
x y z

]T
and

[
ẋ ẏ ż

]T
are the position vector and the velocity vector

of the mass in the inertial frame, respectively. Also,CD

is the drag coefficient, Sref is the cross-sectional area
of the mass, and ρ0 is the air density, all of which are
assumed to be constant, and ‖v‖2 =

√
ẋ2 + ẏ2 + ż2 is

the Euclidean normof the velocity vector. In the numer-
ical example, the nominal values L = 3 (m), m =
5 (kg), g = 9 (m/s2), CD = 0.6, Sref = 0.01π (m2),
and ρ0 = 1.2754 (kg/m3) are assumed. It is noted that
the mass matrix is given by

M (q, t) = mI3×3, (50)

which is diagonal so the control law, Eq. (34), is applied
in this first example.

Next, we describe two constraints (control require-
ments) on this pendulum so that

x2 + y2 = L2

4
, (51a)

z = −
√
3

2
L , (51b)

as shown in Fig. 1. It is noted that the initial conditions
in the inertial frame used for the simulation do not sat-
isfy the constraints, Eqs. (51a) and (51b), which are
chosen as follows:

x0 = L√
2
(m), y0 = L

2
(m), z0 = − L

2
(m),

ẋ0 = −√
2 (m/s), ẏ0 = 2 (m/s), ż0 = 0 (m/s). (52)

Since Eqs. (51a) and (51b) are holonomic constraints,
we employ Eq. (10) instead of Eq. (9). Differentiating
Eqs. (51a) and (51b) with respect to time twice to get
the form of Eq. (12a) yields

[
2x 2y 0
0 0 1

] ⎡

⎣
ẍ
ÿ
z̈

⎤

⎦ =
⎡

⎣
−2ẋ2 − 2 ẏ2 − α (2x ẋ + 2y ẏ) − β

(
x2 + y2 − L2

4

)

−αż − β
(
z +

√
3
2 L

)

⎤

⎦ =
[
b1
b2

]
, (53)

where α = α1 = α2 = 6 and β = β1 = β2 = 5 are
assumed. The required nominal control force, Qc (t),
to exactly track this circular orbit is then given by the
FECM as described in Eq. (8). Its form is explicitly
given by

Qc (t) = m

⎡

⎢
⎣

x
2x2+2y2

(
b1 − 2xax − 2yay

)

y
2x2+2y2

(
b1 − 2xax − 2yay

)

b2 − az

⎤

⎥
⎦ , (54)

where ax , ay , az are given in Eq. (49), and b1, b2 are
found in Eq. (53).

Numerical integration in this example is carried out
in the MATLAB/Simulink environment, using a fixed
time step of 0.0001 second and the ode5 Dormand-
Prince integrator. Figure 2 shows the nominal trajec-
tories in the x − y plane, along the z-axis, and in 3
dimensions. Figure 3 depicts the errors in the satis-
faction of the two constraints, Eqs. (51a) and (51b),
where we define the errors e1 (t) := x2 + y2 − L2

4 and

e2 (t) := z +
√
3
2 L . Without assuming uncertainties,

the control force Qc (t) given by Eq. (54) makes the
system trajectories asymptotically track the trajectory
requirements given in Eqs. (51a) and (51b), despite the
initial nonzero errors along each axis.

Now, it is assumed that the mass, the gravitational
acceleration, and the drag coefficient are all only impre-
cisely known, and their actual values (unknown to us)
are, respectively, ma = 6 (kg), ga = 9.81 (m/s2), and
CD,a = 0.47. Then, the uncertainty caused by the
imprecise information is given by
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Fig. 3 Errors in the
satisfaction of Eqs. (51a)
and (51b) when the control
force Eq. (54) is applied for
the nominal system
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δq̈ (t) = [aa (t) − a (t)] +
(
M−1

a − M−1
)
Qc (t) ,

(55)

