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Abstract 

An efficient and numerically stable method to determine all the Lyapunov characteristic exponents of a dynamical system 
is developed. Numerical experiments are presented highlighting some aspects of convergence, accuracy and efficiency in the 
computation of the Lyapunov characteristic exponents. 
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1. Introduct ion 

The computation of Lyapunov characteristic exponents (LCEs) for nonlinear dynamical  systems is often required 

to understand their dynamics. Benettin et al. [ 1 ] in their two-part paper place the computation of these exponents on 

a solid analytical basis; they were the first to propose a Gram-Schmid t  orthogonalization type procedure to compute 

them [2]. 

Geist et al. [3] made a thorough comparison of several methods for computing LCEs and also presented the main 

ideas published in the previous decade [1,4-6]. For more recent additional references see [7,8]. Here we address 

the discrete methods only, as the continuous ones are computationally less efficient [3 ]. 

Discrete methods are based on the factorization of a matrix representation of the tangent map into a product of  

an orthogonal matrix Q and an upper triangular matrix R with positive diagonal elements. Such factorizations can 

be achieved using the Gram-Schmid t  (GS) orthogonalization procedure (and its variants - modified GS (MGS), 
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reorthogonalized GS (RGS)) or any of  the so-called QR-factorization methods of which the variant (HQR) that uses 

the Householder transformation is more efficient than the one that uses Givens rotations. 

The GS method is known to be numerically unstable since the Q matrix could seriously deviate from orthogonality 

due to the accumulation of  roundoff errors. In spite of this there are no reports of poor accuracy in the LCEs while 

using GS, see [ 1,3]. Significantly improved numerical stability is achieved by using the MGS (see, for example [9]). 

It is therefore MGS that is advocated by several authors, see [8,10]. Moreover, the computational costs of  MGS and 

GS are virtually the same; this makes MGS even more attractive. 
Reorthogonalization (sometimes used even in conjuction with the MGS, for ill-conditioned problems) essentially 

doubles the cost of  a factorization. In contrast with GS, the HQR method is known to be backward stable, see [ 11 ], 

since it uses unitary transformations that preserve the L2-norm. 
For a square n x n matrix the asymptotic (for large n) cost o fMGS factorization is 2n 3 flops (a flop is a floating point 

addition or multiplication [ 12]), while the HQR-factorization requires 4n3 flops to compute the upper triangular R, 3 
and an additional 2n 3 flops if the orthogonal Q also is required. 

In computing the LCEs one also needs to multiply each of  the Q matrices (computed by the HQR-factorization) 

by the consecutive matrix representation of  the tangent map. Therefore, it is the complete, and thus more costly 

variant of  HQR that has been employed until now, see [3]. In this paper we show how to organize computation of 

the LCEs using HQR-factorization in such a manner that computational savings are obtained over the method based 

on MGS. 
We report several numerical experiments in which we study convergence, accuracy and efficiency of our method. 

2. Computation of LCEs using the QR-factorization 

In smooth dynamical systems, we usually deal with maps of  the form xt = T t x  (here x often belongs to a suitable 

compact connected manifold M, and the map is from a (finite) n-dimensional space to an n-dimensional space) with 

T t = T o T t I. The parameter t denotes a nonnegative integer or a real number. The sequence of  tangent maps dT t 

is obtained through iterations by considering d77~ t = dTr , x  o dTt~ - l .  We shall consider the matrix representation 

of  these operators in the standard bases (in fact, any orthonormal basis set would be sufficient). The LCEs can then 

be obtained from the QR-factorization of  the product of the matrix representations of  these tangent maps which are 

determined at the appropriate points x of M. For brevity we shall denote the matrix representation of  the tangent map 

(evaluated at the appropriate point x of  the manifold) corresponding to t = i by Ji. To determine an approximation 

to all the LCEs, one then needs the QR-factorization of  the matrix product Jm Jm I " • " J I .  This decomposition can 

be done sequentially as follows. Starting with Q0 = 1, we have 

qr [J . , Jm-I  ' "  Jl]  = q r [ J m J m - I  "'" ,12(JI Qo)l = qr[JmJm I "'" J 3 ( J 2 Q t ) l [ R l ]  

= q r [ J m J m - l  " "  (J3Q2)][R2RI]  . . . .  (1) 

----qr[JmJm-l " " ( , l i Q i - I ) ] [ R i  IRi 2 " " R 2 R I ]  . . . .  

