
1 23

Nonlinear Dynamics
An International Journal of Nonlinear
Dynamics and Chaos in Engineering
Systems
 
ISSN 0924-090X
Volume 84
Number 3
 
Nonlinear Dyn (2016) 84:1135-1145
DOI 10.1007/s11071-015-2558-3

Constrained motion of Hamiltonian
systems

Firdaus E. Udwadia



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Nonlinear Dyn (2016) 84:1135–1145
DOI 10.1007/s11071-015-2558-3

ORIGINAL PAPER

Constrained motion of Hamiltonian systems

Firdaus E. Udwadia

Received: 5 March 2015 / Accepted: 11 December 2015 / Published online: 31 December 2015
© Springer Science+Business Media Dordrecht 2015

Abstract This paper considers dynamical systems
described by Hamilton’s equations. It deals with the
development of the explicit equations of motion for
such systems when constraints are imposed on them.
Such explicit equations do not appear to have been
obtained hereto. The holonomic and/or nonholonomic
constraints imposed can be nonlinear functions of the
canonicalmomenta, the coordinates, and time, and they
can be functionally dependent. These explicit equa-
tions of motion for constrained systems are obtained
through the development of the connection between
the Lagrangian concept of virtual displacements and
Hamiltonian dynamics. A simple three-step approach
for obtaining the explicit equations of motion of con-
strained Hamiltonian systems is presented. Four exam-
ples are provided illustrating the ease and simplicity
with which these equations can be obtained by using
the proposed three-step approach
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1 Introduction

The explicit equations of motion in the Lagrangian
framework for mechanical systems that are subjected
to holonomic and nonholonomic constraints have been
available for some time now [1], whether or not they
satisfy d’Alembert’s principle [2], and whether or not
the so-called mass matrix is strictly positive definite or
semi-positive definite [3,4]. While these explicit equa-
tionsmay be considered as encompassing nearly all sit-
uations for the description of constrained mechanical
systems, there may be some special situations where
one might be interested in directly developing the
equations of constrained motion for systems described
by Hamilton’s equations. There are many systems in
which the Hamiltonian can be written down easily, and
it is often useful to employ Hamilton’s equations, both
froman analytical and froma computational viewpoint,
for systems that are known to preserve phase volume,
and/or those that have symmetries, and/or those for
which questions of integrability are considered impor-
tant. One then needs an approach to directly obtain the
constrained equations of motion when constraints are
imposed on systems described in this manner. As will
be shown, the development of the closed-form expres-
sions for their constrained motion requires an under-
standing of the connection between the principle of
virtual work and virtual displacements on the one hand,
and the Hamiltonian formulation of mechanics on the
other; it does not hinge on the Legendre transforma-
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1136 F. E. Udwadia

tion. These results help to deepen our understanding
of these fundamental aspects of analytical dynamics,
which to the best of the author’s knowledge appear to
have gone unnoticed so far.

It might be argued that for any given dynamical
system, one can always transform the Hamiltonian (or
Hamilton’s equations for the unconstrained system) as
well as the constraints imposed on it into an equivalent
Lagrangian formulation using the Legendre transfor-
mation, then use the Lagrange formulation to obtain
the constrained equations of motion as described, say,
in Ref. [1], and finally, transform back these Lagrange
equations into Hamiltonian form. While this is indeed
possible, the effort required to work this out, even for
a system with a small number of configuration coordi-
nates and a few constraints, can be substantial. Besides,
such a brute force approach gives no insights regard-
ing the way in which different entities defined in terms
of the Hamiltonian (and its derivatives) enter into the
final constrained equation of motion of the system. An
equation describing the constrained Hamiltonian sys-
tem directly in terms of the canonical momenta and the
coordinates—the so-called p’s and the q’s—that are
used to describe the Hamiltonian of the unconstrained
system as well as the constraints would be generally
more preferable and expeditious to use when deal-
ing with such problems. More importantly, the general
equation developed herein for constrainedHamiltonian
systems exhibits the underlying “structure” of con-
strained Hamiltonian dynamics. As in most of math-
ematical physics, the structure of the equation is sig-
nificant providing new perspectives to our understand-
ing of constrained Hamiltonian dynamics, hence the
motivation for this work.

In this paper, it is assumed that the unconstrained
system is described by a Hamiltonian, H(p, q, t),
where p is the canonical momentum n-vector (n by
1 vector) that is conjugate to the coordinate n-vector
q, and t denotes time. The unconstrained equations of
motion of the system are then

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
(1)

where p and q are n by 1 column vectors (n-vectors).
This 2n-dimensional unconstrained dynamical sys-

tem described by Hamilton’s equations is now further
subjected to the constraints

ϕ(p, q, t) = 0 (2)

where ϕ is an m-vector, and each row, ϕi (p, q, t) = 0,
of this equation set constitutes a constraint on the sys-
tem described by Eq. (1). It is assumed that each such
constraint is at least aC1 function of its arguments. Fur-
thermore, each constraint can be any nonlinear function
of its arguments. The set of constraints are permitted to
be functionally dependent. The constraints described
by Eq. (2) include holonomic and/or nonholonomic
constraints.