where

aa (t) =
⎡

⎣
0
0
−ga

⎤

⎦ + gazc−ẋ2c−ẏ2c−ż2c
x2c+y2c+z2c

⎡

⎣
xc
yc
zc

⎤

⎦

− 1
2CD,a

Sref
ma

ρ0 ‖vc‖2
⎡

⎣
ẋc
ẏc
żc

⎤

⎦ ,

M−1
a = 1

ma
I3×3, M−1 = 1

m I3×3,

(56)

and a (t) and Qc (t) are given in Eqs. (49) and (54),
respectively. Were this uncertainty to be completely
ignored, and only the control,Qc (t), that was obtained
earlier using the FECM with the nominal system
employed, the actual pendulum’s trajectory would no
longer be circular. Figure 4 shows the resulting errors
in the trajectory of the actual pendulum in the satis-
faction of the two constraints (Eqs. 51a and 51b). As
seen in the figure, the two constraints (with the addi-
tional controller set to u = 0) are not satisfied when the
parameters describing the system and the forces acting
on it are uncertain.

In order to compare the newcontinuous slidingmode
controller developed in this paperwith other robust con-
trol methods, the necessary control action taking into
account the uncertainty is next obtained using the con-
ventional PID controller which is of the form:

u = KPe + KI

∫
edt + KD ė, (57)

where the PID gains are fine-tuned as KP = −1200,
KI = −3000, and KD = −45. Figures 5 and 6 plot the
time histories of the tracking errors and the additional

control forces, respectively. The tracking errors plotted
in Fig. 5 represent the difference between the actual,
controlled positions (qc (t)) and the nominal positions
(q (t)) shown in Fig. 2. The trajectories of the actual
system controlled by the additional PID control action
u follow closely those of the nominal system and hence
have not been shown for brevity. The errors are rela-
tively small, comparedwith Fig. 4, and it will be shortly
shown that these errors can get smaller by employing
the new continuous sliding mode controller proposed
in this paper.

Next, the necessary control command in the pres-
ence of the uncertainties is obtained via the conven-
tional slidingmode controller (Eq. 30). The parameters
for the controller u, are chosen as bi = 10 and ki = 5,
and the lower and upper bounds for the mass uncer-
tainty are set to μm = 0.1 and μM = 0.3. Also, the
upper bound of the uncertainty ‖δq̈‖∞ is set to � = 2,
and this value is based on the calculation of the infinity
norm of Eq. (55) and depicted in Fig. 7. It is seen that
the maximum value occurs in the z direction, which is
about 1.4 m/s2.

Figure 8 shows the results. The tracking errors along
each axis are relatively small, compared with Figs. 4
and 5. In Fig. 9, the control force along each axis is
displayed, showing the chattering problem that arises
when conventional sliding mode control is used, i.e.,
high-frequency oscillations in the control force. This
chattering phenomenon is more clearly observed in
Fig. 10 in which the control force u in the y direction
is magnified and plotted only for 0.01 second (between
8.40 and 8.41 seconds). One observes that conventional
sliding mode control generates a kind of bang-bang
control with the maximum value of u of 4.0 m/s2. This
shows that the last term,− Ki

mi
sgn (si ), in Eq. (30) domi-
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Fig. 4 Errors of the actual
pendulum in the satisfaction
of the trajectory
requirement given in Eqs.
(51a) and (51b) with u = 0
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Fig. 5 Tracking errors (qc − q) between the controlled actual
system and the nominal system using the PID controller Eq. (57)

nates the control force u, and this term is seen to be very
sensitive to the value of Ki [i.e., �, μm , and μM (see
Eq. 31)] that is chosen for describing the uncertainty
δq̈ and Ma , respectively.

