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An analytical study of the dynamics of a piecewise cubic map depending on two parameters is
carried out in this paper. For this type of map, it is shown that a stable fixed point coexists with a
chaotic attractor. The way in which the deterministic dynamics of the map undergoes chaos is not
representable by means of the standardly proposed routes to chaos. It appears that in this case the
chaos is initiated by the appearance of an unstable solution born out of a tangent bifurcation. The
general geometric approach presented here in obtaining the analytical results does not make use of
the Schwarzian curvature of the map. Moreover, it is shown that only the first few iterates essen-
tially describe the global dynamics of the map. The methodology presented here could be used to
good advantage for understanding the dynamics of other types of maps as well. Computational re-
sults are provided by the cell-mapping method to expose and confirm the analytical results given in

this paper.

I. INTRODUCTION

The study of iterated maps is becoming an important
aspect of the study of nonlinear systems; see Bernussou,’
Collet and Eckmann,?> and Devaney.3 Such maps have
been of interest to population biologists, mathematicians,
engineers, physicists, and chemists to name but a few dis-
ciplines in which their application arises; see Berge
et al.,* Guckenheimer and Holmes, ° Lichtenberg and
Lieberman,® Moon,” Thompson and Stewart,? and Zaslav-
sky.® Though great strides have been made in the last ten
years or so in deciphering the nature of the iterated tra-
jectories, there are several simple maps which often arise
in practical applications which appear to fall beyond
those for which general results are available today. This
paper considers one such map which occurs commonly in
mechanical and structural systems. It is described by the
two-parameter family given by

ax, +pBx}, 0<x,

Xy +1=f(x,)= all—x, )4 B1—x, P, L<x, <1. (1)

Here, 3 is restricted to the range [0,4(2—a)] so that
f:[0,1]—[0,1], and a is restricted to be non-negative.

Several studies have been conducted on one-
dimensional cubic maps. We only cite a few references
here: Chavoya-Aceves and Angulus-Brown,'® Arecchi
et al.,"! Testa and Held,'? Hu and Mao,!® Pikovsky,
Fraser and Kapral,’> Rogers and Whitley,'® and
Holmes.!” The map given by (1) differs from the maps
analyzed in the above references in that it is a piecewise
continuous function and it depends on two parameters.
Moreover, we undertake a geometrical approach to un-
derstand the dynamics of the map and substantiate this
with computational results.

Maps of the form (1) often arise as point maps obtained
from differential equations (for example, the van der Pol
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oscillator and Poincaré sections of the Lorenz map; see
Berge et al.*). Yet the map is not C! and its Schwarzian
curvature depends on the parameters a and 3 as shown
below,

M, 0<x <1
B (a+3Bx?2)? "2
SI= ) 6ga—ep1—x) ., @
[a+3B(1—x)?P "7
1/2

The Schwarzian curvature is positive for x <(a/683)
and x > 1—(a/68)'/2. For example, the Schwarzian cur-
vature is positive for x €[0,1] when 8 < %a.

The techniques that we use appear to be generic in na-
ture, especially for symmetric maps. They rely crucially
on the geometrical interpretation of the successive maps.
It is shown that the first few iterates of the peak of the
map are sufficient in unravelling the global dynamic be-
havior of the system. The advantage of the approach is
that analyses similar to the one performed here can be
applied to other maps which have both negative Schwar-
zian curvature (like the logistic map) and positive curva-
ture [like the map given by Eq. (1)].

The cubic map given by Eq. (1) displays a route to
chaos which is nonstandard. The transition to chaos is
born from a tangent bifurcation which immediately ex-
plodes through the development of an infinite number of
unstable fixed points. Unlike the logistic map, the
modulus of the slope of the cubic map given by (1) in an €
neighborhood around this tangent bifurcation point is al-
ways greater than unity. Hence, the unusual route to
chaos. In addition, for certain ranges of parameters «a
and f3, a stable fixed point coexists with the chaotic at-
tractor. This chaotic attractor, in turn, for a certain
range of parameter values, becomes a period two chaotic
attractor with each trajectory alternatively visiting each
of its two pieces.
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In Sec. II, we begin with analytical results of the cubic
map f followed by their computational verification and
exposition. The Appendix briefly deals with the details of
the computational technique of cell-to-cell mapping used
in Sec. II. Concluding remarks appear in Sec. III.

II. PROPERTIES OF THE CUBIC MAP f

We present results regarding the dynamic behavior of
the map f. Neither the shape of the map nor specific
reference to its Schwarzian curvature is needed to arrive
at the results presented in this section.

Lemma 1. If a<1 (a>1), the fixed point x =0 is an
asymptotically stable (unstable) fixed point.

Proof. Noting that f'(x)=a+3Bx? x €[0,1], the re-
sult is obvious. |

Lemma 2. If a<1 and B<4(1—a), then the map f
has only one asymptotically stable fixed point at x =0.
The entire interval [0,1] is attracted towards this attracting
fixed point.

Proof. In the region I} =[0,1], for a period one solu-
tion we require

ax¥+pxtP=x}, xr €I, (3)
so that
: 1/2
x¥= Ba 4)
which exists for BZ4(1—a). Note that

f(xt)=3—2a>1 for a<1 and x} is always unstable.
Choosing x{ =1 and noting that under the stipulated
conditions f(x{ ) <1, the entire interval [0,1] is attracted
to x =0. |

Note that for B<4(1—a), x| €I, coalesces with x =0
and x =0 is the only fixed point which is stable. When
B=4(1—a), except for the unstable fixed point x} =1,
the result of Lemma 2 is applicable.

Lemma 3. For a<1 and B>4(1—a), the map f has
three fixed points.