Given the unconstrained equations of motion of a
dynamical system by Eq. (1), our aim is to determine
explicitly the constrained equations of motion of this
dynamical systemwhen it is subjected to the set of con-
sistent constraints specified in Eq. (2). The equations
obtained are new and have not been reported in the form
obtained in the extant literature.

The organization of this paper is as follows. Sec-
tion 2 deals with some preliminaries that relate the
Lagrangians of mechanical systems and their Hamil-
tonians. Besides being useful in establishing notation,
they will be used later on in the sequel. In this section,
the pivotal connections between virtual displacements,
virtual work, d’Alembert’s principle, and the Hamil-
tonian formulation are obtained. In Sect. 3.1, the equa-
tions of motion describing a Hamiltonian system when
subjected to the constraint given in Eq. (2) are devel-
oped. A three-step simple and systematic approach for
obtaining these equations is developed in Sect. 3.2.
Section 4 deals with four illustrative examples that
demonstrate the efficacy and ease of application of the
three-step approach presented in Sect. 3.2. The first
two examples deal, respectively, with a holonomic con-
straint and a nonholonomic constraint on a particle. The
third example dealswith a system of particles subjected
to constraints that are both holonomic and nonholo-
nomic with the set being functionally dependent. The
last example deals with a double pendulum wherein a
nonholonomic constraint on the canonical momenta is
imposed. Section 5 discusses the results, some areas of
application, and provides some concluding remarks.

2 Some preliminaries

2.1 Statement of the problem of constrained motion

(i) Unconstrained Hamiltonian Systems. Consider first
the unconstrainedHamiltonian systemgiven byEq. (1).
The canonical momentum n-vector p that is conjugate
to the generalized coordinate n-vector q is defined as
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Constrained motion of Hamiltonian systems 1137

p = ∂L

∂q̇
. (3)

in which L(q, q̇, t) denotes the Lagrangian of the sys-
tem. It is assumed that the kinetic energy of themechan-
ical system can be expressed by a relation of the form

T = 1

2
q̇T M(q, t)q̇ + m̃(q, t)T q̇ + μ(q, t) (4)

where M(q, t) is a positive definite matrix, m̃(q, t) is
an n-vector, and μ(q, t) is a scalar. From relation (3),
the canonical momentum for a conservative system can
then be defined as

p = Mq̇ + m̃ (5)

so that we can define

q̇(p, q, t) = M−1(p − m̃) (6)

where we note that M−1 is positive definite. In the
above two equations, and from here on, the arguments
of the various quantities will be suppressed unless
required for clarity.

We consider a conservative dynamical system and
use relation (6) that expresses q̇ in terms of p, q, and
t , to define the Hamiltonian H of the system as

H(p, q, t) = pT q̇(p, q, t) − L(q, q̇(p, q, t), t). (7)

By taking arbitrary variations of q and q̇ (or equiva-
lently, arbitrary variations of q and p), while keeping
t unvaried, one gets the first relation in Eq. (1) along
with the relation ∂L

∂q = − ∂H
∂q [5]. It is important to note

that these two relations are obtained purely from the
definition of H given by Eq. (7) and not the dynamics;
they are relations that we define.

Using Lagrange’s equation, one obtains the second
relation in equation set (1) because

ṗ = d

dt

(
∂L

∂q̇

)
= ∂L

∂q
= −∂H

∂q
. (8)

Here, the second equality follows from Lagrange’s
equation, and the third from the above-mentioned def-
inition of H . As seen, it is Eq. (8) that invokes the
dynamics of the system; the first relation in Eq. (1) is
simply a consequence of our definition of H .

To obtain a unique solution, the unconstrained sys-
tem described by the two relations in Eq. (1) requires
the initial condition n-vectors p(t = 0) = p0 and
q(t = 0) = q0, where p0 and q0 can be arbitrarily
prescribed. Eq. (1) along with these initial conditions
then describes the initial value problem that defines the
motion of unconstrained Hamiltonian system.

(ii) Description of Constraints. We now further sub-
ject the unconstrained Hamiltonian system described
by Eq. (1) to the set of m constraints described in Eq.
(2).

We note that if the unconstrained system is subjected
to a holonomic constraint φi (q, t) = 0, this constraint
equation can be differentiated with respect to time t , to
yield the corresponding component, ϕi (p, q, t), of the
m-vector ϕ given in Eq. (2) as

∂φi

∂q
q̇ + ∂φi

∂t
= ∂φi

∂q
M−1(p − m̃) + ∂φi

∂t
:= φi (p, q, t), (9)

where q̇ as defined in Eq. (6) is used in the first equality.
Hence, Eq. (2) is general enough to include holonomic
and/or nonholonomic constraints.