= Qm[Rm " "  R2R1] = Q m R .  

Here we sequentially use the QR-factorization, and qr[-] denotes the QR-factorization process. Starting with Jl ,  

at each step i in the above sequence, we perform a premultiplication Bi = Ji a i - I  followed by a QR-factorization 

o f  Bi = J i Q i - I  = a i R i ,  i = 1 , 2 , - . - ,  m. The matrix R is the product of  the matrices Rm "'" R2RI  obtained 
in this sequential manner. Furthermore, each of  the diagonal elements of R is simply the product of  the corre- 
sponding diagonal elements of all the R i ' s .  Hence, approximations to the n LCEs are then obtained as: Zk = 
( l / m )  m . . ,  Y~i= I In I Ri (k, k)l, k = 1 ,2 , .  n. The computation can be presented as follows. 
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A l g o r i t h m  f o r  c o m p u t i n g  al l  the L C E s  o f  a d y n a m i c a l  sys tem 

In i t ia l i za t ion  

Initialize Q to be the n x n Identity Matrix 

Initialize L C E v e c t o r  to be a zero n-vector 

for i = 1 to m _ i t e r a t i o n s  

B = J i Q  

Compute the QR-factorization of  B (Q R = B)  

L C E v e c t o r  = L C E v e c t o r  + l o g ( d i a g  ([R[)) 

end 

L C E v e c t o r  = L C E v e c t o r / m _ i t e r a t i o n s .  

The approximate values of the n LCEs after m _ i t e r a t i o n s  are then given by the components of the n-vector 

denoted LCEvec tor .  Here the successive maps Jr, at each iteration are assumed to be known. 

There are several ways of  computing the QR-factorization (which is required at each step i) indicated in the loop 

above, the commonest ones being the GS, QR, MGS, and the HQR. The choice of  method must be based upon 

factors such as accuracy of  the procedure, storage requirements and simplicity of  implementation. If the aim is 

ease of implementation, one could make use of computing environments which have built-in QR-factorizations. For 

example, MATLAB has a reliable and efficient QR-factorization using Householder reflectors. 

The Householder QR-factorization is known to be backward stable [11] (with regard to roundoff errors). Yet 

its direct application is (asymptotically, for large n) computationally more expensive than the GS (or the MGS) 

approach. However, efficiencies in the Householder-based QR-factorization in terms of both computation and storage 

can be achieved because: 

( 1 ) we need to compute and store only the diagonal entries of the matrix R, and 

(2) the reflector (Householder) matrices which constitute Q can be sequentially assembled resulting in efficiencies 

in the computation of  the action of the succeeding map Ji+J on Q. 

In what follows we show that by modifications of  the standard HQR-factorization we obtain a method that, while 

being more computationally efficient than the GS or the MGS approaches, seems also more stable with regard to 

roundoff errors. 

3. Householder QR-based (HQRB) algorithm for the computation of LCEs 

Consider the QR-factorization of the above-mentioned algorithm at the iteration index i. The HQR-factorization 

works along the following lines (for details see [13]). Given an n x n matrix B, one sequentially determines the 

matrices 

B !s+t) = H(S)B  (s), s = 1 ,2  . . . . .  n -- 1; B (j! = B. (2) 

The Householder reflector matrices H (s) have the structure 

H (') = /,, - u ) ( s l [ w ( s ) ]  T, (3) 

where the first (s - I) elements of the n-vector w (sl are all zero. The matrix R of  the QR-factorization of  B is then 

obtained as 

H ( '~ - I ) - . .H(2)H(I )B  : R 



4 H.E von Bremen et al./Physica D lOl (1997) 1-16 

and the matrix Q is given by 

Q = H t l ) H  (2) . . .  H ~n-l). (4) 

We note that this factorization is required to be done at each iteration i described in the aforementioned algorithm. 