For comparison, the new PID sliding mode con-
troller given by Eq. (38) that is proposed in this paper
is used for the same problem. We use the parameters,
bi = 10, ki = 5, ε = 0.001, μm = 0.1, μM = 0.3,
� = 2, and η = 0. Figure 11 shows the tracking errors
between the actual, controlled system and the nomi-
nal system along each axis. Comparing with Fig. 8,
one observes that the tracking errors are a little larger
than those in Fig. 8, but it will be shown shortly that
the errors can be further reduced using a larger �.
In Fig. 12, the additional control force u along each
axis is depicted. The magnitude of the control force is
again seen to be much smaller, compared with Fig. 9,
and more importantly, the chattering problem is com-
pletely removed. Figure 13, which plots the control
force u in the y direction for the same time range

as in Fig. 10, clearly shows chattering-free continuous
control. As illustrated here, the new PID sliding mode
control effectively removes chattering and is superior
to conventional sliding mode control in reducing the
magnitude of the control effort u. It is also flexible to
be adjusted to yield smaller tracking errors than the
conventional PID controller as is shown later on. Fig-
ure 14 simultaneously depicts the total control force
Qc +Qu (dashed lines) and the additional control force
Qu(solid lines) obtained by Eq. (38), which shows a
little contribution of Qu to the total control force.

It should be observed that the control Qu is a small
fraction (10% to 15%) of the total control forceQc+Qu

though uncertainties in the mass of the bob and the
air drag coefficient are both about 20%, in addition
to the 9% uncertainty in the value of the gravitational
acceleration g.

In order to see the effects that the selection of the
values for the bounds may have, the same simulation
has been performed assuming the same parameters,
bi = 10, ki = 5, ε = 0.001, μm = 0.1, μM = 0.3,
and η = 0, except for � = 20 which is a much more
conservative guestimate as might happen in a real-life
situation. Figure 15 shows the tracking errors which are
about 10 times smaller than those in Figs. 5 and 8 and
also smaller than those in Fig. 11, because � becomes
10 times larger, or equivalently ε effectively becomes
10 times smaller. However, this larger estimate of the
value of � does not affect the control effort much as
reported in [29]. As seen in Fig. 16, the control force u
is little changed, compared with Fig. 12 where� = 2 is
used. Figure 17 depicts the small differences between
the control forces when � = 2 is employed and those
when� = 20 is used. During the initial transient phase,
relatively large differences are observed because when
� = 20, larger control forces are necessary to constrain
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Fig. 6 Additional control
force u along each axis with
the PID controller Eq. (57)
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Fig. 7 Infinity norm of Eq.
(55) to calculate �

|si | into a smaller region. More specifically, a measure
of the overall control cost as measured by �E defined
by

�Ei =
∫ t f

0
|ui | dt , (i = x, y, z) (58)

for both cases is shown in Table 1. Clearly, the required
control costs are quite insensitive to the variation of the
uncertainty bound �. The reason for this insensitivity
will be resolved in future work.

Next, let us see the effects of the bounds for mass
uncertainty. The same simulation has been executed
assuming the parameters, bi = 10, ki = 5, ε = 0.001,
� = 2, and η = 0, but with μm = 0.01 and μM = 3,
which is a very poor estimate for the mass uncertainty.
The tracking errors and the additional control force
u are shown in Figs. 18 and 19, respectively. The
errors are again about 10 times smaller than those in
Fig. 11. It is seen that the smaller estimate of μm and
the larger estimate of μM used here do not change the
control effort much, as seen in Fig. 19 and as com-
pared with Fig. 12. Figure 20 presents the small differ-
ences between the control forces when μm = 0.01 and
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Fig. 8 Tracking errors (qc − q) between the controlled actual
system and the nominal system using the conventional sliding
mode controller Eq. (30)

μM = 3 is employed and those when μm = 0.1 and
μM = 0.3 is used.As in the larger� case, in Fig. 20 rel-
atively large differences are observed during the initial
transient phase; however, the total control costs again
appear to be insensitive to the choices of μm and μM ,
as indicated in Table 1.
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Fig. 9 Additional control
force u along each axis with
conventional sliding mode
controller Eq. (30)
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Fig. 10 Chattering phenomenon generated with conventional
sliding mode controller Eq. (30)
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Fig. 11 Tracking errors (qc − q) between the controlled actual
system and the nominal system using the new PID sliding mode
controller Eq. (38)

4.2 Triple pendulum

To demonstrate the applicability of the proposed
methodology for the second controller (for the nondi-

agonal mass matrix case), a simple multi-body system
consisting of a triple pendulum is considered.