Upon differentiation of Eq. (2) with respect to time
t , one obtains

∂ϕ

∂p
ṗ = −∂ϕ

∂q
q̇ − ∂ϕ

∂t
= −∂ϕ

∂q
M−1(p − m̃) − ∂ϕ

∂t
,

(10)

which can be written as

Ap(p, q, t) ṗ = bp(p, q, t) (11)

where

Ap = ∂ϕ

∂p
and bp = −∂ϕ

∂q
M−1(p − m̃) − ∂ϕ

∂t
. (12)

The matrix Ap is an m by n matrix of rank k, and bp is
an m-vector.

We therefore find that ṗ, which is the rate of change
in the canonical momentum of the constrained Hamil-
tonian system, must satisfy Eq. (11) at every instant of
time.

Proper specification of the constrained dynamical
system requires that the n-vectors of initial values, p0
and q0, can no longer be arbitrarily prescribed as before
when the system was unconstrained. Assuming that
these initial conditions are provided at time t = 0,
the initial condition n-vectors p0 and q0 must now sat-
isfy the m constraint equations given in Eq. (2), so that
ϕ(p0, q0, t = 0) = 0. Given such an appropriate set of
initial condition n-vectors that satisfy Eq. (2), Eq. (11)
is then an alternate way of expressing Eq. (2).

(iii)Dynamics of Constrained Hamiltonian Systems. In
the presence of the constraints (described by Eq. (2),
or alternatively, by Eq. (11)) that the Hamiltonian sys-
tem (described by Eq. (1)) is subjected to, the system’s
equations of motion are altered to
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1138 F. E. Udwadia

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
+ QC (p, q, t) (13)

where QC (p, q, t) is the constraint force that arises
because of the imposition of the constraints. Our aim is
to obtain an explicit expression for QC . As pointed out
before, the first equation in equation set (13) is purely
a consequence of our definition of H , and it remains
unchanged; the second equation that deals with the
dynamical description of the system changes in order
to accommodate the presence of the constraints.

2.2 Virtual displacements and Hamiltonian dynamics

Let us suppose that q and q̇ are known at time t . The
virtual displacement n-vector w at time t+ (the instant
immediately following time t) is defined as any nonzero
n-vector from the actual configuration, qa , at time t+
to a “possible” configuration, qpos , at time t+ [6]. A
“possible” configuration is defined as one that satisfies
the constraints. Thus, we have

w(t + dt) =
[
qpos(t) + dtq̇pos(t) + dt2

2
q̈pos(t)

]

−
[
qa(t) + dtq̇a(t) + dt2

2
q̈a(t)

]

+O(dt3) (14)

Since we assume that q and q̇ are known at time
t, qpos(t) = qa(t) and q̇pos(t) = q̇a(t). Hence,

w(t + dt) = dt2

2
[q̈pos(t) − q̈a(t)] + O(dt3). (15)

Furthermore, both the actual and possible positions
must satisfy the constraint Eq. (11), so that

Ap(qpos(t), ppos(t), t) ṗpos = bp(qpos(t), ppos(t), t)

(16)

and

Ap(qa(t), pa(t), t) ṗa = bp(qa(t), pa(t), t). (17)

Since qpos(t) = qa(t) and q̇pos(t) = q̇a(t), we have
(see Eq. (5)) ppos(t) = pa(t), and therefore, subtract-
ing Eq. (17) from Eq. (16), we get

Ap(pa, qa, t)[ ṗpos − ṗa] = 0. (18)

From Eq. (5), we get upon differentiating with respect
to t ,

ṗ = M(q, t)q̈ + Ṁ(q, t)q̇ + ˙̃m(q, t) (19)

and noting again that qpos(t) = qa(t) and q̇pos(t) =
q̇a(t), Eq. (18) after multiplication by dt2

2 reduces to

Ap(pa, qa, t)M(qa, t)[q̈pos − q̈a]dt
2

2
= 0. (20)

Using Eq. (15) and taking the limit as dt → 0, Eq. (20)
yields

Ap(pa, qa, t)M(qa, t)w(t) = 0. (21)

What we have thus found is that at any time t, a
(nonzero) virtual displacement n-vector w must sat-
isfy relation (21). In what follows, for greater clarity,
we shall suppress the subscript “a” in the above equa-
tion.

2.3 D’Alembert’s principle

Inwhat followswe shall assume that d’Alembert’s prin-
ciple is valid. The principle states that at each instant
of time t , for all virtual displacements, that is, for all
nonzero vectors w(t) that satisfy Eq. (21), we must
have

wT QC = 0. (22)

We now have all the preliminaries to obtain the explicit
constrained Hamilton’s equations of motion.