At the next iteration (with index i + 1) the matrix B is replaced by the matrix (we suppress the subscript in Ji+l 

and write J for simplicity) 

J Q  = { j H i l ) H  (2 ) . . .  H/S)}H (s+l) . - .  H (n-I) = J(S)HiS+l) • • - H in- l ) .  (5) 

We now make two important observations: 

(1) The LCEs are obtained only through the determination of the diagonal elements of the Ri,  i = 1 ,2  . . . . .  m in 

Eq. (1) and therefore one needs to judiciously compute the elements in each of these upper triangular matrices; 

storage of only the diagonal elements is called for. We begin by noting that in the matrix B Is), the first (s - l) 

columns have zeros below the main diagonal. Eq. (2) then becomes 

ISln-s+l 0 d (n-s+j)  = 0 d (n-s) ' s = 2 . . . . .  n - 1, (6) 

where the matrix b ¢s- 1) is an (s - 1) × (s - 1) upper triangular matrix, c tn-s+l)  an (s - l) × (n - s + 1 ), and 

d(n - s+ I) is an (n - s + 1 ) × (n - s + 1 ) matrix. Thus d In-s) = 171,,_s+ l d(n -s+l) ,  and it does not involve the matrix 

ctn-s+l) .  Furthermore, we are only interested in the submatrix d (n-s) when we continue on by premultiplication 

with the next reflector, H Is+l). Thus one does not need to compute nor store c ~n-s+l), s = 2 . . . . .  n - 1. 

(2) The action of the premultiplication of Q by J is given by Eq. (5) so that one does not need to compute Q 

explicitly. The matrix product j Is)His+l) can be written as 

r xiS) y(n-s)  
J(S)H(S+i) ~- L z(n-s)  j i n - s )  

where the matrix x Is) is s × s, y(n-s)  

simplifies to 

is s × (n - s) ,  z In-s) an (n - s) × s and j / n - s )  is (n - s) × (n - s). This 

J(S)H(S+l) = L z(n-s)  j ( n - s )  0 In s - w(n -S ) (w(n - s ) )  T 

I x(S) y ( n - s ) _ ( y ( n - S ) w ( n - s ) ) ( w ( n - s ) )  T ] 
= z(,, ~,) j (n  s) ( j ( , , - s ) w ( n - s ) ) ( w ( n  s))T • (7) 

Thus the first s columns of the matrix remain unchanged after the multiplication, and therefore do not need to 

be computed. The pseudo-code using the Householder-based method for computing the LECs having an n × n 

tangent map can be expressed as follows. 2 

Pseudo-code  o f  the Househo lder  QR based  me thod  (HQRB)  f o r  the computat ion o f  all LCEs  

Initializations: 

Initialize J to be the first tangent map. 

Initialize J p l u s  I to be the next tangent map. 

Initialize LCEvec tor  to be a zero vector 

2A computer code implementing this pseudo-code can be obtained from the authors at fudwadia@alnitak,usc.edu, or at 
vonbrem @ aludra.usc.edu. 
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for i = 1 to m iterations 

QR-factorization part 
f o r k =  l t o n -  1 

Computation ~f the reflectors 
The kth reflector is stored in the kth column of J .  The diagonal elements of  R are stored in the vector r.  

The computations are as follows: 

s igma:  ~ s ~=k J (s" k )2' 

gamma = sigrha (sigma + IJ (k, k) [) 
r(k ) = -sign( J (k, k ) ) sigma 
J(k, k) = J(k, k) - r(k) 
Computation of reflectors with J as in (6): 

f o r j = k +  l t o n  

beta = J(s, k)J(s,  /gamma 
\ s=k  

fo r s  = k + 1 t o n  

J(s, j )  = J(s, j )  - J (s ,k )  beta 
end (s) 

end ( j )  

Computation of action of Jplusl on Q as in (7): 

l b r j  = 1 t o n  

b e t a = ( ~ - ~ J p l u s l ( j , s ) J ( s , k ) ) / g a m m a  
\ s=k  

fo r s  ---- k t o n  

Jplusl(j,  s) --- Jplusl(j, s) - J(s, k)beta 

end (s) 

end ( j )  

e n d / k )  

r(n) : J(n, n) 
Set J : Jplusl 
Set Jplus I to be the next tangent map 

For q : 1 to n 

LCEvector (q) = LCEvector (q) + log (Ir (q) 1) 

end (q) 

end (i) 

