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Abstract

This paper proposes a new approach for computing the Lyapunov Characteristic
Exponents (LCEs) for continuous dynamical systems in an efficient and numerically
stable fashion. The method is adapted to systems with small dimensions. Numerical
examples illustrating the accuracy of method are presented. © 2001 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Lyapunov characteristic exponents (LCEs) were introduced by Lyapunov
[1] when studying the stability of non-stationary solutions of ordinary differ-
ential equations. Presently LCEs play a key role in the study of non-linear
dynamical systems. The LCEs provide a way to characterize the asymptotic
behavior of non-linear dynamical systems by measuring the mean exponential
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growth (or shrinking) of perturbations with respect to a nominal trajectory.
LCEs are a measure of the sensitivity of the solutions of a given dynamical
system to small changes in the initial conditions. One feature of chaos is the
sensitive dependence on initial conditions; for a chaotic dynamical system at
least one LCE must be positive. Since for non-chaotic systems all LCEs are
non-positive, the presence of a positive LCE has often been used to establish if
an attracting set is chaotic or not [2]. LCEs are used to study dynamical
systems in almost every field, for example in celestial mechanics (see [3]),
thermodynamics (see [4]), human physiology (see [5]), and in studies of
meteorological phenomena like the ‘El Nino’ (see [6]).

In general, when computing the LCEs of a dynamical system, be it con-
tinuous or discrete, one usually performs a QR-factorization of the funda-
mental solution of the system (see [7-10]). The fundamental solution Y is
expressed as ¥ = OR, where Q is an orthogonal matrix and R is an upper
triangular matrix. The LCEs are obtained from the diagonal elements of the
upper triangular matrix R, which are functions of both the orthogonal matrix
Q and the Jacobian matrix of the system. The orthogonal matrix Q is time
dependent in the case of continuous systems and iteration dependent in the case
of discrete systems. When dealing with computational methods, in either case,
the orthogonality of Q affects the accuracy of the LCEs. It has been recognized
(see [9—12]) that it is very important to develop methods to compute the LCEs
which preserve the orthogonality of Q. One way to preserve the orthogonality
of Q is by using Householder reflector matrices in order to obtain the QR-
factorization. The efficient and numerically stable use of Householder reflector
matrices in the computation of the LCEs was implemented by Von Bremen
et al. [12] for discrete dynamical systems.

When dealing with discrete dynamical systems, the presence of errors in the
orthogonality of Q usually lead to inaccurate computational results. But such
errors do not seem to prevent the various methods of computing LCEs from
yielding some computational results (at least for all the systems encountered by
us), although they may be inaccurate. On the other hand for continuous sys-
tems, errors in orthogonality can actually lead to a break down in the com-
putation of LCEs due to overflows (or underflows) in the computations. We
present an example of such break down when using the most prevalent method
for computing LCEs.

In this paper, we present an approach to compute the LCEs for continuous
dynamical systems that preserves the orthogonality of Q. Since the method
preserves the orthogonality of Q, it is stable in the sense that it will not break
down during computations. Also, since the method preserves orthogonality,
the LCEs are obtained with greater numerical accuracy. Furthermore, the new
method is more efficient than the method commonly prevalent in the literature.
It requires the solution of fewer differential equations than normally needed
with the usual method.
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The general formulation for the computation of the LCEs using the QR-
factorization is given in Section 2. Section 3 deals with what we call the Q-
method (which is the method usually found in the literature). The new ap-
proach (the e’-method) is presented in Section 4. In Section 5 we present the
adaptation of the e5-method to the special case of systems whose LCEs can be
computed using a 2D system. Expressions to obtain the time evolution of the
LCEs of general 2D systems are given in terms of a Ricatti equation and two
quadratures. Closed form expressions for the time evolution of the LCEs for
the special constant Jacobian case are also given. These closed form solutions
of the time evolution of the LCEs are used in three examples; numerical results
from the newly proposed method and the Q-method are compared with the
exact values. Section 5 ends with a subsection on special systems that can be
reduced to 2D systems for the purpose of computing LCEs. Numerical com-
parisons between the Q-method and the e5-method are given for the forced
Duffing’s equation. In Section 6, we specialize the eS-method to 3D systems.
The Lorenz system is used to illustrate the accuracy of the e5-method and also
to illustrate the total break down of the Q-method in computing LCEs. The
Appendix gives three results which are used in this paper, and are generally
applicable to the computation of LCEs. Concluding remarks are given in
Section 7.

2. Computation of the LCEs using the QR-factorization

Continuous dynamical systems are usually described by an ordinary differ-
ential equation of the form

(@) = (), ¥(0) =y, (1)

where y € R", and ¢ € R. The variational equation associated with the dy-
namical system described in (1) is given by

V=Jv, Y(:0)=1, 2)

where Y € R"". Here I is the n by n identity matrix and J is the n by n Jacobian
matrix of y = f(y) at (y; ¢). That the solution ¥ depends on the trajectory of the
dynamical system, is denoted by Y (y;¢). The n Lyapunov exponents A; are the
logarithms of the eigenvalues p;, i = 1 to n, of the matrix A4, given by
1/(21)
A, =Tlm|Y(y:0)'Y(y:1) . (3)
t—00

To compute the LCEs one has to simultaneously solve the initial value prob-
lems given by (1) and (2). The solution to (1) is used to obtain the Jacobian at
every point (y; #) which is needed to solve (2). The direct solution of (2) presents
numerical difficulties since the column vectors of Y will computationally
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converge toward the subspace with the largest expansion rate. To avoid this
numerical difficulty the Lyapunov exponents for continuous dynamical systems
are obtained by either performing a QR or a singular value factorization of the
variational equation. In this paper we focus on the QR factorization method.

The basic idea behind the QR factorization method is to obtain the de-
composition of Y into the product of an n by n orthogonal matrix Q and an n
by n upper triangular matrix R, thatis ¥ = QR. Using the differential equations
for Q, the Lyapunov characteristic exponents of the system can be then
computed. The orthogonal matrix Q can be expressed in two different forms.
The method generally found in the literature does not utilize the special
structure of Q. This method leads to »? differential equations to obtain Q. This
paper proposes a new approach. We consider Q as a rotation matrix and we
express it as Q = €5, where S is a skew symmetric matrix. When this special
structure of Q is considered, we only need to obtain the differential equations
for S, and from S, the matrix Q can be constructed. The evolution of the skew
symmetric matrix S can be established through n(n — 1)/2 differential equa-
tions. In this paper we call the first method the Q-method and the later ap-
proach the eS-method.

3. The Q-method

What we refer to as the Q-method is the one generally found in the litera-
ture, for example see [9,11]. In this method Q is obtained by solving a set of »#?
differential equations.

The QR decomposition of Y as Y = QR, together with the variational Eq. (2)
gives

OR + QR = JOR, Q(0)R(0) = 1. (4)
Premultiplication of (4) by O and postmultiplication by R~! together with
0'0 =1 gives

Q'O +RR™' =00, 0(0)=1, R(0)=1. (%)

Observe that since "Q = /, the matrix K = 070 is a skew symmetric matrix
and the product RR~! is upper triangular since R is upper triangular. These two
observations and (5) give us the equation that defines K as

(0'0),, i>},
Kij = 07 i :j7 (6)
—(0"0);, Jj>i.