3 Equations of motion

3.1 Explicit equations of motion of the constrained
Hamiltonian system

We begin by noting that

∂ q̇

∂p
= Hpp = M−1(q, t) (23)

where the positive definite matrix Hpp = ∂2H
∂p2

. The
first equality above comes from Eq. (1) and the second
from Eq. (6). Thus, by Eq. (21), a virtual displacement
is any nonzero n-vector w(t) that satisfies the relation

ApH
−1
pp w = 0. (24)

Denoting Bp := ApH
−1/2
pp and u := H−1/2

pp w, Eq. (24)
becomes

Bpu = 0 (25)

whose solution is [7,8]

u = (I − B+
p Bp)y (26)
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Constrained motion of Hamiltonian systems 1139

where y is an arbitrary n-vector, and X+ denotes the
Moore–Penrose inverse of the matrix X . Furthermore,
since the constraints must be satisfied, the p’s and q’s
must satisfy Eq. (2), or alternately Eq. (11), so that

Ap ṗ = Bp(H
1/2
pp ṗ) = bp (27)

whose solution is

H1/2
pp ṗ = B+

p bp + (I − B+
p Bp)ξ (28)

where ξ is an arbitrary n-vector [9]. Our aim is now
to explicitly find the second member on the right-hand
side of Eq. (28) so that d’Alembert’s principle is satis-
fied.

From relations (22) and (24), it is seen that
d’Alembert’s principle requires that at each instant of
time t ,

wT QC = 0 for all nonzero n-vectors w

that satisfy ApH
−1
pp w = 0. (29)

This can be restated as requiring that at each instant of
time t , we must have

uT H1/2
pp

[
ṗ + ∂H

∂q

]
= 0 for all nonzero n-vectors u

that satisfy Bpu = 0, (30)

where we have substituted for QC using Eq. (13). From
Eq. (28), we find that

uT H1/2
pp

[
ṗ + ∂H

∂q

]

= uT
[
B+
p bp + (I − B+

p Bp)ξ + H1/2
pp

∂H

∂q

]
. (31)

Also, if u is such that Bpu = 0, then this would imply
that uT B+

p = 0 [6], and hence, d’Alembert’s principle
would require that at each instant of time,

uT
[
ξ + H1/2

pp
∂H

∂q

]
= 0 for all n-vectors u

that satisfy Bpu = 0. (32)

But the vectors u that satisfy the relation Bpu = 0
are given in Eq. (26), where y is an arbitrary n-vector.
Hence, we must have

yT (I − B+
p Bp)

[
ξ + H1/2

pp
∂H

∂q

]
= 0 for all n-vectors y.

The last equality then requires that

(I − B+
p Bp)ξ = −(I − B+

p Bp)H
1/2
pp

∂H

∂q
. (33)

Using Eq. (33) in the second member on the right of
Eq. (28), we obtain the equation of motion of the con-
strained Hamiltonian system as

ṗ = −∂H

∂q
+ H−1/2

pp B+
p

(
bp + BpH

1/2
pp

∂H

∂q

)
. (34)

Noting that Bp = ApH
−1/2
pp , the equations ofmotion of

the Hamiltonian system (1) when it is further subjected
to the constraint m-vector ϕ(p, q, t) = 0 given in Eq.
(2) are explicitly given by

q̇ = ∂H

∂p

ṗ = −∂H

∂q
+ H−1/2

pp (ApH
−1/2
pp )+

(
bp + Ap

∂H

∂q

)
.

(35)

Another alternative and useful form of the second rela-
tion in Eq. (35) can be obtained by using the identity
X+ = XT (XXT )+ which is valid for any matrix X
[8]. This yields

q̇ = ∂H

∂p

ṗ = −∂H

∂q
+H−1

pp AT
p (ApH

−1
pp AT

p )+
(
bp+Ap

∂H

∂q

)
.

(36)

Remark 1 When the Hamiltonian system is subjected
to a single constraint, then Ap is a 1 by n matrix, and
then ApH−1

pp AT
p > 0 becomes a scalar. In such situ-

ations, Eq. (36) is easier to use since the generalized
inverse of a nonzero scalar is simply its reciprocal (see
the example in Sect. 4.4). ��
Remark 2 When the constraints are all independent
so that the matrix A has full rank m, the equation
for ṗ in Eq. (36) simplifies because (ApH−1

pp AT
p )+ =

(ApH−1
pp AT

p )−1, and one can then simply use the reg-
ular inverse of the matrix on the right-hand side. ��
As stated before, the first equation in the equation set
(35) (or the set (36)) is simply the outcome of our def-
inition of the Hamiltonian. The second equation in the
equation set (35) [or the set (36)] deals with the dynam-
ics of constrainedHamiltonian systems and exhibits the
deep structure of constrained motion. Let us then con-
sider this second equation in greater detail.

The first member on the right-hand side of this
(second) equation, − ∂H

∂q , is the ṗ corresponding to
the unconstrained Hamiltonian system (see the second
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1140 F. E. Udwadia

relation in Eq. (1)). The second member on the right-
hand side (in this second equation) can be written as
H−1/2

pp (ApH
−1/2
pp )+[bp − Ap(− ∂H

∂q )]. We note that ṗ
for the constrained system must satisfy the constraint
bp − Ap ṗ = 0 given in Eq. (11). Were we to substitute
ṗ (= − ∂H

∂q ) obtained from the unconstrained Hamil-
tonian system into this constraint relation, it would,
in general, not be satisfied. In fact, we would then
get the error, e(p, q, t) := [bp − Ap(− ∂H

∂q )], which
is simply the extent to which the ṗ of the uncon-
strained Hamiltonian system does not satisfy the con-
straint given by Eq. (11). Thus, the second equation
of the set (35) informs us that the canonical momen-
tum of the unconstrained system that is expressed by
− ∂H

∂q , is altered by the presence of the constraint given
by Eq. (2) through an additional additive term given
by the second member on the right-hand side, namely
H−1/2

pp (ApH
−1/2
pp )+e. This additional term explicitly

shows the effect of the presence of constraints on
Hamiltonian systems. We observe that the term is
directly proportional to the error e. The matrix of pro-
portionality is H−1/2

pp (ApH
−1/2
pp )+, and each of the ele-

ments of this matrix are, in general, nonlinear functions
of p, q, and t .