LCEvector = LCEvector/m_iterations 

4.  N u m e r i c a l  r e s u l t s  

Computational cost of  an iterative algorithm to find the LCEs is proportional to the number of  iterations, which 

in turn often depends on the rate of  convergence of  the iterations. An additional issue is the choice of  the stopping 

criterion based on the knowledge of convergence. Analyzing the convergence of  the constant map 13 given by 
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Table 1 
Residual and error versus number of iterations for Xl using map B from Benettin et al. [ 1 ] 

No. of iterations 10 100 1000 10 000 100 000 

Residual 4.06 x 10 -2 6.64 x 10 -4 8.93 x 10 -6 1.12 x 10 -7 1.35 × 10 9 
Error 5.05 x 10 -I 7.6 × 10 -2 9.9 × 10 -3 1.2 x 10 -3 1.45 x 10 4 

Table 2 
Operation count for the factorization 

M e t h o d  Multiplications/divisions Additions/subtractions Sqrts Total 

GS n 3 + n 2 n 3 + n 2 n 2n 3 + 2n 2 + n 
MGS n 3 + n 2 n 3 n 2n 3 + n 2 + n 
. Q R  + 3n2  - - 3  5.3 +  _n2_ 3 n -  l '-°n33 + - 7 

HQRB ~2n3 q--In2 + ~ n - 3  ~2n3-F7n-3 n -  I ~4n3 q--ln2-}-~n-7 

Benettin et al. [ 1 ], as Table 1 indicates, the error e in X l (the largest LCE) is inversely proportional to the number of 

iterations, m i.e., e (m) = k / m .  Thus the actual convergence rate is e(m) / e (m+ l ) = (m  - l ) / m = 1 - 1/  m ,  i.e., one 

decimal gain in accuracy for each increase in the order of the number iterations. The same convergence rate was 

observed for the other LCEs. This shows that extremely slow convergence could occur, thus the need for efficient 

algorithms to minimize computing times. 

4.1.  C o m p u t a t i o n a l  e f f ic iency  c o m p a r i s o n  

As a measure of efficiency of the algorithms under consideration we use the operation count of performing one 

QR-factorization of the tangent map (represented by an n × n matrix) followed by the action of multiplying the 

succeeding tangent map by the orthogonal matrix Q. We follow the GS and MGS algorithms given by Golub and Van 

Loan [ 12], and the HQR as given by Dahlquist and Bj6rck [13]. The HQR presented computes R and Q explicitly, 

but in the computation of Q the explicit product of the reflector matrices (as in Eq. (4)) is avoided, see also [3]. The 

HQRB algorithm is the one described in this paper. 

The main difference in efficiency of the various methods comes from the way the QR-factorization part of 

the method is performed. The ratios of the asymptotic constants (thus the dominant cost for the algorithm for 

sufficiently large values of n) in the operation count 3 in Table 2 are 3:5:2 for the GS (and MGS), HQR, and HQRB, 

respectively. The operation count for the action of multiplying the succeeding tangent map by the orthogonal matrix 

Q is roughly the same for all methods (see Table 3) and hence the cost associated with this step is nearly the same for 

all methods. The ratios for the total cost then become 6:8:5, see Table 4. Thus, for values of n larger than about 10 

the savings by using HQRB versus MGS (the more efficient of the remaininig methods) in the number of operations 

are more than 10% (up to about 16% asymptotically). Since in the computation of LCEs smaller problems are 

also not uncommon, we include a plot of the total cost of the methods for the range below n = 10, see Fig. 1. 

Also here the HQRB method is advantageous, especially when compared with the HQR method. Since the actual 

computing time for different methods is environment and implementation dependent, we report here the operation 

count. The HQRB and HQR have the same accuracy. They differ only in the number of computations when it comes 
to computing the LCEs. 

3 (n - 1 ) absolute value and sign evaluations in the HQR and HQRB are not included in the tables. 
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Fig. I. Number of operations versus matrix size tot GS, MGS, HQR and HQRB. 