The planar pendulum consists of three masses m1,
m2, and m3 suspended from massless rods of lengths
L1, L2, and L3 moving in the XY-plane (see Fig. 21).
An inertial frame of reference is fixed at the point of
suspension, O , and the potential energy is measured
using the line OX as the datum. Though simple, the
system can exhibit complex dynamics.

The masses are constrained to move so that the total
energy, E(t), of the system is required to equal the sum
of the energies (kinetic and potential) of only the two
masses m2 and m3, i.e., E(t) = E2(t) + E3(t), where
we have denoted Ei (t) as the total energy of mass mi .

Using the generalized coordinate 3-vector q(t) =
[θ1(t), θ2(t), θ3(t)]T whose components, in the absence
of the above-mentioned energy constraint, are indepen-
dent of one another, Lagrange’s equation for the system
is first written down and yields

M (q;m1,m2,m3, g) q̈ = Q (q, q̇;m1,m2,m3, g) ,

(59)

where the elements of the 3 by 3 symmetric matrix M
are given by

M11 = (m1 + m2 + m3)L
2
1;

M12 = (m2 + m3)L1L2 cos(θ12);
M13 = m3L1L3 cos(θ13)

M22 = (m2 + m3)L
2
2;

M23 = m3L2L3 cos(θ23); M33 = m3L
2
3, (60)

and the elements of the 3-vector Q are given by (see
Eq. (1))

Q1 = −(m2 + m3)L1L2θ̇
2
2 sin(θ12) − m3L1L3θ̇

2
3 sin(θ13)

−(m1 + m2 + m3)gL1 sin θ1
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Fig. 12 Control force u
along each axis with the
new PID sliding mode
controller Eq. (38)
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Fig. 13 Chattering-free continuous control with the new PID
sliding mode controller Eq. (38)

Q2 = (m2 + m3)L1L2θ̇
2
1 sin(θ12)

−m3L2L3θ̇
2
3 sin(θ23) − (m2 + m3)gL2 sin θ2

Q3 = m3L1L3θ̇
2
1 sin(θ13)

+m3L2L3θ̇
2
2 sin(θ23) − m3gL3 sin θ3. (61)

In the above, we have denoted θi j (t) = θi (t) − θ j (t),
and we explicitly show in Eq. (59) the physical param-
eters m1, m2, and m3, and the gravitational accelera-
tion parameter g, which we will later on consider to be
known only imprecisely. As seen in Eq. (60), the ele-
ments of the mass matrix M are now functions of the
3-vector q.

In the second step, we describe the energy constraint
E(t) = E2(t) + E3(t), which is equivalent to the rela-
tion E1(t) = 0, where the energy E1 of mass m1 is
given by

E1 = 1

2
m1L

2
1θ̇

2
1 − m1gL1 cos θ1. (62)

Since the systemmay not initially (at time t = 0) satisfy
the nonholonomic constraint E1(t) = 0, we modify
the constraint using the trajectory stabilization relation
(Eq. 11):

Ė1 + αE1 = 0, (63)

where α > 0 is a positive function. By Eq. (62) and
Eq. (63), we obtain the constraint equation

Aq̈ := [
L2
1θ̇1 0 0

]
q̈ = −gL1 sin θ1θ̇1

−α

(
1

2
L2
1θ̇

2
1 − gL1 cos θ1

)
=: b. (64)

To obtain the equations of motion of the (constrained/
controlled) nominal system, in the final step we use the
information from Eqs. (59)-(61) and Eq. (64) in Eq.
(7), and get

q̈ = a + M−1AT(AM−1AT)+(b − Aa). (65)

