N,

APPLIED
S&@ MATHEMATICS
AND
sty COMPUTATION

ELSEVIER Applied Mathematics and Computation 121 (2001) 211-217
www.elsevier.com/locate/amc

Analytical dynamics with constraint forces
that do work in virtual displacements
Robert Kalaba *, Firdaus Udwadia

Department of Biomedical Engineering, University of Southern California,
OHE-500 University Park, Los Angeles, CA 90089-1451, USA

Abstract

Lagrangian mechanics is extended to cover situations in which constraint forces are
permitted to do work on a system in virtual displacements. © 2001 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Much of analytical dynamics is studied under the assumption that the
constraint forces do no work on the system in any virtual displacement. Yet, it
is clear that constraint forces such as friction do do work on the system in
virtual displacements. The purpose of this paper is to show how such
constraint forces may be taken into account in a systematic and convenient
manner. A new physical principle which generalizes the principle of virtual
work must be adduced.

Let the configuration of the system be described by the n generalized

coordinates ¢,qs,...,q,. Then the Lagrange equations of motion may be
written as
Mg =0, (1)
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where M is a positive definite symmetric matrix having dimensions # by n and
depending on ¢ and ¢. The generalized force vector Q is a function of ¢, ¢ and ¢,
and is n-dimensional. The generalized acceleration vector g is

§= (41,42 dn)" (2)

and, of course,

q= (a1, ¢ )"

The n-dimensional vector ¢ is the generalized velocity vector.
Next assume that m constraints are specified of the form

¢;(t,.q,4) =0, j=12,....m (3)

Then differentiation of both sides of these equations with respect to ¢ yields the
differentiated form of the constraint equation

Aj = b, 4)

where A4, a function of ¢, ¢ and ¢, is m by n, and b, also a function of ¢, ¢, and ¢,

is an m-dimensional vector. Holonomic constraints are differentiated twice and

nonholonomic constraints are differentiated once with respect to time to obtain

Eq. (4). Together with initial conditions at some time these are equivalent to

Eq. (3). We assume that the rank of A4 is » <m. The number of equality con-

straints m need not be less than n. We assume, though, that they are consistent.
The actual equation of motion then assumes the form

Mg=Q+¢, (5)

where Q¢ is the generalized constraint force vector called into existence to
maintain the constraints but do no work on the system in a virtual displace-
ment. In Egs. (4) and (5) there are 2n unknowns, the components of § and Q¢,
but there are only n + r prescribed conditions. The needed n — r additional
linear relations are provided, conventionally, by the principle of virtual work,
which requires that the constraint force Q¢ do no work in a virtual displace-
ment. This amounts to requiring that

v'F =0 (6)
for all virtual displacements vectors v, of dimension n, for which

Av = 0.
The solution of the system of Egs. (4)-(6) is [1]

g=a+M'"2AM )" (b - Aa), (7)

where @ = M~'Q. The n-dimensional vector « is the generalized acceleration of
the system that is free of constraints. Eq. (7) may be written as
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M= Q+M"*AM"*)" (b — 4a), (8)
so that
0 =ON =M "2(UM'*)" (b - 4a), 9)

is the generalized constraint force called into play to maintain the constraints
while doing no work on the system in any virtual displacement.

2. Constraints forces that do work on the system

Now let us consider the incorporation of constraint forces which may do
work on the system in a virtual displacement—friction is an example. We
denote the n-dimensional vector of such forces as ¢ = c(t,q,¢). In any dis-
placement v such forces do the work v'c. Therefore, in a virtual displacement v,
for which Av = 0, the actual constraint force, Q¢, will have to do the same
amount of work, so that

O ='c, (10)

which is a new physical principle. 1t generalizes Eq. (6), the principle of virtual
work. Under the new principle the work done by the constraint forces in a
virtual displacement may be positive or negative as well as zero.

The vectors ¢ and Q¢ are thus to be determined by the relations

Mg=0+ ¢, (11)

Aj = b, (12)
and

'O = v"c¢ (v such that Av = 0). (13)

The task now is to solve these equations for ¢ and Q¢. (It can be shown that a
solution exists and is unique.) Needed background concerning pseudoinverses
is available in [1, Chapter 2].