Table 3 
Operation count for action of the multiplication by Q 

Method Multiplications/divisions Additions/subtractions Total 

G S  n 3 n 3 2n  3 

MGS tl 3 n 3 2n  3 

HQR I13 n 3 2n 3 
HQRB n 3 + 2n 2 - 3n n 3 + n 2 - 2n 2113 + 3n 2 - 5n 

Table 4 
Operation count fl)r the Nctorization and action of multiplication by Q 

Method Multiplications/divisions Additions/subtractions Sqrts Total 

GS 2n 3 + n 2 2n 3 + n 2 n 4n 3 + 2n 2 + n 

MGS 2n 3 + n 2 2n 3 n 4113 + n 2 + n 

HQR -8n33 +3n - '~ -  jn5 _ 3  ~n3-+ -'~ v;Tn" I n - 3  n 1 @ n ' - F  ~n-9 " _  5 n - 7  

HQRB s ~ s ~ 5 n 3 + n 2  I n _  3 120n3 7 ~ I n  7 ~n" +211 " - T n  3 ~ - + n - - I  3 + ~ n - +  - 

4.2.  A c c u r a c y  c o m p a r i s o n  

W e  use  the  f o l l o w i n g  c o n s t a n t  m a p s  to a s s e s s  the  a c c u r a c y  o f  the  GS ,  M G S  a n d  H Q R B  m e t h o d s .  

E r a m p l e  1. 

A = 

( 1 1 0 +  1 1 ~ ) / 1 0  1 0 0 

- ( 1 0 0 +  1 2 1 # ) / 1 0  0 1 0 

(110  + 1 1 # ) # / 1 0  0 0 1 

- / x  2 0 0 0 

, 10 - 8  < p .  < 10 6 
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Fig. 2. Error X c°mputed - X exact versus # using (a) HQRB and GS and (b) HQRB and MGS for Example 1 after 1000 iterations. 

Example  2. 

3 5 6 9 1 
3 5 + 6 6 9 10 -8 < 6 < 10 -6. 

B = 3 5 6 + 6  9 ' 

2 4 5 2 

All the computations were performed using MATLAB within the IEEE floating point standard, i.e., with a machine 
precision of  about 2.22 x 10 -16. 
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Fig. 4. Error a,z versus/z for GS, MGS and HQRB, for Example 1 after 1000 iterations. 

Example 1 is a perturbation of the transpose of the companion matrix corresponding to the characteristic poly- 

nomial with roots: 10, 1,/z, and # /10 .  The #2 term in the (2,1) entry of the matrix A was deleted, so that the 

matrix could be represented with no roundoff error. The exact LCEs were computed using 100-digit floating-point 

arithmetic utilizing MAPLE, and the results were then truncated to 16 digits. Fig. 2(a) shows a plot of  the errors, 
)(;omputed _ X/exact as a function of  the prameter/z, in the computation of  the four LCEs at the end of  1000 iterations 

using HQRB and GS (the LCEs are ordered as gl > g2 > g3 > X4). We observe that for sufficiently small 
values of  the parameter # , / z  < 10 -7, the performance of  GS deteriorates significantly in computing the smallest 

LCE. This can be explained by the roundoff errors when/z  2 approaches the value of  machine precision, i.e., when 
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Fig. 5. Error am versus ~ for GS, MGS and HQRB, for Example 1 after 1000 iterations. 

f l(1 + #2) = 1. Also (not shown), there is no improvement in the smallest LCE by using GS when the number of 

iterations is increased. On the other hand, HQRB exhibits good stability, and remains stable with increased number 

of  iterations. 
Fig. 2(b) shows a similar comparison of the MGS and HQRB methods. Again HQRB appears to be the most 

stable, though the MGS gives errors in the smallest LCE, which may be considered to be negligibly small. 
m____ IX m _  exact For most dynamical systems the errors e i Xi can seldom be measured. A computable quantity 

after m iterations is the residual r~ = IX/m - X m-1 I- However, the residual may not provide a good estimate of  the 

error, see Table 1 and Fig. 3, and thus should not be used, in general, in establishing a proper stopping criterion for 

the iterations. 
Fig. 3 confirms the earlier observation that to gain an additional digit in accuracy may require an increase in 

the order of  iterations for a constant map. Dieci and Van Vleck [8] made an attempt in establishing a proper error 

criterion, at some cost. 
A commonly used indicator of  accuracy in the determination of LCEs [3] is the error in orthogonality a-m = 

logj0 ]l QTmQm - I 112 o f  Qm at the ruth iteration. This measure reflects errors in the QR-factorization and one 

would expect that large deviations from orthogonality of  the matrix Qm would lead to large errors in the LCEs. 