3.2 A three-step approach for obtaining the explicit
equations of motion of the Hamiltonian systems
that are constrained

Consider an unconstrained mechanical system
described by Hamilton’s equations as in Eq. (1). This
unconstrained system is further subjected to a set of
m consistent (holonomic and/or nonholonomic) con-
straints as in Eq. (2). Our discussion above points to
a simple, systematic three-step approach for obtaining
the equations ofmotion of such a system in the presence
of these m constraints.

(i) First, Hamilton’s equations for the unconstrained
system are obtained (or written down).

(ii) Second, the matrix Ap and the column vector bp
that specify the constraints are determined (see
Eq. (11)). Hpp is found using the first equality in
Eq. (23).

(iii) Finally, the constrained equation of motion of the
system is directly computed using either Eq. (35)
or Eq. (36).

4 Illustrative examples

In this section, four examples of the use of the explicit
equations obtained in Sect. 3.1 are provided. The
examples are purposely chosen to be relatively simple
because they are meant to be purely illustrative. The
three-step approach stated in Sect. 3.2 is used, and the
three steps are clearly identified in each example.

4.1 Spherical pendulum

(i) Unconstrained Hamiltonian system
Following the three-step approach described above,

in the first step, we obtain Hamilton’s equations for the
unconstrained system consisting of a particle of mass
m subjected to a downward force of gravity.

Using an inertial coordinate frame whose z-axis
points vertically downwards, and denoting the position
of the particle by the three-vector q = [x, y, z]T , the
Hamiltonian of the particle is given by

H = 1

2m
pT p − mgz (37)

where p = [px , py, pz]T and px , py, and pz denote
the momenta in the x-, y-, and z-directions, respec-
tively. Hamilton’s equations for the unconstrained sys-
tem are then

q̇ = ∂H

∂p
= p

m
, ṗ = −∂H

∂q
= [0, 0,mg]T . (38)

(ii) Description of constraints
In order to model the spherical pendulum, the parti-

cle is subjected to the holonomic constraint specifying
that its distance from the origin O of the coordinate sys-
tem is a constant L . This constraint can be expressed
as

x2 + y2 + z2 − L2 = qT q − L2 = 0. (39)

Differentiating Eq. (38) with respect to time, we obtain
the constraint equation

ϕ(p, q) := qT p = 0. (40)

A second differentiation with respect to time yields the
constraint equation

Ap ṗ = bp (41)

where Ap = qT and bp = − 1
m pT p.

The matrix H−1
pp = mI3.
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Constrained motion of Hamiltonian systems 1141

(iii) Dynamics of constrained Hamiltonian system
Substituting in Eq. (36) now yields the equation of

motion of the spherical pendulum as

q̇ = p

m
, and

ṗ =
⎡
⎣ 0

0
mg

⎤
⎦ − m

L2

(
1

m2 p
T p + gz

)
q. (42)

4.2 Particle with nonholonomic constraint

(i) Unconstrained Hamiltonian System
Consider a free particle with coordinates q =

[x, y, z]T in an inertial frame of reference. Its Hamil-
tonian is

H = 1

2m
pT p (43)

where p = [px , py, pz]T is its momentum.

(ii) Description of Constraints
Let the particle be constrained so that

ϕ(p, q) := z2 px − py = 0. (44)

Differentiation of this equation with respect to time
yields

[z2,−1, 0] ṗ = −2zpx pz
m

(45)

so that Ap = [z2,−1, 0], and bp = −2zpx pz/m.
From Eq. (43), H−1

pp = mI3.

(iii) Dynamics of Constrained Hamiltonian System
Using Eq. (36), the equations of motion of the non-

holonomically constrained particle are obtained as

q̇ = p

m
, and

ṗ = − 2zpx pz
m(1 + z4)

⎡
⎣ z2

−1
0

⎤
⎦ . (46)

4.3 System of two particles on an inclined plane
subjected to functionally dependent holonomic
and nonholonomic constraints

Consider two-point particles with masses m1 and m2

that move on a frictionless plane inclined at an angle α

to the horizontal. The particles are connected by amass-
less (rigid) rodof length L , and eachmass is constrained

g
2m

1m

2v

1v
L

Y
X

α

Fig. 1 Two-point particles of masses m1 and m2 moving on a
frictionless inclined plane. The particles are always to be at a
constant distance L from one another, and their velocities �v1 and
�v2 are always required to be perpendicular to the line joining
them

so that its velocity lies in the plane and is always per-
pendicular to the line going through them. See Fig. 1.
This model is motivated by the problem of describing
the motion of two thin circular discs (wheels) whose
centers are connected by a light axle of length L . The
explicit equations of motion for this system will be
obtained.