From K = 0TQ we get
0=0K, 0(0)=1I (7)
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Eq. (7) together with (6) yield the differential equation for O in terms of Q and
J. Since OTQ is skew symmetric, (4) yields the differential equations for
p; = In(R;), the logarithms of the diagonal elements of R, as
R
0 :R—” = (0'JQ), with p,(0)=0 fori=1,...,n. (8)
Denoting by 4;(¢) = In(R;;)/t the time evolution of the LCEs, the LCEs are
then given by
. (7 ..
;= lim p’T() = lim 4;(¢). 9)
—00 1—00
Note that the »? differential equations used in this formulation (and compu-
tation) for the elements of Q are not independent. For the elements of Q must
be such that (1) the /; norm of each column is unity and (2) each column of Q is
orthogonal to every other column. Since this leads to n + (n(n — 1)) /2 relations

which the g¢;(7)’s must satisfy, the number of independent g,;(f)’s are
nn—1)/2.

4. The e®-method

In general, the matrix Q(¢) obtained in the QR decomposition Y(¢) =
QO(#)R(¢) is an orthogonal matrix, thus det(Q(¢)) = %1. Since Q(0) = I and the
elements of Q(f)are continuous functions of time, if at some time ¢ > 0,
det(Q(7)) becomes -1, then there is some time 7€ (0,¢), such that
det(Q(t)) = 0. But this is impossible, since ¥ (1) would then be singular. Thus
for all 7, det(Q(¢)) = 1. The 3 by 3 orthogonal matrices with det(Q) = +1 are
called rotation matrices, and the n by n orthogonal matrices (with a determi-
nant equal to 1) form the SOn group.

Any matrix belonging to the SOn group can be expressed as the expo-
nential of a skew symmetric matrix S [13], i.e., O = €. The main idea be-
hind the eS-method is to obtain the differential equations defining S. Solving
these differential equations we obtain S(¢), and Q(¢) is then simply given by
Q(t) = e*®. The matrix Q(f) by construction is then guaranteed to be or-
thogonal. The n(n — 1)/2 lower diagonal elements of S characterize all of S
and thus Q.

Thus compared to the Q-method, the e5-method (1) guarantees that Q(¢) is
orthogonal (which is not done by the Q-method), and (2) requires the solution
of only n(n —1)/2 differential equations (instead of n* differential equations
required by the Q-method) for obtaining Q.

To derive the differential equations for S we start by replacing Q with e’ in
(4) to get
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S
dditR+eSR =JeSR, S(0)=0, R(0)=1. (10)
Using OT = e75, Eq. (10) can be rewritten as
s
e_S%—l-RR_I — e SJe. (11)

In order to obtain the differential equations for S, we need to find de®/ds and
we can use the earlier observation that the product e~%(de®/d¢) is skew sym-
metric and RR™! is upper triangular. In general, the equations for § can be
obtained by expanding the lower triangular part of e~5(de’®/dr) and equating it
to the lower triangular part of e 5JeS.

As in the Q-method, the logarithms of the diagonal elements of R are given
by considering only the diagonal elements of the matrix Eq. (11), that is,

Rii .
=% = (0'J0), = (eJe®). with p,(0) =0 fori=1,...,n. (12)
As in Eq. (9), the LCEs are then given by
J; = lim p"T(’) — lim 4 ().
1—00 —00

To illustrate the approach, we will specialize the equations to two and three
dimensional systems. 2D systems are dealt with in Section 5, and 3D systems in
Section 6.

5. Systems of dimension n = 2

In this section we specialize the expansion for the case n = 2. There are two
reasons why we start with systems whose LCEs are obtained by using a 2D
system of differential equations. First, as shown in the Appendix A and illus-
trated later on in this section, there are many chaotic systems whose Jacobians
can be reduced to smaller 2D and 3D sub-systems for the purposes of com-
puting their LCEs. Second, for the constant coefficient 2D LCE system one can
obtain in closed form the exact time evolution of the LCEs. One can then
compare these exact time evolutions with those computed using different
methods, thereby testing their accuracy. We first establish all the differential
equations needed to find the two LCEs of the system. Then we derive the closed
form solutions for the special 2D case when the Jacobian is a constant matrix.
Numerical examples are used to compare the accuracy of the Q and the
eS-methods for the constant Jacobian matrix case.

Using functions of matrices and the eigenvalues of S, we can obtain an
explicit form for e5. Let
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0 0
=15 )
the eigenvalues of S are u; , = +0i. Evaluating the function f(x) = e* over the
spectrum of S we get

sin(G)S _ [ cos(0)  sin(0)

e’ = cos () + “sin(0) cos(0) (13)

which is as expected, since any planar rotation can be expressed as in Eq. (13).
Differentiating (13) gives

de’ [ —sin(0) cos(0) ]6

dr | —cos(0) —sin(0) (14)

Let the Jacobian of (1) be given by

[ alvir)  m(y;e)
0= L —k(vs1) C(y;t)} (13)

Then the right-hand side of (11) becomes

e SJe’
—esin®(0) + acos*(0) — (m — k)sin (0)cos(0)  ksin*(0) + mcos®(0) + (a + ¢)sin (0) cos (0)
—msin’(0) — kcos?(0) + (a + ¢)sin(#) cos (0) asin’(0) — ccos*(0) — (k — m)sin () cos(0) |
(16)

Since the lower triangular element of e~$(de’ /d¢) is just —0, using the diagonal
and lower triangular part in (11) we get the following system of differential
equations:

0 = kcos*(0) + msin’(0) — (a + ¢)sin(0)cos (), 0(0) =0, (17)
py = acos*(0) — csin®(0) — (m — k)sin (0)cos(0), p,(0) =0, (18)
py = —ccos(0) 4 asin®(0) + (m — k)sin(0)cos(0), and p,(0) = 0.
(19)
Using the transformation x = tan (0), Eq. (17) becomes the Riccati equation
¥ =m(t)x* — {a(t) + c(t)}x + k(¢), x(0) =0. (20)

Using Egs. (18) and (19) and integrating, we get the following system of
equations:

71() = pi(0) + pa(0) = /Ot(a(f) —¢(7))de (21)
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and
72(1) = pi(1) — pa()
/ {(a )cos(20(t)) + (k(t) — m(7))sin (20(z))}dr.  (22)
From these equations, p, () and p,(¢) can now be obtained as
and
pa(t) = DO 00, (24)

Thus one obtains the LCEs by first solving the Ricatti equation (20), then
evaluating the integrals in (21) and (22), and finally using (23) and (24) to
compute p,(¢) and p,(¢). The time evolutions of the LCEs are then simply given
by A1(¢) = p,(¢)/t, and A,(¢) = p,(¢)/¢t. By using the above steps one can
compute the LCEs very accurately and efficiently, since the solution of the
Ricatti equation can be obtained through accurate and efficient specialized
methods (see [14]), and the integrals can be obtained by using quadrature
methods which are also very accurate and efficient.

We note that from Eq. (21), the sum of the time-evolving LCEs, 1,(t) + 4,(¢),
is simply the time-average of the Trace, a(t) — c(¢), of the Jacobian J(¢) of
the 2D system (see Appendix A for a proof of this result for n-dimensional
systems).

For the special case when the Jacobian is constant we can obtain the time
evolution of 0 as well as that of the Lyapunov exponents in an explicit form.
The special case of a constant Jacobian is presented in the next section.

5.1. Closed form solution for the 2D case with constant Jacobian

There are very few non-trivial systems for which we know the exact LCEs
and even fewer for which we know the time evolution of the LCEs explicitly. It
is well known that for a constant Jacobian the LCEs are given by the real parts
of the eigenvalues of the Jacobian. However, the way the LCEs actually evolve
in time has not been shown before in the literature even for the 2D case (as far
as the authors know). In this section we present closed form expressions for the
time evolution of the LCEs of the 2D case with a constant Jacobian. These
closed from expressions allow us to compare the time evolution of the com-
puted LCEs by a given method with the time evolution of the exact LCEs, and
not just with the exact LCEs obtained in the limit. The closed form expressions
of the time evolution of the LCEs also give some insight to their qualitative
behavior, which depends on the parameter values of the Jacobian. The ex-
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pressions for the time evolution of the LCEs take on three different forms
depending on whether the discriminant of the right hand side of (20) is positive,
zero or negative, leading to three qualitatively different equations for the LCEs.