Proof. In addition to the stable fixed point at x =0, we
have a fixed point at x =x ¥, where x| is given by (4) and
at x =x5, where

x>=1—y (5)
and y is the real root of the cubic equation

By +(1+a)y —1=0. (6)

]

Equation (6) has only one real root given by

y:r1/3__ 1+a

33’.1/3 ’
1 41+a) 2 7
_ 1 a
ria,B)= 2B 1+ ll+%273 ]
for pB>0. When =0, then y=1/(1+a),

x3 =a/(1+a). We note that the fixed point at x =0 has
the interval [0,x] ) and (1—x7,1] as its region of attrac-
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tion. Both x} and xJ are unstable fixed points
throughout the range of interest of a and 3.
Lemma 4. Consider the set of points

{yi]={y|fk(y)=% for some k, 0<k<n} . (8)

These points y; divide the interval [0,1] into subintervals,
over each of which the iterate f" is monotone.

Proof. Let x and x’ be two points which are inside a
subinterval. Their (symbolic) itineraries coincide for the
indices i €(0,n —1); for if they did not then there exists a
j <n, such that ff(x)<% and fj(x’)>%. Thus by con-
tinuity there must be a point y between x and x’ for
which f/(y)=1, a contradiction with the statement of
our set {y;}. Since the itineraries coincide, f" is a
homeomorphism because f is a homeomorphism on any
interval that does not contain x = within it. |

In what follows, we shall show that the behavior of the
trajectories of (1) critically depend on the first few iterates
of the point x =1. We denote those points for conveni-

ence as follows:

A= fmax s fmax=f(F)=1(4a+B),
D=(frmar SHE); f(fman) =S,
E=(f3(1),f31),

C=(f3}1),f43)n,
B=(f%1),f3%L),

F=(f31),£%1)) .

[SIES

See Fig. 1 for an illustration for the sequence of the map-
ping: A—»>D—>FE-—-C—B-—F. Relative locations of
these points depend on the values of @ and 8. We denote
the x coordinates of these points by x ,,xp,X¢c,Xp,Xg,Xp
and y coordinates by y 4,V5,Vc,Vp,VE'VE, respectively.
The two dashed lines in Fig. 1 are straight lines with
slopes +1 and — 1.

oo}
08}
0.7t 4
0.6 i
05+
oal PN

03

0.2F ‘ {

FIG. 1. Location of points of first five maps of f(x) starting

at x =3 for @=0.90 and B=2.0. Also shown are the location

of points I, and I,.
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Lemma 5. The requirement that xp=f ., =1—x7 is

fulfilled when  either B, =4(1—a) or PBy;=d¢(a)
=2[3—a—V(l—a)5—a)l
Proof. For f.,=1—xT, we require

B—8(2—a)B*+16(2—a)’B—64(1—a)=0 . (10)
Noting that a 2 0, Eq. (10) is satisfied when

B.=4(1—a) (11
or

B,=2[3—a—V(I—-a)5—a)]. (12)

n

The root 8, =4(1—a) of (10) corresponds to the situa-
tion when the point 4 is a fixed point of the map f, caus-
ing the points 4, B, C, D, and E to coincide. For a=1,
B.=B;=2. For a=1, B,=0, B;=4. The root 3; of (10)
is not meaningful in describing the trajectories of the sys-
tem (1) for a <1, for then B; <fB,=4(1—a) (in this case
the only fixed point is at x =0). This situation [that is,
a<1 and B<4(1—a)] has been dealt with in Lemma 2.
When 8> fB,, xp>1—x7.

Lemma 6. For +<a<1 and B;<B=4(2—a), the
graph of f"(x) has 2" ! maxima and 2" ~'—1 minima in
the interval (x},1—x7).

Proof. 1t is easy to show upon argument by contradic-
tion that excluding the points x =0 and x =1, the maxi-
ma and minima lie between (x},1—x7). This is because
x} <31 and the region between (0,x7) and (1—x7},1) is
attracted to the stable fixed point at x =0.

Regarding the number of maxima and minima, this is
true by inspection for f2. Assume that this is true for f".
Further assume that the range of variation of each adja-
cent pair of maxima and minima includes x =1 (this is
true of the map f2). Then at the next iteration, between
each pair of adjacent maxima we will have two new maxi-
ma. Thus we will have 2(2” ! —1) maxima. In addition,
by similar argument we will have two maxima, one on ei-
ther side of the left-most and right-most maxima of f".
Thus, the total maxima of f"*! will be 2(2"7'—1)
+2=2". Since x; >1—x7, each minimum remains to be
a minimum. Therefore, the graph of f" ! between any
minimum and its immediately adjacent maximum must
span 4. The minima tend to zero as
because the fixed point at x =0 is a stable attractor. n

We note that since two new maxima of f"*! appear
between each pair of maxima of f", the spacing between
maxima decreases. The situation depicted by Lemma 6 is
shown in Figs. 2(a)-2(d). Plots of f, f2, f* and f° are
shown for a=0.9 and f=3.5.

Lemma 7. For L <a<1 and B;<B=<4(2—a), given
any point x €E(x{,1—x7}) and an €>0, there exists an n
such that f"(x) is in an € neighborhood of the point A.

Proof. As n increases, the number of maxima of f” be-
tween any two adjacent maxima increases. The result fol-
lows by Lemma 6. |

We have thus shown that for any point
xE(x},1—x7), the trajectory of (1) passes
infinitesimally close to A.

n— oo
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Theorem 1. For L <a<1 and B; <B=4(2—a), almost
all trajectories are attracted to the asymptotically stable
fixed point x =0.