3. Derivation of the new explicit equation of motion

We introduce

B =AM, (14)
i =M, (15)
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so that Eq. (12) becomes

Bi=b. (16)
The general solution of this equation is

#=B*h+ (I — B*B)w, (17)

where BT is the n by m pseudoinverse of the matrix B, and w is an arbitrary
n-dimensional vector. We wish to determine this vector. The equation Av = 0
can be rewritten as

Bu =0, (18)

where u = M'/?v. Tt follows, then, from Eqs. (13) and (11), that for all u such
that Bu = 0,

WMV MG — Q) = u"M e, (19)
But this equation can be rewritten as

WMV MG — Q0 — ] =0, (20)
or

u'lif—0—1¢] =0, (21)
where

Mo =0, (22)
and

M 'e=c¢. (23)

The general solution of Eq. (18) has the form

u= (I —B"B)z, (24)
where z is an arbitrary n-dimensional vector. Eq. (21) becomes

Z'(I-B'B)[B'b+(I-B'B)w—0—¢|] =0, (25)
where we have used Eq. (17). It follows that

Z'(I-B'B)[w—0—¢|] =0. (26)
From this it follows that the vector

w—Q—¢=B'z, (27)

where z; is again arbitrary. Upon substituting the value w = Q + ¢ + B*z, into
Eq. (17) we find

#=B"b+ (I —B'B)(Q+¢). (28)
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From this it follows that
M2 =B"b+ (I — B B) (M 20+ M),

Gg=M"'"’B'b+M'Q—-M'?B BM'?Q + M~V*(I — B*B)M ¢,

(29)
Finally, we have the desired equation of motion
g=a+M"?B*(b— Aa) + M~V*(I — B*B)M "¢, (30)
which may be rewritten in the form
Mg = Q+M'"*B"(b— Aa) + M"*(I — B*B)M~"c. (31)

The first two terms on the right side have been seen before in Eq. (8). They are
the applied force Q and the constraint force ON that does no work in any
virtual displacement but maintains the constraints, 4G = b. The third term is
occasioned by the specified constraint force ¢ that does work in a virtual dis-
placement. We may denote it by OV, so that Eq. (31) assumes the elegant form

Mg =0+ 0"+ 0%, (32)
with

oV = M"*(1 — B*B)M "¢, (33)
and

ON = M'2B*(b — 4a). (33)

Thus the constraint force Q¢ has two components and may be written
0 =0"+ 0%, (34)

where the forms of QY and OV are as shown above.

Equation (31) is the explicit equation of motion for mechanical systems that
have constraint forces that may do work on the system in a virtual displace-
ment. Equation (30) is the form that is used for numerical integration.

4. An example
Consider a bead of unit mass that moves along a vertical circle of unit radius

under the influence of gravity. We introduce the rectangular coordinates x; and
x>. Then

e (30) a0 (2)



216 R. Kalaba, F. Udwadia | Appl. Math. Comput. 121 (2001) 211-217

The constraint equation x7 +x3 = 1 leads, through two differentiations with
respect to ¢, to the linear constraint on the acceleration components

x1X] + XXy = —(¥? +%3). From this we see that 4 = (x; x;), a | by 2 matrix
and b = — (%] + ¥3), a scalar. If no friction is present, the equation of motion is
simply
x:<§>:a+Aqb_mg (35)
2

Since 4 = (x; x,), its pseudoinverse, 4", is

1 X1
AT = . 36
x4 x3 <x2) (36)

The equation of motion is thus

() =) (Dlea]=(5) ro

—Aa = —(xl xz) < _Og) = —|—gXQ.

since

Let us assume that the force of friction, the usual Coulomb friction force, c,
is specified as being “proportional to the normal thrust”. This means that

1 5c1> N
c=—p—m=\" , 38
n = () (39)
where, according to Eq. (37), the normal thrust, OV, is given by
1 X
N 1 (2 2
R (X2> g2 = (5 +53)]. (39)

The constant u is the coefficient of friction. If follows from Eq. (30) that the
equation of motion, including friction, is

X\ 0 " 1 X1 [ (.2+.2)}
= e Xy — (X X
X2 —& X +x\xn o b
1 X1X1 XX
+{1_ 2 2( 11 12)}(:, (40)
X1 + X5 \X2X]  XoXp
where c is specified in Eq. (38).
In view of the fact that one differentiation of the constraint x7 + x5 = 1 gives

x1x1 + x5, = 0, we see that the last term on the right in Eq. (40) simplifies to
{I — O}c = ¢, in this special case. In general, Eq. (33) shows that if the vector
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M~'2¢ lies in the null space of the matrix B, then Q% = c; if M~'/?¢ lies in the
range space of BT, then Q% = 0.

5. Discussion

A simple and comprehensive method for incorporating into Lagrangian
mechanics the effects of constraint forces that may do work on a system in a
virtual displacement has been given. First, a generalized form of the principle
of virtual work was given in Section 2. Then the new equations of motion were
given in Section 3, and an example was adumbrated in Section 4. Since modern
computing environments, such as MATLAB, contain commands for obtaining
pseudoinverses of matrices, numerical experiments are now under way, and
results will be reported subsequently.
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