We use the Jacobian as given in (15), but with the parameters m, k, ¢ and a,
each a constant. We integrate Eq. (17), and then Egs. (18) and (19) to obtain
the time evolution of the LCEs in closed form.

The discriminant of the right-hand side of (20) is (a + ¢)* — 4km, and it will
dictate the form of the solution of (20) and thus for (17), (18) and (19). Based
on the discriminant we get the following three cases:

Case 1. The discriminant is zero. Completing the square on the right-hand
side of (20), separating variables, and integrating, yields

(a+c)t

2m{2+ (a+ o)t} | (25)

0(t) = tan™! [

Case 2. The discriminant is negative. As with the previous case, after sep-
aration of variables, and integration, Eq. (20) becomes

x(t) = ptan (mpt + z) + h, (26)

where

h:a—|—c 2_k (a—|—c

— 5 )2 and z = arctan(—h/p). (27)

m P T

In terms of the parameters of the Jacobian, 0(¢) can thus be expressed as

— 4 qt —a—c atc
H(t)—arctan{zmtan{2+arctan< . >}+ 2m}

with ¢ = \/4km — (a + ¢)*. (28)

Expanding the tangent term in the last equation and simplifying we get

2

0(t) = arctan (29)
4km — (a+¢)” + (a + ¢)tan [7”4’“"_2%%]
Case 3. The discriminant is positive. Three sub-cases are considered.
Case 3i. The parameter m = 0. After integration, (20) becomes
e — kef(aJrc)t
tan(0(¢)) = x(t) = ——. 30
an (0(1)) = x(1) = —— (30)

Case 3ii. The product mk < 0. After separation of variables, (20) becomes
x(¢t) = ptanh (z — mpt) + h, (31)
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where

2
h:a—i—c’ pzz(a+0) _ 5 and z = arctanh(—h/p). (32)

2m 2m m

Again, in terms of the parameters of the Jacobian, 0(¢) can thus be expressed as

_ 9 —a—c\ gqt a+c
0(t) = arctan { . tanh {arctanh( . ) 5 } + 5 }

with ¢ = \/(a + ¢)* — 4km. (33)

Expanding the hyperbolic tangent term in the last equation and simplifying we
get

2k
(a + ¢)* — d4kmcoth {7W] +(a+¢)

0(r) = arctan (34)

Case 3iii. The product mk > 0. After separation of variables, (20) becomes

x(t) = p coth(z — mpt) + h, (35)
where
_a+tc ,_(atce\? k B B
h= o P = ( . ) - and z = arccoth(—A/p). (36)

Again, in terms of the parameters of the Jacobian, 6(¢) can thus be expressed as

q —a—c qt a—+c
= ¢ — h h _ 1
0(t) = arctan { . cot [arccot ( . ) 2} + 5 }

with ¢ = \/(a + ¢)* — 4km. (37)

Expanding the hyperbolic cotangent term in the last equation and simplifying
we get

2k
(a+ c¢)” — 4kmcoth {W] + (a+c¢)

0(¢) = arctan (38)

Now that expressions for 6(z) have been obtained, they can be used in the
solution of Egs. (18) and (19).
Egs. (21) and (22) yield

pr+py=(a—o) (39)
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and
P — Py = /t {(a+ ¢)cos(20) + (k — m)sin(20)} dr. (40)

Using Eq. (17), Eq. (40) becomes,

e (a+ c)cos(20) + (k — m)sin (20)
prop= /o {kcosz(ﬁ) + msin*(0) — (a + ¢)sin (0) cos (0) } a0- (4

Setting u = kcos?(0) + msin®(0) — (a + ¢)sin (0) cos (), we obtain
u _dg
b= [ = —Inw/b). (42)

From Egs. (39) and (42),
_(a=c)t In(u/k)

P = ) 2 (43)
and
pzz(a—zc)t+ln(g/k). (44)

The time evolution of the Lyapunov exponents (4;(¢) and /4,(¢)) can now be
obtained by using (43) and (44) as

(a—c) In(u/k)

() =5 - (45)
and
Ia(t) = @ ~ ¢ In (2”/ 25 (46)

Recall that

5 = tim 2

1—00 t

and by (45) and (46) we have
),[ - llm;L,(t)7 l - 172
1—00

)

The time evolution of the LCEs can be obtained by replacing the appro-
priate form for 0(#) (according to the discriminant) into (45) and (46). When
replacing the appropriate expression for 0(¢), cancellations will occur. If no
precautions are taken with regard to these cancellations, then computational
problems may develop when evaluating (45) and (46) for large . After taking
into account cancellations, the expressions for u(¢) and 4;(¢) for the three cases
take the following forms:
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Case 1. When the discriminant equals zero

() — 4k cos?(0)
2 2+ (a+c))” #7)

and the time evolution of the LCEs is given by

a—c, In[(km + k*)£* + (a + ¢)t + 1]

Aall) == 2

(48)

In the special case when £ = 0, Eq. (48) still holds and the time evolution of the
LCEs are simply given by ? 1, (1) = a, and ,(r) = —c (observe that when k = 0,
then a = —¢).

Case 2. When the discriminant is negative, with p, & and z, as in (27)

u(t) = mp*cos*(0) sec*(mpt + z), (49)
and the time evolution of the LCEs is given by

a—c _In]2m*p*/k

) = S MR

L In[k +m + (m — k + 2mh?) cos2(mpt + z) + (a + c)psin2(mpt + z)]
2t '

(50)

Note that for the negative discriminant case we must always have that
km > 0.
Case 3. When the discriminant is positive, we have the following sub-cases:
Case 3i. When the parameter m = 0, then

k(a tc ze—(zfrc)t
u(p) = —HaF e (51)
(a+c) + k(1 —e(a+r)

and the time evolution of the LCE:s is given by

a—c I{(at+eye @ /((a+cf + k(1 —e @)}

F . (52)

Aall) == 2

Case 3ii. When the product mk < 0, with p, h and z as in (32)

u(t) = —mp*cos*(0) sec h(z — mpt), (53)

2 For this special upper triangular Jacobian the LCEs are directly given by Corollary 2 in
Appendix A.
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and the time evolution of the LCEs is given by
a—c __In[4mp*/k]
2 T
LR/ m+ )+ {(p— )+ 1}e 2E 0 4 {(p+h)” + 1} )]
2t

Aia(t) =

(54)
Case 3iii. When the product mk > 0, with p, h and z as in (36)
u(t) = mp* cos*(0)cosech*(z — mpt), (55)
and the time evolution of the LCEs is given by

a—c__In[—4mp*/k]
2 T
L In[=2(k/m+ ) +{(p—h)’ +1}e 20 + {(p+h)’ + 1} )]
2t ’

”

/L]‘z(l‘) =

(56)

In the special Case 3i when £ = 0, as before, the time evolution of the LCEs are
simply given by 4,(¢) = a, and 4,(¢) = —c.

Depending on the parameter values in the Jacobian matrix, the time evo-
lution of the LCEs for a constant Jacobian matrix are thus obtained in closed
form from Egs. (48), (50), (52), (54) and (56).