Proof. Any trajectory of (1) that begins in the interval
[O,x,l) or (x,z,l] is attracted to x =0 by Lemma 1 (see

Fig. 1). Trajectories that begin in the interval
x €(x},1—x7) pass arbitrarily close to 4 (by Lemma 7)
which then map to D. Since xp>1—x7 for the given
range of a and 3, D is attracted to x =0. Hence the re-
sult follows. [ ]

We note that trajectories of (1) that begin at x} and
1—x] converge to the unstable fixed point x =x}. We
also note that the points I, and I, (Fig. 1) map to the un-
stable point I,. Thus at 8=/3,; (that is, x;, =1—x7 ) the
point x =1 maps to I, and the points B, C, and E coin-
cide.

Theorem 2. For a=1 and 1—a)=<B=<4(2—a), al-
most all trajectories are asymptotically attracted to the
stable fixed point x =0.

Proof. When a=1, B,=2. For a<=1l, =B, so that
xp>1—x} and the arguments of Lemma 6, Lemma 7,
and Theorem 1 apply. |

Lemma 8. For 1 <a<1 and 4(1—a)<B<pBy, trajec-
tories of the map f either (a) asymptotically map to the
fixed point x =0 or (b) remain trapped in the region
[xT,1—x}]

Proof. (a) Trajectories of (1) that lie in [0,x}) or
(1—x7,1] are attracted to the fixed point x =0. (b) We
note that since B<f,, xp <1—x7{ and x; >x}. For any
point xE(x},1—x7), f(x)E(x},1—x]) and the same
holds for any iterate f"(x). Hence the result. If x is one
of the end points of the interval, the result is obvious. W

Lemma 9. For L <a<1 and 4(1—a)<B<py,, all tra-
Jjectories of (1) which start in [xg,xp ] remain in that inter-
val for all n.

Proof. Noting that 4 maps to D and D maps to E, the
proof is identical to Lemma 8. ]

1
f f2
0.8+ j
0.6+ ) _
0.4} -
0.2} J
0 "
0 05, 1 0 05, 1
(a) (b)
1~ s !
4
7 o8 - 7 osp A
06} VS - 06l y _
0.4} ’ . 0.4} -
02t 47 S\ A 02+
o P . X 0 P M s
0 05, 1 0 05, 1

(c) (d)

FIG. 2. (a)-(d) f, f% f* and f° maps for a=0.9 and 8=3.5
showing the increasing number of maxima of f".
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Lemma 10. For L <a<1 and 4(1—a)<B<py, trajec-
tories of (1) that begin in the interval (x%,xg] or in
[xp,1—x7T) eventually get trapped in the interval
[xg,xp ]

Proof. Notice that |f'(x)| > 1 for x belonging to either
of the two intervals. Hence, at each iteration of x we ob-
tain gradually increasing values of the iterates until the
iterate becomes larger than x; and by Lemma 9 the re-
sult follows. We note that no iterate can exceed x,. |

Theorem 3. For Lt <a<1 and 4(1—a)<B<pBy, trajec-
tories of (1) that start in (x},1—x7}) are asymptotically
trapped in the interval [xg,xp] and the regions (xT,xg]
and [xp,1—x7) are attracted to this interval. |

Proof. Using Lemmas 9 and 10 the result follows.

Figure 3(a) shows the map f for ¢=0.75 and B=2.2
together with the locations of the first few iterates of the
point x=1. Here, x,=1, x;,=0.65, x;=0.3563825,
x-=0.367570063 2, x5 =0.3849329897, and
x;=0.4141807735. Also, x{=0.3370999312. Nu-

merically computed f°°® is shown in Fig. 3(b) for the’

same parameter values. The figure shows the trapped
trajectory between xp and x,. The stable point at x =0

f(x)
09F .

0.8} 1
07} A —
0.6} ‘ ; ’
0.5t F
0.4} cE”

03} )
o2t ]

01}

5000 -
09t

0.8F . .
0-7)'_ ‘~_\\ //,,, |
0.6 l
0.5+

0.4

03

02f ]

o1f 7 S

FIG. 3. (a) Map f for «=0.75 and B=2.2. (b) £°*° map for
a=0.75 and B=2.2 showing the trapped trajectory.
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attracts the intervals [0,x ] ) and (1—x7T,1].
Theorem 4. For +<a<1 and 4(1—a)<B<pP,, the
fixed points of " are all unstable for x E[x},1—x7T ].
Proof. Noting the chain rule for the derivative for
f" and that |f'(x)|>1 for xE[x},1—x}], the result
is obtained by using Theorem 3. |
Figure 4(a) shows the variation in xp, xg, x{, and x5

X
0.9} X5 .
Attracted to x=0
o8t 4
---------------- P
0.7} P LI
06fZones AT e T
attracted s X
0.5Fto = Chaotic band q
chaotic | e
0.4r pand | 1 1
03 | NG XT 1
| I ~
0.2y | Atiracted to x=0
0.1} I |
|:Bc i,Bd XE
o5 1 15 2 25 3 35 4 45,5
B
(a)
0.7 .
X
0.6}
0.5f i
0.4} ]
03}
0.2}
o1}t <
B. By
O o5 1 15 2 25 3 35 4 4f58 5
(b)
1
(x)
0.9}
0.8}
0.7}¢ i
0.6}
0.5}
0.4} ]
03} i
0.2} i
0.1} i
o ) XE XD
0 0.2 0.4 0.6 08 . |
(c)