(i) Unconstrained Hamiltonian System
The unconstrained Hamiltonian system will com-

prise of the two-point masses on the inclined plane,
each subjected to the force of gravity. For convenience,
an inertial frame whose X- and Y-axes lie in the plane
of motion and whose Z-axis is normal to the plane of
motion is used (see Fig. 1). The Hamiltonian of the
unconstrained two-dimensional motion of the system
in the XY plane is given by

H =
2∑

i=1

[
p2xi
2mi

+ p2yi
2mi

]
+ g(m1y1 + m2y2) sin α

(47)

where pxi and pyi are the momenta in the X- and Y-
directions, respectively, of mass mi . Hamilton’s equa-
tions for this unconstrained system are then

ẋ :=

⎡
⎢⎢⎣
ẋ1
ẏ1
ẋ2
ẏ2

⎤
⎥⎥⎦ =

[
px1
m1

,
py1
m1

,
px2
m2

,
py2
m2

]T

,

ṗ :=

⎡
⎢⎢⎣
ṗx1
ṗy1
ṗx2
ṗy2

⎤
⎥⎥⎦ = −g sin α

⎡
⎢⎢⎣

0
m1

0
m2

⎤
⎥⎥⎦ . (48)
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(ii) Description of Constraints
The constraints on the system are described by the

following three equations:

(x1 − x2)
2 + (y1 − y2)

2 = L2 (49)
(x1 − x2)

m1
px1 + (y1 − y2)

m1
py1 = 0 (50)

(x1 − x2)

m2
px2 + (y1 − y2)

m2
py2 = 0. (51)

The first of these equations constrains the distance
between the two masses to equal L , while the remain-
ing two ensure that the velocity of each mass is always
perpendicular to the line going through the two of them.

Differentiating Eq. (49) twice with respect to time
and the other two once with respect to time, we obtain
the relations

(x1 − x2)

(
ṗx1
m1

− ṗx2
m2

)
+ (y1 − y2)

(
ṗy1
m1

− ṗy2
m2

)

= −
(
px1
m1

− px2
m2

)2

−
(
py1
m1

− py2
m2

)2

(52)

(x1 − x2)

m1
ṗx1 + (y1 − y2)

m1
ṗy1

= (px1 px2 + py1 py2)

m1m2
− p2x1 + p2y1

m2
1

(53)

(x1 − x2)

m2
ṗx2 + (y1 − y2)

m2
ṗy2

= p2x2 + p2y2
m2

2

− (px1 px2 + py1 py2)

m1m2
, (54)

so that

Ap =
⎡
⎣a1 b1 −a2 −b2
a1 b1 0 0
0 0 a2 b2

⎤
⎦ and

bp =

⎡
⎢⎢⎢⎢⎣

2p12
m1m2

− p21
m2
1

− p22
m2
2

p12
m1m2

− p21
m2
1

p22
m2
2

− p12
m1m2

⎤
⎥⎥⎥⎥⎦ (55)

where

ai = (x1 − x2)/mi , bi = (y1 − y2)/mi , (56)

p2i = p2xi + p2yi , i = 1, 2, and (57)

p12 = px1 px2 + py1 py2 . (58)

One observes that the three constraints given in Eqs.
(52)–(54) are not independent since the three rows of
the matrix Ap are indeed not independent. We might
have inferred this from a physical point of view since

the requirement at each instant of time that the veloc-
ities of the two masses always be perpendicular to the
line joining them necessitates that the distance between
the two masses remain a constant, L—the same dis-
tance that the two masses started out with at time
t = 0. In what follows, we continue to use the three
functionally dependent constraints to demonstrate that
Eq. (36) is valid even when the constraints are func-
tionally dependent. While in this example this depen-
dence could have been inferred from the start from an
understanding of the physics, in complex mechanical
systems where there may be many constraints, such
dependencies are often difficult to decipher, especially
when several nonholonomic constraints are involved.
It is important to notice that were the Lagrange multi-
plier approach used to obtain the constrained equations
of motion, it would run into difficulties when the con-
straints are functionally dependent.

Noting relation (48), the 4-by-4 block diagonal

matrix Hpp = Diag
[

I2
m1

, I2
m2

]
, where I2 is the 2-by-2

identity matrix.