For a constant Jacobian J, the LCEs are the real parts of the eigenvalues of
J. In the 2D case, the eigenvalues of J are given by

a—ct\/(c—a) —4(km—ac
. Vi 2) (jm — ac) -

Thus the LCEs for the case
(1) when the discriminant is non-positive, are given by

a—c¢

ha=225 (58)
(2) when the discriminant is positive, are given by
a—cj:\/(c—a)z—4(km—ac)
hip = (59)

3 .
On taking the limit as ¢ goes to infinity in Egs. (48), (50), (52), (54) and (56)
convergence to the exact LCEs given in (58), and (59) occurs, as expected.
In the next section we present numerical comparisons of the evolution of the
LCEs computed using the O-method and the e®-method, with those obtained
from the exact, closed form solutions derived in this section.
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5.2. Numerical examples for the 2D constant Jacobian case

The three examples shown in this section correspond to the linear single-
degree-of-freedom oscillator described by the equation

V+ey+hky=0 (60)

with appropriate initial conditions.
Using the transformation y,(¢) = y(¢) and y(¢) = y(¢), the system simply
becomes the first order system

B;] = [_Cyzyz_ kyl]’ with the Jacobian J = {_Ok _lc]

Comparing J with the expression of the Jacobian in (15), here a = 0 and m = 1.

The case of critical damping in Eq. (60) corresponds to the zero discriminant
case of the right-hand side (20). This case will be shown first for the parameter
values of a =0, m =1, ¢ =2, and k = 1. The underdamped case in Eq. (60)
corresponds to the negative discriminant case of the right-hand side of (20),
and it will be illustrated here with the parameter valuesofa =0, m=1, ¢ =1,
and k£ = 1. We will also show an example of an overdamped case in Eq. (60)
(the overdamped case with mk > 0 corresponds to a positive discriminant of
the right-hand side of (20)), using the parameter valuesof a =0, m =1, ¢ = 3,
and k£ = 1.

The LCEs for the three cases of the discriminant are computed using the €5
and the Q-method. Both methods were computationally implemented using a
fourth order Runge—Kutta integrator with a fixed time step size of 0.1, and in
each case the inital conditions were y,(0) = 1 and 3»(0) = 0. All computations
were performed using Matlab with a machine precision of 2.2 x 107!¢, For the
Q-method system (1) together with the systems given in (7) and (8) were solved.
For the eS-method, system (1) and Egs. (17)-(19) were solved. Comparisons
with the exact, closed form, results given by Egs. (48), (50) and (56) we per-
formed.

As will be seen next, the e5-method gives more accurate results than the
Q-method for the examples presented. The errors in computing the time evo-
lution of the LCEs can be defined as the difference between the exact and the
computed values for the Q-method and the eS-method. As an additional
measure of the numerical accuracy of the methods, the error in orthogonality
|OTO —I||, is given for the two methods.

The first case deals with a discriminant equal to zero (a =0, m=1, ¢ =2
and k£ = 1). The time evolution of the two LCEs is given in Fig. 1 (the values
reported come from Eq. (48)). From Fig. 1 we can observe that the LCEs seem
to be asymptotically approaching the expected values 4,, = —1 (for this case
the exact LCEs are 4, = —1, as given by Eq. (58)).
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Fig. 1. Time evolution of the LCEs for the zero discriminant case with a =0, m =1, ¢ =2 and
k =1, using closed form solutions.

Fig. 2(a) and (b) show the error in the time evolution of the LCEs for the
O- and the e’-methods for the first and the second LCE, respectively. From the
figures, for the eS-method, the error in the LCEs reduces (approaches zero) as
time increases. On the other hand, for the Q-method the errors in the LCEs
seem to be approaching nonzero values asymptotically.

Fig. 3 presents the error in orthogonality for both methods as a function of
time. The error in orthogonality for the e’-method is within the machine
precision (i.e., ~ 2.2 x 107!%), while for the Q-method the error approaches
5% 107°.

We next present an example with a negative discriminant (¢ =0, m = 1,
¢ =1 and k£ = 1). Fig. 4 shows the time evolution of the LCEs of the system
when using the exact equation (Eq. (50)). Both LCEs are asymptotically
approaching the exact values of 4, = 1, = —1/2, as given by Eq. (58) in an
oscillatory manner.

Fig. 5(a) and (b) show the error in the time evolution of the LCEs for the
0- and the eS-methods for the first and the second LCEs, respectively. In both
cases the error is smaller for the eS-method. As time increases the error for
the O-method oscillates with increasing amplitude, while the error in the
eS-method oscillates with slightly decreasing amplitude. The errors in the time
evolution of the LCEs for the Q-method though being oscillatory in nature are
always positive, while the corresponding errors for the eS-method oscillate
about zero.
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Fig. 3. Error in orthogonality for the Q- and the eS-methods as a function of time. Values for the
zero discriminant case witha =0, m=1, c=2and k= 1.

Fig. 6 presents the error in orthogonality for both methods as a function of
time. The error in orthogonality for the eS-method remains within the machine
precision, while for the Q-method the error increases as time increases. When
larger values of time are considered the same trend of an increasing error in
orthogonality in the Q-method can be observed.

The last case shows an example of a positive discriminant (¢ = 0,m =1, ¢ =1
and k£ = 1). Fig. 7 shows the time evolution of the LCEs of the system when using
the exact equation (Eq. (56)). Both LCEs are asymptotically approaching the
exact values (as in Eq. (59)) of 4, = —0.382 and 4, = —2.618.

Fig. 8(a) and (b) show the error in the time evolution of the LCEs for the Q-
method and the eS-method for the first and the second LCEs, respectively. For
both LCEs the error for the eS-method reduces as time increases, and the error
approaches zero. On the other hand, the errors in the LCEs for the Q-method
seem to approach nonzero values.

Fig. 9 presents the error in orthogonality for both methods as a function of
time. The error in orthogonality for the e5-method is within the machine
precision, while for the Q-method it approaches a value close to 1.7 x 107>,



236 F.E. Udwadia, H.F. von Bremen | Appl. Math. Comput. 121 (2001) 219-259

0

-0.1H -
0.2+ \ |

0.3} | :
04l \‘ i

05+

Lyapunov Exponent

06l ::: v ]
07t ! |
0.8} |

09} ]

-1 ! I I I I
0 10 20 30 40 50
Time

Fig. 4. Time evolution of the LCEs for the negative discriminant case with a =0, m=1, ¢ =1
and k = 1, using closed form solutions.

All three cases shown reflect that for the e$-method as time increases, the
error in the time evolution of the LCEs approaches zero. Thus the LCEs
computed through the eS-method seem to converge towards the exact value. In
the case of the Q-method, all three examples show that the errors in the time
evolution of the LCEs do not approach zero. For the zero and positive dis-
criminant cases, the errors in the LCEs seem to approach finite nonzero values,
and for the negative discriminant case, the errors are oscillatory with increasing
amplitudes (for the parameter values shown). This implies that the LCEs
computed through the Q-method could be quite different from the exact ones.

The superiority of the eS-method over the Q-method is also reflected by the
fact that the O-method has always a significantly larger error in orthogonality
than the e5-method. We specifically draw attention to the case with the negative
discriminant, in which the error in orthogonality for the Q-method shows an
increasing trend with time.

5.3. Special 2D systems

Often, higher order systems (n > 2) can be decomposed into smaller ones for
the purposes of computing their LCEs, as is shown in Appendix A. Even
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negative discriminant case witha =0, m=1, c=1land k= 1.

though continuous autonomous 2D systems cannot exhibit chaotic behavior,
the equations developed in the previous subsection can be used to establish the
non-trivial LCEs for special, higher-dimensional, systems which could exhibit
chaotic behavior (see [9]). Many times, for LCE computations, they can be
reduced to 2D sub-systems.

As an example, consider a forced oscillator whose response, is described by
an equation of the form

y+g(,yay7 t) = h(t)a y(O) =W and y(O) = Vo- (61)

Often, periodic forcing of such a system, with A(¢t) = h(t + T), can cause the
response to be chaotic. Using the substitutions y; =y, y, = y and y; = ¢, we can
rewrite the non-autonomous system (61) as the 3D autonomous system

b » »(0) N
| = |h(s) —giy,y3) | and | 32(0) | = | |- (62)
s 1 »3(0) 0

The Jacobian of the 3D autonomous system given in (62) is singular and the
elements in its third row are all zero. Because of Eq. (2), this implies that Y3, (¢),
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Fig. 7. Time evolution of the LCEs for the positive discriminant case witha =0, m =1, ¢ = 1 and
k =1, using closed form solutions.