FIG. 4. (a) Chaotic band as a function of 3 for the map f for
a=0.75. (b) Liapunov exponent of the chaotic band for
a=0.75 as a function of B. (c) Long-term probability distribu-
tion of the states in the chaotic region for a=0.75 and B=2.2.
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as a function of B8 for a=0.75. This figure indicates the
chaotic band between x; and x, for the map of Fig. 3.
Figure 4(b) displays the numerically computed Liapunov
exponent for the chaotic band showing the sensitive
dependence to initial conditions for values of B <f3;. The
Liapunov exponent A for the map f was calculated using
the definition

. 1 X ,
o im, 7 2 e

We note that for «=0.75, 8, =1.0 and 3, =2.438 447 18.
As another check, the long-term probability distribution
of states in the chaotic band is computed for =2.2 and
is shown in Fig. 4(c). The invariant probability distribu-
tion was computed following a procedure described in
Lichtenberg and Lieberman.® The chaotic attractor is
contained in the interval [xp,xp,] and attracts the in-
tegral [x},1—x7] ] as expected by Theorem 3.

Lemma 11. For a>1 and 0<f3<4(2—a), the map f
has two fixed points which are both unstable.

Proof. The fixed points are at x =0 and x =xJ given
by Eqgs. (5) and (6). These are both clearly unstable. ]

We note that as a— 1" (that is, a@ approaches 1 from
below), x} —0, making x =0 an unstable fixed point.
Also xp > 1.

Theorem 5. For a>1 and 0<fB<4(2—a), all the tra-
Jjectories of (1) that begin in (0,1) are asymptotically
trapped in the interval [xg,xp ]

Proof. The proof follows by arguments similar to those

of Lemmas 8—11 and Theorem 3, by setting x| =0. n
Theorem 6. For a>1 and 0<f<4(2—a), the fixed
points of f"are all unstable. [

Proof. The proof is similar to Theorem 4, noting that
x}=0.

The types of solutions that these analytical results pro-
vide over the domain of interest in a and 8, namely, for
a€[0,2] and BE[0,4(2—a)], are illustrated in Fig. 5,
where the region of concern is the lower triangular re-
gion. We summarize our results regarding the dynamics
of the map f as follows.

(1) For 0<a <4 and 0<f3<4(2—a), almost all trajec-
tories of (1) are attracted to the asymptotically stable
fixed point x =0.

(2) For L <a <1 and 0<B<4(1—a), all trajectories of
(1) are attracted to the asymptotically stable fixed point
x =0.

(3) For %<a <1 and (1—a)<B <Py, all trajectories of
(1) that start in (x},1—x7} ) are attracted to the interval
[xg,xp]; trajectories that start in the intervals [0,x})
and (1—x7,1] are attracted to the asymptotically stable
fixed point at x =0. The trajectories which are trapped
in [xg,xp ] are chaotic.

(4) For 1 <a<1 and B; <B=<4(2—a), almost all tra-
jectories of (1) will be attracted to the asymptotically
stable fixed point x =0.

(5) For 1<a =<2 and 0<f<4(2—a), all trajectories of
(1) which start in (0,1) will be attracted to the interval
[xg,xpl. All trajectories within this attractor will be
chaotic.
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FIG. 5. Regions in the a-f8 parameter plane depicting various

types of solutions of the map f. Region PQRST represents the
region of chaotic behavior. Region OST represents a two-piece
chaotic attractor in which each piece is visited every other itera-
tion.

Figure 5 describes the various regions in the a-8 pa-
rameter space and shows the types of solutions in each re-
gion.

We now computationally explore and confirm, for fixed
values of a, the dynamics of the map f for the region in
Fig. 5 where a <a, (that is, the parameter space to the
left of the point O in the figure). Figures 6-12 show the
manner in which (a) the unstable solution x| is created,
(b) x | influences the dynamics, (c) 8 influences the chaot-
ic band, and the zones of attraction, (d) the inception of
chaos occurs at 5=/3,, and (e) the end of chaos is signaled
beyond B=pf,. The method of cell mapping is used to
provide periodic solutions of the map f as a function of
the parameter 8. The cell-mapping technique relies on
the discretization of the state space to unravel the dy-
namics of nonlinear systems. An associated cell mapping
of f can be readily generated to analyze the dynamics of
Jf in terms of dynamics of cells which cover the space. A
brief outline of the cell-mapping method used in the
study is given in the Appendix. A more detailed account
of the cell-mapping technique may be found in the
research monograph by Hsu.!®

Figure 6 shows the variation with 3 of the first five
maps of f (starting with x =x , =1) along with the loca-
tions of x} and x5 for the case of a=0.2. The result of
applying the cell-mapping method to the map f is shown
in Fig. 7. The state space of x is covered with 5000 inter-
vals each of length 0.0002 and the space of parameter 3
into 1000 intervals each of length 0.072. In all, there are
5 million cells in the augmented-state space. What is
displayed in the figure are locations of the center point of
periodic cells discovered by the cell-mapping method.
We observe the persisting stable trivial solution at x =0
along with other periodic solutions as detected by the cell
mapping. The prominent ones are the unstable fixed
points x| and x 3 represented by the two dark lines. The
locations of various fixed points and periodic solutions
provided by the cell-mapping method are approximate.
However, these locations can be further refined by using
an iterative technique like the Newton-Raphson method.
These approximate locations of periodic solutions serve
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FIG. 6. Variation of the first five maps of f with S staring at
x =1 for the case =0.2.

as very good initial guesses to any iterative technique em-
ployed for solving a system of nonlinear algebraic equa-
tions. The refined solutions may then be used for study-
ing stability of periodic orbits. We have found that the
various periodic solutions detected by the cell-mapping
method are all unstable except the one at x =0 which is
asymptotically stable. For the case of a=0.2, the fixed
point at x =0 is a stable global attractor, thus confirming
our analytical results.