(iii) Dynamics of constrained Hamiltonian system
Using Eq. (36), we assemble the various elements

on the right-hand side of its second member:

(ApH
−1
pp ATp )+

= 1

9L2

⎡
⎣ m1 + m2 2m1 − m2 m1 − 2m2
2m1 − m2 4m1 + m2 2(m1 + m2)

m1 − 2m2 2(m1 + m2) m1 + 4m2

⎤
⎦ ,

(59)

H−1
pp ATp (ApH

−1
pp ATp )+

= 1

3L2

⎡
⎢⎢⎣
m1(x1−x2) 2m1(x1−x2) m1(x1−x2)
m1(y1−y2) 2m1(y1−y2) m1(y1−y2)
m2(x2−x1) m2(x1−x2) 2m2(x1−x2)
m2(y2−y1) m2(y1−y2) 2m2(y1−y2)

⎤
⎥⎥⎦

(60)

and

bp + Ap
∂H

∂q

=

⎡
⎢⎢⎢⎢⎣

2p12
m1m2

− p21
m2
1

− p22
m2
2

p12
m1m2

− p21
m2
1

+ (y1 − y2)g sin α

p22
m2
2

− p12
m1m2

+ (y1 − y2)g sin α

⎤
⎥⎥⎥⎥⎦ . (61)

The equation of motion of the constrained system is
then given by the relations

ẋ =
[
px1
m1

,
py1
m1

,
px2
m2

,
py2
m2

]T

, (62)

123

Author's personal copy



Constrained motion of Hamiltonian systems 1143

and

ṗ = −g sin α

⎡
⎢⎢⎣

0
m1

0
m2

⎤
⎥⎥⎦

+ 1

3L2

⎡
⎢⎢⎣
m1(x1 − x2) 2m1(x1 − x2) m1(x1 − x2)
m1(y1 − y2) 2m1(y1 − y2) m1(y1 − y2)
m2(x2 − x1) m2(x1 − x2) 2m2(x1 − x2)
m2(y2 − y1) m2(y1 − y2) 2m2(y1 − y2)

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

2p12
m1m2

− p21
m2
1

− p22
m2
2

p12
m1m2

− p21
m2
1

+ (y1 − y2)g sin α

p22
m2
2

− p12
m1m2

+ (y1 − y2)g sin α

⎤
⎥⎥⎥⎥⎦ . (63)

Simplifying Eq. (63), the equations of motion of the
constrained Hamiltonian system become

ẋ :=
[
px1
m1

,
py1
m1

,
px2
m2

,
py2
m2

]T

, and

ṗ = −g sin α [0,m1, 0,m2]
T

+ 1

m1m2L2 [(x1 − x2) f1, (y1 − y2) f1,

(x1 − x2) f2, (y1 − y2) f2]
T (64)

where

f1 = [m1 p12 − m2 p
2
1 + m2

1m2g(y1 − y2) sin α] (65)

and

f2 = [m1 p
2
2 − m2 p12 + m1m

2
2g(y1 − y2) sin α]. (66)

The secondmember on the right-hand sides of Eqs. (63)
and (64) explicitly gives the contribution to ṗ caused by
the presence of the constraints given in Eqs. (49)–(51).

While not obvious from these equations, it can be
shown with a little algebra that for a given set of initial
conditions, the motion of the system is independent of
the values of the masses m1 and m2, perhaps a some-
what nonintuitive result.

4.4 Constrained double pendulum

Consider the double pendulum shown in Fig. 2. The
arms of the pendulum are of lengths L1 and L2. The
point masses at the end of each arm have valuesm1 and
m2, and the two armsof the pendulumare assumed to be
massless. The upper mass is m1. The system is Hamil-
tonian. The upper arm of length L1 makes an angle θ1
with the vertical, and the lower arm makes an angle θ2
as shown in Fig. 2. The aim is to determine the explicit

1

2

1L

2L
1m

2m

O

θ

θ

Fig. 2 A double pendulum with point masses m1 and m2. The
datum for measuring the potential energy is the horizontal going
through the point of support, O

equation of motion of the system in the presence of
the nonholonomic constraint p1(t) = αp2(t) sin(ωt)
where p1(t) and p2(t) are the canonical momenta con-
jugate to the coordinates θ1 and θ2. The constantsω �= 0
and α �= 0 are scalars.

(i) Unconstrained Hamiltonian System
From the kinetic energy, T , and the potential energy,

V , of the unconstrained double pendulum system (see
Fig. 2), its Hamiltonian (energy) can be obtained as

H = T + V

= 1

2

(m1 + m2)l21 p
2
2 + m2l22 p

2
1 − 2m2l1l2 p1 p2 cos θ12

m2l21 l
2
2	

−m1gl1 cos θ1 − m2g(l1 cos θ1 + l2 cos θ2) (67)

where 	 = m1 +m2 sin2(θ12), and θ12 = θ1 − θ2. The
canonical momenta are given by

p :=
[
p1
p2

]
=

[
(m1 + m2)l21 m2l1l2 cos θ12
m2l1l2 cos θ12 m2l22

] [
θ̇1
θ̇2

]
.