Y3:(¢) and Yi3(¢) are each constants. Using the initial condition Y(0) =7, we
then have that ¥3; = 0, Y3, = 0 and Y33 = 1. Since Y is non-singular, then Y has
the QR-factorization ¥ = QR, and Y can therefore be written as

Yu Yo Y On On Of|Ru Run R
3w Yo Yn|=|0n On O 0 Ry Rx|. (63)
0 0 1 0 0 1 0 0 Ryp

In order to find the LCEs of (61) we only need to determine the time evolution
of Ry; and Ry, since R3; = 1. Thus for the purpose of computing the LCEs we
only need to consider the 2D subsystem of the form (see Appendix A for more
general results)

Y=J7V, Y(0)=1, (64)

where, for convenience, we explicitly write out the first equation (64) as

s vy ¥ 0 1 Yu T
y= |t ti) o {_ dgignys) % vsz’s):| { 12 ] . (65)
Yy Y o a7 o, Yo

The variational equations (64) and (65) given above correspond to the varia-
tional equations of a 2D system. Since R3; = 1, one LCE of the 3D system (62)
is always zero.
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More generally, suppose the Jacobian of (2) has the following special upper-
triangular block structure *

J= {JOI 2] (66)

where the matrix block J; is m by m, block J, is m by p, block J3 is a p by p
upper triangular matrix, and O is a p by m zero matrix, with m + p = n. (For
the Jacobian corresponding to Eq. (62), we have m = 2,p = 1.) Then the so-
lution Y of the initial value problem (2) has the same structure as J and it has a
QOR-decomposition as given below.

[ »] _[o Ol[R R
=16 1=1% )5 &) )

where Y1, Ry and Oy are m by m, with R, upper triangular, and Q; orthogonal,
Y>, R, and O are m by p, where O is a zero matrix, Y;, R; and I, are p by p, with

3 A matrix is called block upper triangular if it has square matrices along the diagonal with zeros
in all entries below its block diagonal structure and where the elements above the diagonal blocks
need not be zero.
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R3 upper triangular and J, an identity matrix, and O is a p by m zero matrix. A
proof of the result is shown in Appendix A (Result 1 and Corollary 1).

The above result can be used to reduce the system of equations necessary to
find the LCEs of a system that has a Jacobian with a structure as given in (66).
In order to determine m of the LCEs, one just has to consider the subsystem

h=a%, Y(0) =1, (68)
The remaining p LCEs can be obtained by simple quadrature as
1 t
() :7/ (S3(1)),dt fori=m+1,...,n. (69)
0

A proof of the last result is shown in the Appendix A (Result 2, and Corollary 2).

In the above case (Eq. (66)) the structure of the Jacobian was utilized to
reduce the order of the system for purposes of finding the LCEs. In general,
when the Jacobian matrix has a block-upper-triangular structure’ with many
blocks along the diagonal, its structure can similarly be used to reduce the
system to several smaller subsystems when determining the LCEs. Detailed
results related to this general case may be found in the Appendix A. Such
reductions to smaller subsystems can lead to substantial savings in computa-
tional costs, and often, improved computational accuracy of the LCEs. As an
example, consider the forced Duffing equation

$+ Cy+y*' =Bcos(t) with y(0) =y and $(0) = vy, (70)

which describes a periodically driven oscillator. It is of the form (61) with
g(y,y) = Cy +* and h(t) = Bcos(t) and can be rewritten in the form (62).
From our previous discussion, one LCE of (70) is zero and the other two can
be computed by considering the reduced system given by (64) and (65). The
Jacobian J for the reduced system corresponding to (70) is then

. 0 1 0 1 ]
J = dg(1 92 dgnan) | = . 71
R 7y

Using Eq. (21) for this Jacobian we get p, + p, = —Ct. Therefore, the time-
evolving nontrivial LCEs of the Duffing equation must satisfy the following
relation:

(1) + A(t) = —C. (72)

Since the sum of the time-evolving LCEs * is constant, this sum can be used as
an easy-to-compute indicator of the accuracy of the different methods used for

4 See Appendix A (Result 3), where it is shown that the sum of the time evolving LCEs is equal to
the time average of the trace of the Jacobian.
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Table 1
Comparison of computed LCEs for Duffing’s equation
B Moon Ueda  Q-method eS-method
[15] [16]
A A M Ao Errorin 4 A Error in

Sum Sum x10-1?

9.9 0.012 0.065 0.0044 -0.1031  0.0013 0.0192 -0.1192  0.3346
10 0.094  0.102  0.0651 —0.1638  0.0013 0.0914  -0.1914  0.3389
11 0.114  0.114  0.1099 —-0.2085  0.0014 0.1134  -0.2134  0.3352
12 0.143  0.149  0.1349 -0.2330  0.0019 0.1405  -0.2405  0.3362
13 0.167 0.182  0.1487 -0.2465  0.0022 0.1644 —-0.2644  0.3328
133 0.174  0.183  0.1501 -0.2480  0.0021 0.1604  -0.2604  0.3400

computing the LCEs (see Appendix A). Using the relation in Eq. (72), one can
obtain an estimate of the numerical accuracy of computed LCEs.

Table 1 shows the computed LCEs for Duffing’s equation given by different
authors (and methods) for different B values and a fixed value of C = 0.1. The
table is an extension of that given in [15], where we have included our results
using the Q- and the eS-methods, for comparison. A fourth order Runge-Kutta
scheme with a fixed step-size of 0.01 was used to compute the LCEs for the
O- and the e5-methods. The initial conditions of the Duffing equation used to
compute the LCEs by the Q- and the eS-methods were y;(0) =0 and
»(0) = —6. The column labeled ‘Error in Sum’ corresponds to the error in the
sum of the LCEs (i.e., 4; + 4, +0.1).

Among the computed LCEs by the different methods shown in the table, the
closest agreement occurs between the values from the eS-method and the values
from Moon [15] (here reported for a final value of 1 = 8007). When comparing the
results from the Q- and the e5-methods, we note that the ratio of the error in the
sum of the LCEs for the Q-method to that for the eS-method is of order of 10'°.

The following numerical results correspond to the computation of the LCEs
using the Q- and the eS-methods with the parameters of B =9.9 and C = 0.1,
and the initial conditions given before.

Fig. 10 shows the time evolution of the nontrivial LCEs for the Duffing
equation when using the Q- and the e5-methods (the first 50 s are not plotted in
order to be able to see the asymptotic behavior). The LCEs at time
t=2,513.3 ~ 800x are 4; =0.0192 and A, = —0.1192 for the e5-method, and
A1 = 0.0044 and 4, = —0.1031 for the Q-method.

Fig. 11 shows 4; + 4, + 0.1 asa function of time for the Q- and the e5-methods.
The large difference in the errors of the sum of the LCEs between the two methods
can be observed on the plot, the error for the O-method is in the order of 1073,
while for the eS-method the error is practically zero at the scale of the plot.

Fig. 12 shows that the error in the sum of the LCEs for the eS-method is of
the order of 10713,
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Fig. 11. Error in the sum of the LCEs (4, + 4, + 0.1) as a function of time for the Duffing equation
using the Q- and the eS-method.
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using the eS-method.