In what follows, we shall assume that the real-life triple
pendulum described above has masses whose values
are imprecisely known and that our best assessment of
their (nominal) values is: m1 = 1 (kg), m2 = 2 (kg),
and m3 = 3 (kg). The lengths of the massless rods
are L1 = 1 (m), L2 = 1.5 (m), and L3 = 2 (m).
At t = 0, the masses are located with the angles of
θ1(0) = 1 (rad), θ2(0) = 0 (rad), and θ3(0) = 0 (rad)
(see Fig. 21). The initial velocities are taken to be
θ̇1(0) = 0.01 (rad/s), θ̇2(0) = 0 (rad/s), and θ̇3(0) =
0 (rad/s). Since these initial conditions do not satisfy
the constraint, E1 = 0, the parameter α in Eq. (63)
is chosen to be 0.1 ‖A‖22 where ‖A‖2 is the L2 norm
of the matrix A in Eq. (64). The acceleration due to
gravity is downwards, and its nominal value is taken
to be g = 9.81 (m/s2). Numerical integration through-
out this example is done in theMATLAB environment,
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Fig. 14 Total control force
Qc + Qu (dashed) and the
additional control force Qu

(solid)
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Fig. 15 Tracking errors (qc − q) between the controlled actual
system and the nominal system using the new PID sliding mode
controller Eq. (38) when � = 20

using a variable time step integratorwith a relative error
tolerance of 10−8 and an absolute error tolerance of
10−12.

Figure 22 plots the trajectory ofmassm3 of the triple
pendulum in the XY-plane for a period of 10 seconds.
The start of the trajectory is marked by a circle, and
its end is marked by a square. The energy of mass m1

versus time t is shown in Fig. 23a. Figure 23b shows
the control forceQc so that the nominal system follows
the desired constraint E1 = 0. No control torques are
applied to m2 and m3. Figure 23c shows the L2 norm
of Qc.

We next consider the actual system and suppose that
there is an uncertainty of up to ±10% in each of the
nominal values that were used for the three masses
m1, m2, and m3. We also assume that the accelera-
tion, g, due to gravity is uncertain with a maximum
amplitude of ±5% of its nominal value of 9.81 m/s2.

Thus both the parameters describing the system and the
gravitational force acting on it are uncertain.

With imperfect knowledge of the three masses as
well as the magnitude of the force of gravity that acts
on the actual system, the actual system’s motion is con-
trolled so that it tracks the motion of the controlled
(constrained) nominal system and thereby satisfies the
constraints imposed on the nominal system. The con-
troller u given by Eq. (47) is used.

The equation of motion of the controlled actual sys-
tem, Eq. (16), then becomes

q̈c = aa + M−1
a Qc(t)

−M−1
a

[(
λM�

ε
+ λM

‖Bė + Ke‖∞
ε

+ η

)

(
ė + Be + K

∫
edt

)]
. (66)

The aim is to have the actual system track the trajectory
of the nominal system as though no uncertainty exists
in the prescription of the parameters of the nominal
system. As explained in Sect. 3, this is done using the
additional controller u that compensates for the uncer-
tainties in our knowledge of the actual system.

In order to illustrate the efficacy of our control
method in compensating for our lack of exact knowl-
edge of the actual system, we pick the set δm1 =
0.1 (kg), δm2 = −0.2 (kg), δm3 = 0.3 (kg), and
δg = 0.49 (m/s2) which are assumed to represent
our actual system. To check the performance of our
controller, we perform a simulation using Eq. (66) by
choosing � = 40, and the parameters k = 10, b =
k, η = 50, ε = 10−2, and λM = 30 to specify our
controller. It should be noted that the chosen set of
parameters of the actual system, namely m1 + δm1 =
1.1 (kg),m2+δm2 = 1.8 (kg),m3+δm3 = 3.3 (kg),
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Fig. 16 Control force u
along each axis with the new
PID sliding mode controller
Eq. (38) when � = 20
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Fig. 17 Differences
between the control forces u
when � = 2 and those when
� = 20
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and g+δg = 10.3 (m/s2), represents simply one possi-
bility for the parameter set of the actual system, which
we use here solely for purposes of demonstration. Also,
the values of � and λM are simply guestimates of the
error bounds, and in practice they could be appro-
priately chosen. Usually, they are based on intuition,
experimentation, or, as in this case, past experience
with such a system [12]. As shown below, precise val-
ues for these bounds are not necessary as long as they
are sufficiently conservative.