Figures 8-10 are for the case a=0.6. According to
Fig. 5, there exists a chaotic attractor for this value of a.
The cell-mapping result given in Fig. 9 indicates the be-
ginning of chaos at f=f,=1.6 and the end of chaos at
B=PB;=2.146700 167 7. The band of points in the region
B. <B < B, provided by the cell mapping consists of a col-
lection of a large core of periodic cells and is seen as an
attractor with a very high period. The center point of the
location of each of the periodic cells is shown in this
figure. Discretization of space due to its cellular struc-
ture splits a continuous band of attractor in @ (the set of
real numbers) into several discrete set of periodic cells.
The figure also shows a trapped region of trajectories
bounded by the line x;, and xg of Fig. 8. Whether or not

091
0.8
0.7+
0.6
0.5+
0.4+

0.3F

0.2 p

0.1+ 4

B

FIG. 7. Cell-mapping result showing periodic solutions of
the map f as a function of 3 for the case a=0.2.
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FIG. 8. Variation of the first five maps of f with [3 starting at
x= % for the case a=0.6.
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FIG. 9. Cell-mapping result showing periodic solutions of
the map f as a function of 3 for the case a=0.6.
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FIG. 10. Liapunov exponent A as a function of 3 for the case
a=0.6.
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the thick band of points contain a strange attractor is
verified computationally by studying the sensitivity of
trajectories to initial conditions. Figure 10 shows the
Liapunov exponent A as a function of the parameter S.
As observed, the Liapunov exponent is positive in the re-
gion B, <fB <, indicating that the attractor in this re-
gion is a strange attractor covering the region [xp,xg].
The cell-mapping result in Fig. 9 also confirms the region
of attraction of the fixed point at x =0 [the intervals at-
tracted being (0,x7) and (1—x7,1)] and the chaotic at-
tractor [the interval attracted being (x},1—x7)]. Thus,
both a stable fixed point and a strange attractor coexists
for a large range of values of the parameter 5. The fixed
point at x =0 becomes a global attractor for 8>3, when
the chaotic attractor disappears.

Figures 11 and 12 are for the case a=0.75. Here again
the cell-mapping result in Fig. 12 indicates the inception
of chaos at =f,=1.0 and the termination of chaos at
B=p,=2.438447 187 2. The Liapunov exponent compu-
tation already provided in Fig. 4(b) supports the cell-
mapping result indicating that the attractor is chaotic for
values of B in the region 3, <3<f,;. The cell-mapping
analysis also provides the regions of attraction associated
with the fixed point at x =0 and the chaotic attractor.
The results agree with Fig. 5.

We now turn to an interesting feature of the map f,
which can be explained in terms of the iterates of the
point E, namely, C and B. As observed in Fig. 5, chaos
begins for a values to the right of point P, when the
values lie in the shaded region PQRTP. Furthermore, for
any value of a to the right of P, for 0 < <f3, all trajec-
tories are attracted to the stable fixed point at x =0. The
inception of chaos occurs when B>f,.. Yet, as B in-
creases, the map of point E, namely, C, may lie to the left
or the right of point B. Now segment AD maps to seg-
ment ED (by segment we mean the segment along the
map), AE maps to CD and CD maps to BE. Thus, if
Xc <Xpg, we have AE —CD — EB and the attractor has
only one piece. If, however, xc>xp> 1 then clearly

1
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FIG. 11. Variation of the first five maps of f with 3 starting
at x =1 for the case =0.75.
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FIG. 12. Cell-mapping result showing periodic solutions of
the map f as a function of 3 for the case a=0.75.

xg <xj <xc and hence the map of B, namely, F, has
Xxp>xc because |f'(x)|>1 for x E(xp,xc). Thus the
segment CD —BE — FC and we have a two-piece attrac-
tor since segment BE is disjoint from segment CD leading
to the following result.

Theorem 7. (a) If xp>x- and a and B are in the
chaotic region of Fig. 5, then the attractor is a one-piece at-
tractor formed by the segment [xg,xp). (b) If xc >xp> 1
and a and B are in the chaotic region of Fig. 5, then the at-
tractor is a two-piece attractor formed by the segments
[xg,xgland [xc,xp ]

Proof. (a) The first assertion has already been proved
above. The one-piece attractor is a period one attractor.
(b) Note that x5 <xj <x. and that xJ is unstable. Thus
almost all trajectories that begin in the interval (xg,xc)
will leave the region, so that asymptotically all trajec-
tories will be attracted to the two-piece attractor from
our previous discussion. The two-piece attractor is a
period two attractor whose trajectory visits each of its
two pieces alternately. |

The limiting condition for a two-piece attractor would
be xp =x=x3. This condition yields a polynomial in a
and 8 which is of order 40 when a is fixed and of order 27
when B is fixed. The polynomial is computed by using
the symbolic computer language MACSYMA. The ap-
propriate positive real root of this polynomial is plotted
in Fig. 5 by line OS. At point O, x5 =xp=xc=x 4, the
value of a is obtained by setting

ox3 W
ap ap

The left-hand side can be obtained by differentiating the
relation (6) and the expression on the right-hand side is
calculated by using MACSYMA. This yields
1
16(2—a)

whose only root within the domain of interest is
a=(3—v2)/2=0.7928932188. The point S in Fig. 5 is
obtained by considering

B=8,

. (13)
B=8,

L(—4a’+10a—5) (14)
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(xB )B=0=(xC)B=O (15)

which results in the polynomial a(a3—a2—2a+2)_=0.
This has only one real root of interest given by a=V"2.