Fig. 13 shows the error in orthogonality ||QTQ — I||, for the Q- and the
eS-methods. The figure clearly shows that for increasing integration times, the
error in orthogonality for the O-method increases. The corresponding error in
orthogonality for the eS-method remains within the machine precision of
MATLAB (= 2.2 x 107!%) throughout the integration and at the scale shown
on the plot it is practically zero.

The above numerical results for Duffing’s equation show that in terms of the
error in the sum of the LCEs and the error in orthogonality, the eS-method is
superior to the Q-method.

6. The 3D case

In this part of the paper we deal with the 3D case. Again, several dynamical
systems can be decomposed to 3D systems for the purpose of computing LCEs.
The differential equations that determine the elements of the skew symmetric
matrix S of the e5-method are given, together with the differential equations
that determine the LCEs. Computational results for the e5-method are com-
pared with those for the O-method using the Lorenz system. For the case of the
O-method it will be shown that when using a fixed step-size fourth-order
Runge-Kutta method, the method fails to compute the LCEs due to an
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overflow (or underflow) in the computations for all the chosen step-sizes,
provided that sufficiently large integration times are used.

6.1. Equations to determine S in the 3D case using the e*-method

The derivation follows along the same lines as the derivation for the 2D
case. Let S be the skew-symmetric matrix such the Q = €5, and let it be given by

0 —a(t) by
S=|al) 0 —c(t)]. (73)
b(t)  <(t) 0

The eigenvalues of S are y; =0 and p,3 = j:\/a(t)2 +b(t) + c(t)’i = +pi.
Using the eigenvalues of S, the matrix €5 can be expressed as

sin (@) 1 — cos(p)

S =I+—"-5+ s?
u

2
1 c? + (a* + b*)cos (1) —ausin(p) — be(1 — cos(u))  —busin(p) + ac(l — cos(u))
=— | apsin () — be(1 — cos(u)) b+ (a* + c*)cos (p) —cpusin () — ab(1 — cos(w)) |-
Ko busin (u) + ac(1 — cos(n))  cusin () — ab(1 — cos(u)) a® + (b + ¢*) cos (w)

(74)

Following the same procedure as for the 2D case, we use the observation that
the product e‘.S(deS /dt) is skew symmetric and RR! is upper triangular. The
equations for S can thus be obtained by expanding the lower triangular part of
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e~5(de’/dr) and equating it to the lower triangular part of e SJe®. In order to
simplify some of the notation, recall that e® = Q, thus (e”5Je%),, = ¢/Jq;,
where ¢; is the kth column of Q. Note that from Eq. (74) we have an explicit
expression for Q in terms of the elements of S. With the last observations, and
after some algebra, the differential equations for the elements of § are obtained
as

a(t) 479
A(t) | b(t) | = | ¢3Jq |, (75)
e(t) 43792

where the coefficient matrix A(¢)is given by

Ar)

1 ua + (1% — a*)sin () u(ab + ¢ — ccos(u)) — absin(u)  u(ac — b+ beos(u)) — acsin (u)
=— | u(ab — ¢ + ccos(u)) — absin (u) ub? + (1 — b*)sin () wu(be +a —acos(u)) — besin (p) | -
B p(ac + b — beos (1)) — acsin (1) p(be — a + acos (1)) — besin (p) pc® + (12 — ¢*)sin ()
(76)
Inverting the matrix 4(¢) ( 4~'(¢) = B(¢)) in (76), (75) becomes
a(r) 0 Jq a(0) 0
b(t)| =B(1)| q3Jq1 |, and [b(0) | = |0}, (77)
¢(t) 9392 c(0) 0

where the matrix B(¢) is

B(t)

| w(p? — a?)cot ( ) +2a* —ab,ucot(’_;‘) +2ab — cy’>  —acpcot (%) + 2ac + by?
=32 —abpcot (4) +2ab+ e p(p? —b*)cot(4) +20*  —bepcot (§) + 2bc — ap?
—acpcot (&) 4+ 2ac — by —bepcot (&) +2bc + ap®  p(p? — *)cot (&) + 26
(78)
In order to determine the LCEs we also need to solve the initial value problem
él qlTJ‘h p1(0) 0
pr| = |42Jq2 |, and | py(0) | = |OF. (79)
P3 4374 p3(0) 0

Eq. (77) gives the system of differential equations that determine the elements
of S. We note that the right-hand side of (77) is only a function of the elements
of S and the Jacobian matrix. Similarly, the right hand side of Eq. (79) is only a
function of the elements of S and the Jacobian matrix.

In order to compute the LCEs we need to solve the initial value problems
given in (1), (77) and (79), and the LCEs are then simply given by

7= 1im 2 im0 for i= 1,2, and 3.

t—00 1—00
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It should be noted that when u = 2nx, for n = 0,1,2,3,..., the matrix A(¢)
given in Eq. (76) is singular, and B(¢) given in (78) is not defined. Thus for the
above values of u the differential equations for 4, b and ¢ as given in Eq. (77)
are not defined. For u = 0, we have that S = 0 and e* = I, differentiating (74)
and using (11), yields a = J5, b =Jy and ¢ = J3,. When the same method to
obtain &, b and ¢ is applied to u = 2nn for n = 1,2,3,..., no explicit expres-
sions for @, b and ¢ are obtained. However, one can avert this difficulty by
simply changing to a different coordinate system in which the sought for
quantities are then defined.

6.2. Numerical comparison between the Q- and e5-methods the for the 3D case

A comparison of the accuracy of the Q- and the e5-methods for computing
the LCEs of 3D systems is performed in this section. A Lorenz system is used
for the comparison. The numerical results presented in this section strongly
suggest the superiority of the eS-method over the O-method. We show that the
direct computational implementation of the Q-method without any effort to
deal with the issue of the deviation from orthogonality can actually lead to a
complete failure of the method.

Consider the Lorenz system given by

N a(y2—n) »1(0) 0
n| = —yy—»n| and |»n0)|= 1. (80)
73 nys — B3 »3(0) 0
55
+ Experimental
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S as| 1
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®
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5 25| e |
£
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©
& 15/ 1
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Logarithm of the step-size

Fig. 14. Logarithm of the time when the Q-method fails versus the logarithm of the step size, At.
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For the parameter values ¢ = 16, f =4 and p = 45.92, the Q-method was
implemented using a fixed time-step size (A¢), 4th order Runge-Kutta scheme.
The LCEs were computed for different integration time-step sizes. For all the
time-step sizes considered, the O-method eventually failed, provided the inte-
gration was taken over a long enough time interval.

Fig. 14 shows the logarithm (base 10) of the time at which the Q-method
failed in the computation of the LCEs vs. the logarithm of the size of the in-
tegration time-step. The results from numerical simulations are recorded as
experimental points. Each time this failure was caused by an overflow (or
underflow) which occurred in the computation of the orthogonal matrix Q.
The curve fit plot corresponds to the least squares fit of the experimental
points. The empirical equation resulting from the curve fit is time to
fail ~ 0.0087(Ar) > Thus as one would generally expect, the time it takes for
the method to fail significantly decreases as the time step increases.

The following numerical results correspond to the computation of the LCEs
using the Q-method with Az = 0.03. The computed LCEs are shown in Fig. 15.
The values are only shown up until the time when their growth would require a
drastic change of the scale for their presentation on this plot.

The severe loss of orthogonality and the subsequent failure of the Q-method
is illustrated in Fig. 16. The figure shows the error in orthogonality
|0 (1)Q(t) — I]|, as a function of time when computing the LCEs using the O-
method with A¢ = 0.03. For comparison, the figure also includes the error in
orthogonality for the eS-method when using the same fixed time-step size.

30

LCEs

-20 F

-30| —

-40 L L L L L
0 50 100 150 200 250 300
Time, t

Fig. 15. Computed LCEs as a function of time, using the Q-method for the Lorenz system.