Fig. 4 shows hm for m = 1000 as a function of  # for Example 1. We observe that the error in orthogonality for 

the HQRB method is much smaller than that for the GS. Yet, a comparison for these errors between the GS and 

MGS methods shows that they are close to each other over the entire range of/z,  even though the computed LCEs 
using MGS are far superior to those obtained from GS for values of  # less than about 10 -7 (see Figs. 2(a) and (b)). 

Most importantly, the GS and MGS errors increase with decreasing/z and give no indication of  the abrupt loss of  
accuracy of GS around/z = 10 - 7 .  When plotted on regular scale the error am =It QT Qm - 1 H2 shows the loss of 

orthogonality more clearly, see Fig. 5. 
Another measure of  the orhogonality of  the matrix Q is the maximum value of the inner product between two of 

its columns. One could define the error in orthogonality as bm = maxvi,j:i¢j Iq{ m)vq)m)l, w h e r e  q~rn) a n d  q)m) are 

the ith and j th  columns of the matrix Qm after m iterations. Fig. 6 shows this error plotted for various values of  
/z for the GS, MGS and HQRB approaches. The HQRB method is more stable than GS and MGS over the range 
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Table 5 

C o m p u t e d  L C E s  and  e r rors  a l te r  1000 and  1 0 0 0 0  i te ra t ions  fl~r E x a m p l e  1 wi th /~  = 10 -6 ' 8  

L C E  GS M G S  H Q R B  Exac t  E - G S  E - M G S  E - H Q R B  

ZI 2 . 3 0 3 0 3 7 0 2  2 . 3 0 3 0 3 7 0 2  2 . 3 0 3 0 3 7 0 2  4 .52  x 10 - 4  4 .52  x 10 - 4  4 .52  × 10 4 

2 . 3 0 2 6 3 0 2 8  2 . 3 0 2 6 3 0 2 8  2 . 3 0 2 6 3 0 2 8  2 . 3 0 2 5 8 5 0 9  4 .52  x 10 5 4 .52  × 10 5 4 .52  x 1(1-5 

X2 - 0 . 0 0 0 4 5 1 9 3  - 0 . 0 0 0 4 5 1 9 3  - 0 . 0 0 0 4 5 1 9 3  - 4 . 5 2  x 10 4 - 4 . 5 2  x 10 4 - 4 . 5 2  x 10 - 4  

- - 0 . 0 0 0 0 4 5 1 9  - 0 . 0 0 0 0 4 5 1 9  - 0 . 0 0 0 0 4 5 1 9  3 . 8 7 4 1 8  x 10 - 8  - 4 . 5 2  x 10 5 - 4 . 5 2  × 10 - 5  - 4 . 5 2  x 10 - 5  

X3 - 1 5 . 6 5 7 4 7 3 2  - 1 5 . 6 5 7 4 7 3 2  - 1 5 . 6 5 7 4 7 3 2  1.05 x 10 4 1.05 x I(1-4 1.05 x 10 - 4  

- 1 5 . 6 5 7 5 6 8 0  - 1 5 . 6 5 7 5 6 8 0  - 1 5 . 6 5 7 5 6 8 0  15 .6575786  1,05 x 10 - 5  1.05 x 10 s 1.05 × 10 5 

X4 - 1 7 . 9 6 0 2 6 8 1  - 1 7 . 9 6 0 2 6 9 0  - 1 7 . 9 6 0 2 6 9 0  - I , 0 4  x 10 - 4  - I . 0 5  x 10 - 4  1.05 x 10 4 

- 1 7 . 9 6 0 1 7 4 1  - 1 7 . 9 6 0 1 7 4 2  - 1 7 . 9 6 0 1 7 4 2  - 1 7 . 9 6 0 1 6 3 7  - 1 , 0 4  x 10 5 - 1 . 0 5  x 10 5 - 1 . 0 5  x 10 - 5  

Table  6 

C o m p u t e d  L C E s  and  e r rors  a f te r  1000 and  1 0 0 0 0  i tera t ions  for  E x a m p l e  1 w i t h / a  = 10 8 