Furthermore, it is possible to show using MACSYMA
that along the line OS where xp=x. (see Fig. 5),
dxp /03> 0x- /9B so that for the region outside OST,
xp >xc and the map f has a one-piece chaotic attractor
(see Figs. 8 and 11). A plot of the variation of these
slopes, evaluated along OS as a function of a is shown in
Fig. 13. On the other hand, x> xp > 1 for points that
lie in the region OST and the map f has a two-piece
chaotic attractor. From computational results provided
below, we confirm our understanding of the dynamics of
the map f in these cases.

We first consider the case a=0.9. Figure 14 shows the
variation in xz, x¢, Xp, Xg, X T, and x5 as a function of B.
The cell-mapping result is given in Figs. 15(a) and 15(b).
It is difficult to observe that Fig. 15(a) includes a peculiar
island structure near B=pf,. In order to see this region
clearly, a separate cell-mapping analysis is carried out
over this region with a finer cellular structure and the re-
sult is indicated in Fig. 15(b) showing the existence of a
two-piece attractor. For values of B that fall above the
line OS, the island of repulsion disappears confirming our
results of Theorem 7. The unstable solution x5, separat-
ing the two pieces of the attractor, is also provided by the
cell-mapping method. Chaos begins at S=f8,.=0.4 and
stops at B=,;=2.919275 1525, and cell-mapping results
indicate this by providing many periodic cells in this
range. Liapunov exponent for this region is positive as
shown in Fig. 16. The two-piece chaotic attractor exists
in the range B.<B<pB, (Fig. 14), where
B, =0.742 0457702 and coalesces into a one-piece chaot-
ic attractor for B> f3,. For 8=0.6, Fig. 17(a) shows the
portion of the map containing the chaotic band which in
this case is a two-piece chaotic attractor. The long-term
probability distribution of this attractor is shown in Fig.
17(b). For B=1.0, Figs. 17(c) and 17(d) show, respective-
ly, the one-piece chaotic attractor and its long-term prob-
ability distribution.

0.3

0.25
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0.15
0.1

0.05

-0.05
-0.1

-0.15

-0%_7

FIG. 13. Rate change of xz and x. with respect to 3 as a
function of a evaluated for B=p..

CHAOTIC DYNAMICS OF A PIECEWISE CUBIC MAP

4039

1

%9 0nes attracted to

o.g{chaotic band

0.7r
] A s U PR, S B
05t
0.4}

0.3F

|
I
0.2} G TN
I I
IB,, 1By
Je

0 0.5 1 1.5 2 2.5 3 35 4 a5
One-piece chaofic attractor —
Two-piece chaotic attractor

Asymp. stable solution x=0 ——————>
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a function of 3 for the case a=0.90.
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For a=1.1, Figs. 18—-20 show the variations as in Fig.
14, the cell-mapping results, and the Liapunov exponent
as a function of B. The trivial solution at x =0 is unsta-
ble and as expected, chaotic behavior is observed for all
BE[0,4(2—a)]. The sensitive dependence of the trajec-
tories of (1) results in the positive Liapunov exponent
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throughout this region. The strange attractor is a two-
piece one beginning at 3=0 and becomes a single-piece
attractor for B> 3, where 8, =0.520 359 588 2.

For a=1.5, Figs. 21-23 depict the computational re-
sults in the same order as in Figs. 18-20. As observed
from the cell-mapping results shown in Fig. 22, the island
structure found for the case a=1.1 disappears here. The
only attractor that exists for all 5&€[0,4(2—a)] is a one-
piece chaotic attractor. These results confirm Theorem
7.

As a final check, we performed an exhaustive search to
verify computationally the region PQRSTO in Fig. 5
where a chaotic attractor exists. First, the entire a-8 pa-
rameter plane covering the region 0<a <2 and 0<f3<8
is divided into a grid consisting of 1000X 1000 points.
For each value of the parameter set («,3), we checked if
one of the conditions xc>xp >4 or xp > x( is satisfied.
The region in the -8 plane where the condition
Xc>xp > 1 is met coincides with the region OST of Fig.
5 where a two-piece chaotic attractor is expected. The
points in the a- plane where the condition xz > x. is
satisfied again coincides with the region PQRSO of Fig. 5
indicating the presence of one-piece chaotic attractor. In
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FIG. 17. (a) Two-piece chaotic attractor for ¢=0.90 and $=0.6. (b) Long-term probability distribution of the two-piece chaotic
attractor for a=0.90 and 8=0.6. (c) One-piece chaotic attractor for «=0.90 and B=1.0. (d) Long-term probability distribution of

the one-piece chaotic attractor for a=0.90 and 8=0.6.
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FIG. 19. Cell-mapping result showing periodic solutions of
the map f as a function of 3 for the case a=1.1.
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FIG. 24. Three-dimensional plot of Liapunov exponent A as
a function of a and B corresponding to the region PQRSTO of
Fig. 6.

both cases, the fixed point at x =0 is also an attractor for
values of a<1. Further, for each point in the region
PQRSTO, the computed Liapunov exponent was found
to be positive, confirming our results of Theorem 7. A
three-dimensional plot of the Liapunov exponent as a
function of a and 3 is shown in Fig. 24.

It is indeed both strange and aesthetic that the two
simple conditions mentioned in Theorem 7 thus provide
surprising yet strong evidence for the existence of a
chaotic attractor for the piecewise cubic map. It is com-
forting to know that by observing only the first few maps
of the function f, one can predict the overall global be-
havior of its dynamics. The analytical studies presented
in this paper have thus been well substantiated by numer-
ical computations despite the fact that the dynamics of
the map depends on two independent parameters.