250 F.E. Udwadia, H.F. von Bremen | Appl. Math. Comput. 121 (2001) 219-259

3.5

__ Q-method

3+
. e5-Method

251

2L

15+ A

nl -

Errorin Orthogonality
Y
“,

051 _

Ol i

-0.5¢

-1 . . . . .
0 50 100 150 200 250 300
Time, t

Fig. 16. Error in orthogonality for the Q- and the eS-methods using the Lorenz system.

Since the trace of the Jacobian of the Lorenz system is a constant, then the
sum of the time evolving LCEs is the constant trace. For the Lorenz system we
then have A, + A, + 23 = —a —  — 1, thus for the parameters ¢ = 16 and f = 4
used in the example we have A, + A, + 13 = —21. Fig. 17 shows the error in the
sum of the LCEs (i.e., 4y + 4, + 43 + 21) of the Lorenz system (80) as a
function of time when the Q- and e5-methods were used with a fixed integration
time-step size of At = 0.03. From the plot, we see that as time increases the
error in the sum for the O-method deviates further and further from the the-
oretical value of 0. On the other hand, the error in the sum of the LCEs for the
eS-method is practically zero at the scale of the plot shown.

The above example illustrates that the direct implementation of the Q-
method to compute the LCEs may not just provide erroneous, and numerically
inaccurate results; it can actually break down due to numerical overflows and/
or underflows when carried along far enough in time (note, our aim is to obtain
2:(t) as t — o00).

The following numerical results correspond to the eS-method when imple-
mented to solve the above mentioned Lorenz system. For purposes of com-
parison, a fixed time-step size, fourth-order, Runge—Kutta integrator was used
with Af = 0.03, as in the Q-method. The e5-method did not encounter any
numerical overflows as did the Q-method for any of the integration final times
that we considered. For illustrative purposes we present the numerical results
over a time interval of 1000 units. The computed LCEs for Ar = 0.03 were
1.5792, —0.1311 and —22.4481 at time ¢ = 1000. Fig. 18 shows a plot of the
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Fig. 17. Sum of the computed LCEs versus time using the Q- and the e’-methods.
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Fig. 18. Computed LCEs as a function of time, using the e¥-method for the Lorenz system over at
time interval of 1000.
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computed LCEs as a function of time. To the scale of the plot, the LCEs seem
to be clearly converging to finite values around ¢ = 300. In contrast, the
computed LCEs using the Q-method as shown on Fig. 15 do not appear to be
converging towards finite values, in particular the smallest LCE. Note that here
At = 0.03 was used only for making comparisons with results obtained using
the Q-method; for more accurate estimates of the LCEs of the system (80),
a smaller time-step size would be preferable. Using Ar = 0.001 ¢ = 1,000 the
eS-method gives the LCEs: A; = 1.4898; A, =0.0048 and A; = —22.4946.
Theoretically, the Lorenz system has one zero LCE; observe that 4, is close to
zero, validating the numerical results.

Fig. 19 shows the error in orthogonality (||Q"(r)O(¢) —1|,) for the
eS-method. The method yields almost orthogonal matrices with error in
orthogonality of order 10~!3 throughout the entire time interval of integration.

Fig. 20 shows that the error in the sum of the LCEs for the e5-method is of
the order of 10~!!. In contrast, for the much smaller interval in time for which
the Q-method still ‘functions’, the error in the sum of the LCEs is of the order
of 10 (see Fig. 17).

When comparing the numerical efficiency of the e5 and the Q-methods, the
ratio of the number of flops required over one integration time-step of the
eS-method to the Q-method is about 0.9. Perhaps one would expect larger
computational savings when using the e5-method since after all, one only needs

x10
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z 2
T
c
o
[o)]
o
£ 15
o
£
s
] 1

0 200 400 600 800 1000
Time, t

Fig. 19. Error in orthogonality for the e5-method as a function of time for the Lorenz system over
a time interval of 1000.
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Fig. 20. Error in the sum of the computed LCEs versus time using the e’-method for the Lorenz
system over a time interval of 2000.

to solve three differential equations to get Q versus nine when using the
O-method. The added computation cost in the e5-method comes from the fact
that Q needs to be reconstructed from S.

7. Conclusions

In this paper we have presented a method to compute the LCEs for con-
tinuous dynamical systems which is accurate and more efficient than the
methods generally used in the literature. The most prevalent method for
computing LCEs is shown to be prone to breakdown. In this paper a new
method is proposed which avoids this problem and in addition computes the
LCEs in an efficient and accurate manner.

In general the methods to compute the LCEs of dynamical systems involve
either a QR-factorization or a singular value factorization of the fundamental
solution. The method presented in this paper focuses on the QR-factorization
and it is based on the observation that any orthogonal matrix Q with
det(Q) = 1 can be expressed as the exponential of a skew symmetric matrix .S,
ie.,, Q=¢S5 In our method we determine the differential equations that es-
tablish S, and thus by construction, the matrix Q = €5 is orthogonal. The ac-
curacy of the computed LCEs is generally affected by the orthogonality of Q.
Since the new method guarantees the orthogonality of Q, the new approach is
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expected to be highly accurate since errors due to errors in orthogonality are
virtually absent. The fact that the orthogonality of Q is preserved also assures
that the method will not fail due to any overflows (or underflows) in the
computations. The representation of Q in terms of the elements of S allows us
to determine S (and thus Q) by using only n(n — 1)/2 differential equations. In
contrast, the methods that attempt to find Q directly involve »? differential
equations. The computational advantage (in terms of the number of differential
equations needed to be solved to find Q) of the e5-method over the Q-method is
then given by the factor y =2/(1 — 1/n). Thus for large n, the eS-method is
about twice more computationally advantageous than the O-method. However
this ratio may not portray the exact computational advantage of the e5-method
since we require the Q matrix to be reconstructed from S.

The proposed approach is used for continuous dynamical systems of two
and three dimensions; these constitute by far the most numerous types of
systems studied to date in the literature. Furthermore, many dynamical systems
can be broken down, for purposes of computing the LCEs, into 2D and/or 3D
blocks, as illustrated in Section 5.3, and more generally, in Appendix A. The
differential equations needed to compute the LCEs in terms of the elements of
S and the Jacobian matrix for these systems are given. For the 2D case with
constant Jacobian, closed form expressions for the time evolution of the LCEs
are given in terms of the elements of the Jacobian. The numerical examples
comparing the proposed approach and the standard method for 2 and 3D
systems show the superiority of the e5-method over the Q-method.

Adaptations of the eS-method to systems of dimension four and five appear
possible. However, systems of higher dimension may require the use of spe-
cialized tools from Lie algebra. Yet, there are many physical systems described
by differential equations of higher order (n > 3) which can be decomposed for
the purposes of computing LCEs into smaller subsystems, depending of the
structure of the Jacobian matrix. When such decomposition into 2 and 3D
subsystems is possible, the methods in this paper can be directly applied.

Appendix A

Three results are presented in this appendix.

1. The first result states that when the Jacobian J of (2) has a block upper tri-
angular structure (i.e., it has square matrices along the diagonal with zeros in
all entries below its block diagonal structure and where the elements above
the diagonal blocks need not be zero), then the solution Y of (2) has the same
structure. This implies that the QR-decomposition of Y yields a matrix Q
with special structure that allows us to decompose the problem of finding
the LCEs into two sub-problems, each with its own QR-decomposition.
We then prove an important corollary when the Jacobian has an upper-tri-



F.E. Udwadia, H.F. von Bremen | Appl. Math. Comput. 121 (2001) 219-259 255

angular (not just block upper triangular) structure and show how in that cir-
cumstance the orthogonal factorization of the system is trivial. Such special
upper-triangular structures are often found in dynamical models of physical
systems.