(68)

We note that the matrix on the right-hand side of Eq.
(68) is H−1

pp (see Eqs. (5) and (23)).
Hamilton’s equations of motion describing the

unconstrained system are then

θ̇ :=
[

θ̇1
θ̇2

]

= ∂H

∂p
=

⎡
⎣

l2 p1−l1 p2 cos(θ12)
l21 l2	

(m1+m2)l1 p2−m2l2 p1 cos(θ12)
m2l1l22	

⎤
⎦ (69)

ṗ :=
[
ṗ1
ṗ2

]

= −∂H

∂θ
=

[

 − (m1 + m2)l1g sin θ1

−
 − m2l2g sin θ2

]
(70)
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where


(p, θ) = m2l1l2T sin(2θ12) − p1 p2 sin(θ12)

l1l2	
(71)

and the kinetic energy T is given by the first member
on the right-hand side in Eq. (67).

(ii) Description of constraints
Differentiating the constraint, p1(t) = αp2(t)

sin(ωt), with respect to time, we obtain the relation

ṗ1 − α ṗ2 sin(ωt) = ωα cos(ωt)p2 (72)

so that Ap = [1− α sin(ωt)] and bp = ωα cos(ωt)p2.

(iii) Dynamics of constrained Hamiltonian system
The second equation in Eq. (36) that describes the

constrained system can be written simply as

ṗ = −∂H

∂θ
+

(
bp + Ap

∂H
∂θ

)
ApH

−1
pp AT

p

H−1
pp AT

p

= −∂H

∂θ
+ γ2

γ1
H−1

pp AT
p . (73)

This is because Ap is a row vector, and hence, the
matrix γ1 := (ApH−1

pp AT
p ) is a scalar whose general-

ized inverse is just its reciprocal (see Remark 1). Also,
γ2 := bp + Ap

∂H
∂θ

is a scalar that can be readily com-
puted. Furthermore, the matrix H−1

pp AT
p is simply the

matrix shown in Eq. (68)multiplied by the column vec-
tor AT

p .
Using Eq. (70), the constrainedmotion of the double

pendulum is then described by the equations

θ̇ =
⎡
⎣

l2 p1−l1 p2 cos(θ12)
l21 l2	

(m1+m2)l1 p2−m2l2 p1 cos(θ12)
m2l1l22	

⎤
⎦

ṗ :=
[


 − (m1 + m2)l1g sin θ1
−
 − m2l2g sin θ2

]

+γ2

γ1

[
(m1 + m2)l21 − αm2l1l2 cos θ12 sin(ωt)

m2l1l2 cos θ12 − αm2l22 sin(ωt)

]

(74)

where

γ1 = (m1 + m2)l
2
1 − 2αm2l1l2 cos(θ12) sin(ωt)

+α2m2l
2
2 sin

2(ωt) (75)

and

γ2 = αωp2 cos(ωt) − [1 + α sin(ωt)]
 + (m1 + m2)

l1g sin(θ1) − α sin(ωt)m2l2g sin(θ2). (76)

5 Conclusions

This paper gives the explicit equations of motion
for general Hamiltonian systems subjected to holo-
nomic and/or nonholonomic constraints of the form
ϕi (p, q, t) = 0, i = 1, 2, . . . ,m. These equations
do not seem to be available as of now in the current
literature. The constraints can be nonlinear in their
arguments and functionally dependent. Starting with
an unconstrained Hamiltonian system, the central con-
nection between virtual displacements and the Hamil-
tonian formulation is first established. From this, the
explicit equations of motion for the constrained system
are then developed. A simple and systematic three-step
approach is presented for getting these equations.

For purposes of illustration, four model examples
employing these new equations are provided. The
examples cover holonomic and/or nonholonomic con-
straints. The ease with which the equations of the con-
strained system can be obtained is demonstrated, and
the three-step approach is clearly identified in each
example. Functionally dependent constraints as well
as time-dependent constraints are included.

It is important to point out that the entire approach
presented herein is innocent of the notion of Lagrange
multipliers, a notion that is usually employed to find
the equations of motion of constrained mechanical sys-
tems [5,10]. The present approach has the advantage
that it gives explicit equations of motion of constrained
systems, (i) even when the constraints are nonlinear
functions of the arguments and hence are not restricted
to so-called Pfaffian forms, and (ii) even when they are
functionally dependent. The latter situation commonly
arises in modeling complex mechanical systems that
may require several nonholonomic constraints where
functional independence can become difficult to estab-
lish.

The explicit equations describing constrainedmotion
that are obtained in this paper for systemswhose uncon-
strained dynamics are described by Hamiltonian’s
equations are the analogs of those obtained earlier for
systems whose unconstrained motion is described by
Lagrange’s equations [1] and by Poincare’s equations
[11,12].

The usefulness of the explicit equations of motion
for constrained mechanical systems goes beyond the
field of analytical dynamics and has significant impli-
cations in areas like nonlinear control. This is because
the placement of control requirements on nonlinear,
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nonautonomous dynamical systems can very often be
regarded as the imposition of a set of constraints on
them. Use of these explicit equations for constrained
motion then provides a simple means of finding, in
closed form, the (generalized) control forces required
to exactly satisfy the control requirements placed on
nonlinear nonautonomous dynamical systems. In addi-
tion, it can be shown that these control forces can be
made to simultaneously minimize a suitable norm of
the control cost at each instant of time (see, for exam-
ple, Refs. [13,14]).
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