III. CONCLUDING REMARKS

A detailed analysis of the dynamics of a cubic map
represented by two parameters is carried out in this pa-
per, both analytically and numerically, to understand the
route it follows to chaos. Such maps are important in
several fields, especially in the study of nonlinear
mechanical systems. The study indicates that the route
to chaos followed here is not representable by the stan-
dardly proposed routes, namely, type I, type II, or type
III intermittency.'~2* The chaos in the cubic map is ini-
tiated by the appearance of an unstable solution which is
suddenly born out of a tangent bifurcation. This unstable
fixed point demarcates the zones of attraction of the
chaotic attractor and the asymptotically stable trivial
fixed point at zero. The disappearance of chaos is sig-
naled by the condition x,, =x.

The general approach presented in this paper does not
depend on the nature of the map itself, that is, whether
its Schwarzian derivative is negative or not, see Singer.?*
Though we have illustrated it for the cubic map here, the
methodology could be used to good advantage in unravel-
ing the dynamics of other types of maps as well. What is
extraordinary here is that one can deduce the global be-
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havior of the cubic map by simply analyzing the first few
maps. Elucidation of dynamics of the map is greatly
simplified through a multiprong attack by analytical,
symbolic, and computational tools. This combination of
analytical and numerical tools seems to be very useful in
describing the characteristics of nonlinear systems in the
physical sciences.
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APPENDIX: CELL-MAPPING TECHNIQUE

1. Introduction

The purpose of utilizing the cell-mapping method for
studying the cubic map given by Eq. (1) is to obtain infor-
mation about its global behavior, especially as a function
of the two parameters a and 3. The cell mapping also en-
ables us to get an idea about some of the unstable solu-
tions which happen to be very important for the cubic
map studied in this paper. For example, referring to Fig.
12 obtained by the cell-mapping method both the unsta-
ble solutions x§ and xj, which essentially control the
global dynamics of the map, are visible. The existence of
the unstable solution x| signals the birth of the chaotic
behavior of the map. As shown in Fig. 15(b), the role of
the unstable solution x5 in depicting the existence of the
two-piece chaotic attractor is made clear. In addition,
the cell-mapping method indicates that there are a few
characteristic lines (or curves) in the 8-x plane which are
essentially the first few iterates of the peak of the map.
These first few iterates are sufficient to describe the
overall global behavior of the map. It is quite obvious,
again referring to Fig. 12, that the cell-mapping method
provides the regions of attraction of the stable fixed point
at x =0 and the chaotic attractor. Also, it gives insight
into how the chaotic band grows and how its collision
with the unstable solution x} causes its disappearance.
Straightforward iteration would not only miss the unsta-
ble solutions but also require an inordinate amount of
computations to arrive at the above conclusions.

In this appendix we discuss the general computational
technique based on discretization of the state space which
was extensively employed in Sec. II to confirm several of
our analytical results for the global analysis of the piece-
wise cubic map. The method of cell mapping is also appl-
icable to nonlinear dynamical systems described by
differential equations. Multidimensional maps of the
form

x(n +1)=G(x(n)), n=0,1,2... (16)

where x€ Q" and G:Q¥— Q¥ will be considered here for
further discussion.
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2. Brief review of cell mapping

A powerful computational approach for analyzing the
global behavior of dynamical systems is provided by the
cell-mapping technique.?® In this formulation, the state
space is thought of not as a continuum but instead as a
collection of cells. Each cell occupies a prescribed region
of state space as defined by Eq. (17). Every cell in the
discretized state space or cell state space is to be treated
as a state entity. The motivation for discretizing the state
space in terms of cells is supported by the facts that in
practice state variables can be measured only to a certain
accuracy and that round off errors arise in the computa-
tion of the state variables using digital computers. These
two facts force one to abandon the idea of state space as
being a continuum as far as studying global properties of
dynamical systems from a computational point of view.

In order to construct a cellularly structured state space
S, let the coordinate axes of the state variable com-
ponents x;, i =1, ..., N be divided into a large number of
intervals of uniform size ;. The new state variable z;
along the x; axis is defined to contain all x; such that

(z; =3 =x; <(z; +1)h; . (17)
By definition, z; in (17) is an integer. A cell vector z is
defined to be an N tuple z;, i=1,...,N. Clearly, a point

xE Q" with components x; belongs to a cell zES with
components z; if and only if x; and z; satisfy (17) for all i.
The space S consisting of elements which are N tuple of
integers is referred to as an N-dimensional cell space. If
N, denotes the number of intervals along the x; axis,

then the cell space S contains a total of N XN,
X oo XNCN cells.

In the cell state space S, one can define a cell-to-cell
mapping dynamical system in the form

z(n +1)=C(z(n)), C:S—S, neZ (18)

where C is referred to as a simple cell mapping. It can
also be perceived of as a mapping from a set of integers to
a set of integers. Equation (18) then describes the evolu-
tion of a cell dynamical system in N-dimensional cell
state space S. For a detailed treatment concerning the
properties of the map C and its refinements, the reader is
referred to the research monograph by Hsu.!® In the fol-
lowing sections, we concentrate on the simple cell-
mapping method only and refer to it simply as cell map-
ping.
3. Periodic motion

Dynamics of the cell-mapping system (18) is character-
ized by singular cells consisting of equilibrium cells and
periodic cells. An equilibrium cell z* is given by
z*=C(z*). A periodic cell of period K €Z* (or simply

a P-K cell) is a set of K distinct cells
{z*(k)|k=1,2,...,K} such that
z¥k +1)=Ckz*(1)), k=1,2,...,K—1
(19)

z*(1)=C¥(z*(1)),

where C* means the mapping C applied k times. This set
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is said to constitute a periodic motion of period K or sim-
ply a P-K motion. An equilibrium cell in this context is a
P-1 cell. A regular cell is one which is not singular.