2. The second result shows that for systems which have a block upper triangu-
lar structure (as in Result 1), the LCEs can be determined by considering
smaller subsystems. From this follows an important corollary, when the Ja-
cobian matrix is upper triangular; then the LCEs can be found trivially.

3. The third result shows that at each instant of time, the sum of the time evolv-
ing LCEs is equal to the time average of the trace of the Jacobian matrix of
the system. This is a generalization of a result which is often found in various
restricted forms, such as those dealing with constant Jacobian matrices, and/
or with the sum of the final computed LCEs of a dynamical system.

Result A.1. Suppose that the n by n Jacobian, J, of (2) has the following block
upper triangular structure

J = {JOI ﬂ (A.1)

where J; is m by m, J, is m by p, J; is a p by p matrix and O is a p by m zero
matrix, with m + p = n.

Then the solution Y of the initial value problem (2) has the same structure as
J and it has a QR-decomposition

1 T
y=|"" =
o Y

0 O
0 Qs

5 )

where, Y1, Ry and Q) are m by m matrices, with R, upper triangular, and O,
orthogonal; Y, R, and O are m by p matrices, with O a zero matrix; Y3, Ry and
Qs are p by p matrices, with R; upper triangular, Q; orthogonal; and O is a p by
m zero matrix. Thus we obtain the two QR-decompositions V| = QR and
Y3 = OsRs.

Proof. First we show that if J has the structure given in (A.1), then Y has the
same structure. Consider the initial value problem (2), and consider a candidate
solution Z with

Z= K)‘ 2] (A.3)

where Z; is m by m, Z, is m by p, Z; is a p by p matrix, and O is a p by m zero
matrix. The structure of Z is the same as the structure of Z, and since the
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product JZ has the same structure as Z, the structure of Z given by (A.3)
satisfies (2). Furthermore, since at ¢t = 0, Y = I, the structure of Z also satisfies
the initial conditions of (2). Therefore the structure of the candidate solution is
correct and by the uniqueness of the solution of (2), the solution Y has the same
structure as Z, which in turn is the same as that of J.

Y is non-singular for all time, since it is a fundamental solution satisfying
nonsingular initial conditions. Thus, Y has a unique QR-decomposition with a
non-singular upper triangular R matrix all of whose diagonal elements are
positive. We can then write the QR-decomposition of Y in matrix block form
as

n n
0 1

R R,
0O R

_ O O
Or O

B [QlRl O1Ry + O2R;

= ] , (A4)
OsR1 OsRy + O3Rs

where the elements of Y and R have the same shape and dimensions as given in

(A.2), and the blocks, forming Q have the appropriate dimensions.

Equating the zero matrix O from the left-hand side of (A.4) with the
corresponding entries of the right-hand side of (A.4) yields O = O4R;. Since
R, is non-singular, O, = O. Since O, = O we have that ¥; = Q;R;. Since the
last p rows of Q are orthogonal, Qs is orthogonal. Thus Y; = Q3R3 is a QR-
factorization of Y;. Since Qs is orthogonal and the last p columns of Q are
of unit length, 0, = 0. Thus the QR-decomposition of Y is as given in
(A2). O

Remark A.1. The above result implies that in order to obtain the partial QR-
factorization of Y (i.e., when the matrix R, is not needed, as is the case when
determining the LCEs), one only has to find the QR-decompositions of the
subsystems Y| = QiR and Y3 = Q;R;. It is clear that the same argument used
above holds for systems with Jacobian matrices that have block upper trian-
gular structure with say k blocks along the diagonal. And that in order to
determine the partial QR-factorization of Y (i.e., excluding the off diagonal
blocks of R), one only needs to consider the appropriate k subsystems.

Corollary A.1. If in the initial value problem given by (2), the Jacobian matrix J is
an upper triangular matrix, then Y is upper triangular, and the unique QR-fac-
torization Y = QR, (where the diagonal elements of R are positive) is such that
O =1 (the identity matrix).

Proof. Following the same reasoning as before it is easy to show that the
solution Y of (2) has the same structure as J (i.e., upper triangular). Since Y
and R are upper triangular, then in general the unique orthogonal matrix Q of
the decomposition of Y which yields positive diagonal elements of R would be
a diagonal matrix with either +1 along the diagonal elements. Also, at
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t=0, Y=1,so that Q =1 and R = I. Furthermore, Y is nonsingular for all
time. A unique decomposition Y (¢) = Q(¢)R(¢) at any time ¢ can be done where
the diagonal elements of R(¢) are all positive. Now if an element along the
diagonal of Q(¢) (which starts out at =0 as I) changes sign at time ¢, the
corresponding diagonal element of Y(¢#) must change sign (since Y = OR).
Because of continuous dependence, that element of Y must then pass through
zero at some time 0 < t < ¢. But this is not possible, for then Y would become
singular at time 7. Hence no element of Q can change sign. Therefore,

on=1 0O

Result A.2. Suppose that the n by n Jacobian, J, of (2) has the block upper
triangular structure given in (A.1). Then in order to determine the LCEs of the
system one only needs to consider the uncoupled subsystems

h=a%, Y(0)=1, (A.5)
Vi =01, 15(0) =1, (A.6)
with J; and J; as in (A.1), and Y; and Y5 as in (A.2).

Proof. From Result 1 we have that the QR-factorization of Y is given by (A.2).
In order to obtain the LCEs of the system, we only need the diagonal elements
of R; and Rsz. These diagonal elements can be found by considering the QR-
factorizations of ¥; and Y3 which are dictated by the initial value problems
(A.5) and (A.6). O

Corollary A.2. If in the initial value problem given by (2), the n by n Jacobian
matrix J is an upper triangular matrix, then the LCEs of the system can be
obtained by solving
. R” S .
/r),-:R—:J,-,«7 p;(0)=0 fori=1,...,n. (A7)
The LCEs, 4; = lim ”T(t) = lim 4;(¢), are then determined by quadrature as
t—00 t—00

2i(t) = ! /0 (J(1)),dr, fori=1,...,n. (A.8)

t
Proof. The corollary follows trivially from Corollary 1. The orthogonal matrix
Q of the QR-decomposition of Y (the solution of (2)) is simply the constant
matrix Q = /. By Eq. (8) we then have that

R;
,bl-:z:;],‘i,p,-(())zo fori=1,...,n. (A9)



258 F.E. Udwadia, H.F. von Bremen | Appl. Math. Comput. 121 (2001) 219-259

By directly integrating each Eq. (A.8) we then get Eq. (A.7)

70 = 1im 29 _ im0,

t—oo t—00

t
where 4;(¢) :% / (J(x),;dt fori=1,...,n. O
0

Remark A.2. Result 2 clearly generalizes to systems that have block upper
triangular Jacobian matrices. That is, if the block upper triangular Jacobian
matrix J has say k blocks along the diagonal, then one only needs to consider k
subsystems in order to find the LCEs. Further simplifications are possible if
any of the k diagonal blocks of J are upper triangular. For any such block, the
results from Corollary 2 hold, reducing the determination of the LCEs for
those blocks to simple quadratures.

Result A.3. At each instant of time, the sum of the time evolving LCEs is equal
to the time average of the trace of the Jacobian, that is

zn:i,-(t) = M :% /tTrace (J (7)) dr. (A.10)

i=1 !

Proof. The Jacobi-Liouville > relation applied to (2) gives

det(Y(x;t)) = exp (/[Trace (J(r))dr) = det(Q(t)R(?)), (A.11)

where the second equality follows from the QR-decomposition, ¥ = QR. The
matrix Q is orthogonal. Since Y(0) = Q(0) =1, and the solution of (2) is
nonsingular, det(Q(¢)) = +1. Noting that R is upper triangular, taking loga-
rithms, and dividing by ¢, yields the result. [
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