L C E  GS M G S  H Q R B  Exac t  E -GS  E - M G S  E - H Q R B  

XI 2 . 3 0 3 0 3 7 0 2  2 . 3 0 3 0 3 7 0 2  2 . 3 0 3 0 3 7 0 2  4 .52  x 10 4 4 .52  x 10 4 4 .52  x 10 4 

2 . 3 0 2 6 3 0 2 8  2 . 3 0 2 6 3 0 2 8  2 . 3 0 2 6 3 0 2 8  2 . 3 0 2 5 8 5 0 9  4 .52  x 10 5 4 .52  × 10 - 5  4 .52  x 10 5 

X2 - 0 . 0 0 0 4 5 1 9 3  - 0 . 0 0 0 4 5 1 9 3  - 0 . 0 0 0 4 5 1 9 3  - 4 . 5 2  x 10 - 4  - 4 . 5 2  x 10 - 4  - 4 . 5 2  × 10 - 4  

- 0 . 0 0 0 0 4 5 1 9  - 0 . 0 0 0 0 4 5 1 9  - 0 . 0 0 0 0 4 5 1 9  2 . 4 4 4 4 4  × 10 - 9  - 4 . 5 2  x 10 - 5  - 4 . 5 2  x 10 - 5  - 4 . 5 2  x 10 - 5  

Z3 - 1 8 . 4 2 0 5 7 5 3  - 1 8 . 4 2 0 5 7 5 3  - 1 8 . 4 2 0 5 7 5 3  1.05 x 10 4 1.05 x 10 4 1.05 x 10 4 

- 1 8 . 4 2 0 6 7 0 2  - 1 8 . 4 2 0 6 7 0 2  - 1 8 . 4 2 0 6 7 0 2  - 1 8 . 4 2 0 6 8 0 7  1.05 x 10 . 5  1.05 x 10 -5 1.05 × 10 -5 

Z4 - 1 6 . 6 9 4 1 7 8 3  - 2 0 . 7 1 9 3 5 2 9  - 2 0 . 7 2 3 3 7 1 1  4 .0291  3.91 × 10 - 3  - I . 0 5  x 10 -4  

- 1 6 . 6 9 4 3 9 5 3  - 2 0 . 7 2 2 8 7 4 5  - 2 0 . 7 2 3 2 7 6 3  - 2 0 . 7 2 3 2 6 5 8  4 . 0 2 7 0  3.91 × 10 - 4  - I . 0 5  x 10 - 5  



12 H.F. von Bremen et al./Physica D 101 (1997) 1-16 

Table 7 
Computed LCEs and errors after 1000 and 10000 iterations for Example 2 with 3 = 10 -6 .8  

LCE GS MGS HQRB Exact E-GS E-MGS E-HQRB 

ZI 2.975244707 2.975244707 2.975244707 -1.25 x 10 -3 -1.25 x 10 -3 -1.25 x 10 -3 

2.976370819 2.976370819 2.976370819 2.976495942 -1.25 x 10 - 4  -1.25 x 10 4 - I . 25  x 10 - 4  

X2 1.284414938 1.284414938 1.284414938 - I . 7 7  x 10 -3 -1 .77 x 10 -3 -1 .77 x 10 -3 

1.286007039 1.286007039 1.286007039 1.286t83929 -1 .77 x 10 - 4  -1.77 × 10 4 - I . 7 7  x 10 - 4  

X3 --15.65700657 -15.65700657 -15.65700657 5.72 x 10 -4 5.72 x 10 -4 5.72 × 10 4 

-15.65752142 -15.65752142 -15.65752142 --15.65757863 5.72 x 10 -5 5.72 x 10 -5 5.72 x 10 -5 

Z4 --17.43289971 -17.43290368 --17.43290369 2.45 x 10 -3 2.45 x 10 -3 2.45 x 10 -3 

-17.43510663 --17.43510704 -17.43510705 -17.43535185 2.45 x 10 - 4  2.45 x 10 - 4  2.45 x 10 - 4  

Table 8 
Computed LCEs and errors after 1000 and 10000 iterations for Example 2 with 6 = 10 -8 

LCE GS MGS HQRB Exact E-GS E-MGS E-HQRB 

z! 2.975244702 2.975244702 2.975244702 -1.25 x 10 -3 -1.25 x 10 -3 -1.25 x 10 -3 

2.976370814 2.976370814 2.976370814 2.976495938 -1.25 x 10 - 4  -1.25 x 10 - 4  - I . 25  x 10 - 4  