Two cells z and z' are said to be contiguous if and only
ifz——z’=iej, for some j=1,2,..., N, where €; is a unit
vector coinciding with the x J axis. Then, an equilibrium
cell is an isolated or a solitary cell if none of its contigu-
ous cells are equilibrium cells. An equilibrium cell, when
not isolated, may have several contiguous equilibrium
cells. Then, a complete set of contiguous equilibrium
cells is referred to as a core of equilibrium cells. The size
of the core is determined by the number of cells in it.

Similar definitions apply to periodic cells.

4. Creating a cell mapping for a map

To obtain a cell mapping associated with the map (16)
the following procedure may be employed. First, con-
struct a cell space structure in the state space region with
cell size h; in the x; direction. Let x%n) denote the
center point of the cell z(n) so that x%(n)=h,z,(n). Sup-
pose that the trajectory starting from x%n) terminates at
x%n +1) when the mapping G is applied once. The cell
in which x%(n +1) lies is taken to be z(n +1), the image
cell of z(n). Specifically

xAn+1)
h

1

z;(n +1)=C;(z(n))=int +=1, o

1
2

where int(u), for any real number u, represents the larg-
est integer such that int(ux)<u. This process of finding
image cells is repeated for every cell in the cell state space
S. The mapping C so obtained is a cell mapping associat-
ed with the dynamical system (16) using the center point
method described above to compute the image cells.

5. Analysis of the cell mapping

A trajectory of the cell-to-cell mapping dynamical sys-
tem (18) starting from an initial cell state z(0) is referred
to as a cell sequence of (18) and it is the set of integers
given by {z(k)}, k=0,1,2,.... Once the mapping C in
(18) is obtained, the crucial step in cell-mapping analysis
is to unravel the dynamic information of the original sys-
tem (16) contained in (18) by examining the long-time be-
havior of the cell sequences. Every cell in the cell state
space S is to be classified as a regular cell (meaning it is a
transient cell) or a singular cell.

In practical applications, the state variables assumes a
finite range of values. Hence, one is usually interested in
a fixed state space region which contains a finite number
of cells even though the number of cells may be huge.
The complement of the fixed state space is referred to as
the sink cell. Once a cell in S maps to the sink cell, its
long-time behavior is unknown and its motion is eventu-
ally locked in the sink cell. An important property of the
cell sequences, due to the finite number of cells in the
state space, is that all cell sequences must terminate with
a finite number of cell mappings into one of the steady
cell states: equilibrium cell, periodic cells, or the sink
cell. This is the key to the global cell-mapping algorithm
described by Hsu and Guttalu?® from which the following
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characteristics of the dynamics of the system (16) can be
obtained all at once: (1) location of the equilibrium states
and periodic solutions in a given state space, (2) domains
of attraction associated with the asymptotically stable
equilibriums states and periodic solutions, and (3) step-
by-step evolution of the global behavior of the system
starting from any initial state within the cell state space.

To further elaborate on the step-by-step evolution of
the system, let r-step domain of attraction be defined as
the set of all cells in S which map to a P-K motion in r
steps or less. Then, the total domain of attraction of a
P-K motion is its r-step domain of attraction in the limit
as r—co. The periodic cells are represented by the O-
step domain of attraction. As r increases, one obtains the
evolution of the domains of attraction which contain an
increasing number of cells. Since the cell state space S
consists of a finite number of cells, it should be noted that
the total domain of attraction of a P-K motion is given by
the largest of the r-step domains of attraction (with a
finite value of r).

The associated cell mapping C given by (18) is viewed
as an approximation of the original dynamical system
(16). The degree of approximation can be improved by
simply reducing the cell size h; (equivalently, increasing
the number of cells in S). The cell mapping C as defined
by (18), in general, replaces the stable equilibrium points
and stable periodic solution of (16) in the state space Q%
with sets of periodic cells in the cell state space S; unsta-
ble equilibrium points and unstable periodic solutions of
(16) may not be recovered. Each set of periodic cells may
consist of a group or core of ‘“‘true periodic cells”
representing the original periodic motion of the dynami-
cal system (16) and core of “pseudo-periodic-cells’” which
surround the true periodic cells. These pseudo-periodic
cells are the result of discretization of the state space; the
state space occupied by them has been shown to shrink as
the cell size is made smaller.?’
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The method of cell mapping applies to strongly non-
linear dynamical systems, and to both autonomous and
nonautonomous systems. Since this method avoids re-
petitive time-consuming calculation of the trajectories of
dynamical systems, it has been found to be an efficient
computational tool. The global cell-mapping algorithm is
applicable to a compact region of the state space.

For the cubic map which maps the unit interval to the
unit interval, it is important to note that there is no need
to introduce the concept of the sink cell since the state
space is compact.

6. Parameter study

The cell-mapping method provides a convenient way to
analyze maps which depend on parameters. Each param-
eter may be considered as a distinct state variable along
which the map is an identity map. A new element x,
may be added to the state space such that

xy(n+D)=xy44(n). (21)

The state space dimension is now increased by one. More
parameters can be added in the same way. This is a con-
venient way to introduce parameters into the state equa-
tions from a computational point of view when the cell-
mapping method is employed. The parameters are now
discretized in the same way as the state variables. Since
no additional computations are required by introducing
equations of the form (21), the cell-mapping method will
be an efficient computational scheme for global analysis
of the map. The method discussed above may now be
employed to obtain the periodic solutions of the map (16)
as a function of the system parameters.
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