The trajectories of the three masses of the actual
system follow near-exactly those of the nominal system
(Fig. 22) and have not been shown for brevity. The
maximum (generalized) displacement error qc − q and
(generalized) velocity error q̇c−q̇ between the nominal
system Eq. (65) and the controlled actual system Eq.
(66) are computationally found to be of the order of
O(10−5) and O(10−4) as shown in Figs. 24 and 25,
respectively.

This illustrates the performance of the closed-form
controller proposed in Sect. (3.2); the controlled actual
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Fig. 18 Tracking errors (qc − q) between the controlled actual
system and the nominal system using the new PID sliding mode
controller Eq. (38) when μm = 0.01 and μM = 3

system tracks the trajectories pre-specified by the nom-
inal system in the presence of the ±10% uncertainties
in the masses of the system and the ±5% uncertainty
in gravity field, along with the constraint imposed on
it given by Eq. (63). Also, the continuous control func-
tions in Eq. (47) eliminate chattering.
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Fig. 19 Control force u
along each axis with new
PID sliding mode controller
Eq. (38) when μm = 0.01
and μM = 3
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Fig. 20 Differences
between the control forces u
when μm = 0.1, μM = 0.3
and those when μm = 0.01
and μM = 3
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Table 1 Control costs

� = 2, μm = 0.1, μM = 0.3 � = 20, μm = 0.1, μM = 0.3 � = 2, μm = 0.01, μM = 3

�Ex (m/s) 5.8207 5.8211 5.8212

�Ey (m/s) 6.1812 6.1818 6.1818

�Ez (m/s) 5.9120 5.9125 5.9125

�ETotal (m/s) 17.9139 17.9154 17.9155

The total control torques, u, applied to the actual
pendulum, on the massesm1,m2, andm3 are shown in
Fig. 26. Figure 26d depicts the L2 norm of all control
torques from three masses.

Now, we provide another example in which all the
parameters are identical to those specified in the previ-
ous triple pendulum example except for the values of
the uncertainty bounds � and λM which, recall, were
simply guessed before.We now usemuchmore conser-
vative bounds for these parameters, namely � = 400
and λM = 50.

Of course, the trajectories of the three masses of
the actual system also follow near-exactly those of the

nominal system (Fig. 22). However, themaximumgen-
eralized displacement error e = qc −q and generalized
velocity error ė = q̇c − q̇, shown in Figs. 27 and 28,
respectively, are substantially smaller when compared
with the results shown in Figs. 24 and 25.

We note that while the tracking errors reduce, the
control effort does not change appreciably (see Fig. 29),
as in the example of the spherical pendulum in Sec-
tion 4.1 [29]. The magnitudes of the control torques
that make the actual system mimic the behavior of the
nominal system are comparable with the ones shown
in Fig. 26. The results in Figs. 24, 25, 26, 27, 28 and
29 show an improvement over those obtained in Refs.
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Fig. 21 Triple pendulum with the datum at origin O

[12] and [32] that use a very different generalized slid-
ing mode control strategy to obtain the additional con-
troller u that compensates for the presence of uncer-
tainties, along with fi (s) = ηs3i , η ≥ 0 (see Eq. (46)).
In addition to employing a completely different control
strategy, the use of Eq. (46) allows the controller used
here to be of the more familiar PID type, which has
a long history of usage and can be very easily imple-
mented.

Fig. 22 Motion of mass m3 (m), starting at the circle

5 Conclusions

Two new continuous sliding mode controllers for ref-
erence tracking were proposed. Two independent con-
trol strategies were developed and combined to pre-
cisely track the required reference trajectory even in
the face of substantial uncertainties. The first controller
was derived for reference control input, employing the
concept of the FECM. Development of the second con-
troller constituted the core part of this paper. By tak-

Fig. 23 a Energy E1in
N-m, b constraint torque
(N-m) on mass m1 of the
nominal system to satisfy
the constraint E = E2 + E3
c L2 norm of constraint
torque
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Fig. 24 Displacement tracking errors (rad) between the con-
trolled nominal system and the controlled actual system (qc −q)

Fig. 25 Velocity tracking errors (rad/s) between the controlled
nominal system and the controlled actual system (q̇c − q̇)

Fig. 26 Control torques (rad/s2) on the controlled actual system;
a mass m1, b m2, c m3, and d L2 norm of control torques

Fig. 27 Displacement tracking errors (rad) between the con-
trolled nominal system and the controlled actual system (qc −q)

when � = 400 and λM = 50

Fig. 28 Velocity tracking errors (rad/s) between the controlled
nominal system and the controlled actual system (q̇c − q̇) when
� = 400 and λM = 50

Fig. 29 Control torques (rad/s2) on the controlled actual system;
a mass m1, b m2, c m3, and d L2 norm of control torques when
� = 400 and λM = 50
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ing into account uncertainties in the masses and in
the given forces, new sliding mode controllers were
designed that use continuous functions to remove chat-
tering according to whether the mass matrix is diago-
nal or not. Numerous forms of the control function are
possible depending on practical considerations, and a
simple special PID-form of SMC was shown to pro-
vide high robustness. Though the control laws do not
force the system trajectories exactly to the sliding sur-
face so the errors do not exactly converge to zero, it is
always possible to have these errors as arbitrarily small
as desired. Two examples were simulated to demon-
strate the efficacy of the new controllers whose use
depends onwhether themassmatrix is diagonal or non-
diagonal.

The control schemes were shown to be robust and
insensitive to guestimates of the uncertainties in (i) the
parameters that describe the dynamical system and (ii)
the forces acting on it. Thismakes these schemes attrac-
tive for practical control of real-life complex physical
systems in which the extent of uncertainties in describ-
ing them by mathematical models can, very often, only
be poorly estimated.

Future work includes extension of the proposed
approach tononlinearMIMOsystemswithmismatched
uncertainties. Also, an adaptive method will be devel-
oped such that control parameters are automatically
tuned and one need not measure or estimate the bounds
on the uncertainties.
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Appendix

In this “Appendix”, Eq. (32) is proven when |si | >

ε holds. If si and δq̈i have opposite signs, then Eq.
(32) always holds because the right-hand side is always
positive. Hence, let us consider the following two cases
in which si and δq̈i have the same sign.

Case 1 When si > 0 and 0 ≤ δq̈i < �, since si > 0,
we have

si
ε

> 1 (A1)

from the assumption of |si | > ε.Multiplying both sides
by �si (> 0) yields

�si <
�

ε
s2i . (A2)

From the assumption that si > 0 and δq̈i < �, we have

siδq̈i < �si , (A3)

and from Eq. (A2) it follows that siδq̈i < �
ε
s2i .

Case 2When si < 0 and −� < δq̈i ≤ 0, since si < 0,
|si | = −si and again from |si | > ε, we have

− si
ε

> 1. (A4)

Multiplying both sides by −�si (> 0) yields

− �si <
�

ε
s2i . (A5)

From the assumption that si < 0 and −� < δq̈i , we
have

siδq̈i < −�si , (A6)

and it follows from Eq. (A5) that siδq̈i < �
ε
s2i , and this

completes the proof.
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