X2 1.284414947 1.284414947 1.284414947 -1.78 x 10 -3 -1.77 x 10 3 -1.77 x 10 -3 

1.286007039 1.286007039 1.286007039 1.286183938 -1.77 x 10 - 4  -1.77 x 10 - 4  -1.77 x 10 4 

Z3 -18.42010868 -18.42010869 -18.42010869 5.72 x 10 - 4  5.72 × 10 4 5.72 x 10 - 4  

-18.42062353 -18.42062354 -18.42062354 -18.42068074 5.72 × 10 -5 5.72 × 10 -5 5.72 x 10 -5 

X4 -16.88335438 -20.19600564 -20.19600575 3.3151 2.45 x 10 -3 2.45 x 10 -3 

-16.87315174 -20.19820899 -20.19820910 -20.19845397 3.3253 2.45 × 10 -4 2.45 x 10 -4 

10 -8  < # < 10 -6 .  A t  the  s ame  t ime,  for  the  GS and  M G S  m e t h o d s  one  can  see c h a n g e s  in o r thogona l i ty  in the 

t rans i t ion  reg ion  whe re  we cou ld  expec t  a c c u m u l a t i o n  o f  the  r o u n d o f f  er rors  a s / z  b e c o m e s  such  that  f l  ( 1 + l~ 2) = 1. 

The  abso lu te  va lue  o f  the d e t e r m i n a n t  o f  Qm cou ld  a lso  be  used  as a measu re  o f  the e r ror  in o r thogona l i t y  in the 

fo rm Cm = I1 - IDet( Qm)ll. Depar tu re  o f  Cm f rom zero  wou ld  then  be  an  ind ica t ion  of  lack o f  or thogonal i ty .  This  

e r ror  c r i te r ion  (see Fig. 7) behaves  s imi la r  to bm (Fig. 6) in showing  the zone  i n / z  whe re  inaccura te  L C E s  may  be  

expec ted .  Each  o f  these  e r ror  cr i ter ia  w h i c h  deal  wi th  o r thogona l i t y  seem to ind ica te  tha t  H Q R B  is more  s table  than 

G S  and  M G S  over  the  r ange  o f / z  cons idered .  

In o rder  to ver i fy  how  well  the e r ror  cr i ter ia  am, bm and  Cm cap ture  the inaccuracy  in d e t e r m i n i n g  the LCEs ,  

we c o m p u t e d  the  L C E s  wi th  all three  m e t h o d s  and  c o m p a r e d  t h e m  wi th  the exac t  values.  Tables  5 and  6 show the 

va lues  o f  the  L C E s  us ing  the  d i f fe rent  m e t h o d s  af ter  1000 ( top value)  and  1 0 0 0 0  (bo t ton  value)  i terat ions.  The  

er rors  X c°mputed - X exact in L C E s  for  the three  m e t h o d s  are deno t ed  as E-GS,  E - M G S ,  E - H Q R B .  

As  expec ted  (see Figs.  5 -7 ) ,  the L C E s  show s imi la r  smal l  e r rors  for  all three  m e t h o d s  w h e n / z  = 10 -6.8 (Table  5). 

F o r / z  = 10 -8 ,  large er rors  in the smal l e s t  L C E  for  the  G S  are obse rved  c o m p a r e d  to the errors  in M G S  and  H Q R B .  

T h e s e  er rors  do  not  reduce  w h e n  the  n u m b e r  o f  i te ra t ions  inc reases  (Table  6). For  the smal les t  L C E  the M G S  

shows  a s l ight ly  la rger  e r ror  than  the H Q R B ,  a l t h o u g h  it does  dec rease  wi th  an increase  in the n u m b e r  of  i terat ions.  

T h e s e  resu l t  for  E x a m p l e  1 ind ica te  tha t  the m e a s u r e  o f  e r ror  in o r thogona l i ty  bm and  Cm capture  the inaccuracy  in 

d e t e r m i n i n g  the  L C E s  abou t  as wel l  as the usua l ly  used  am cr i ter ion.  

F lop  coun t s  for  the  c o m p u t a t i o n  of  am, bm and  Cm are s h o w n  in Fig. 8. As  seen f rom the figure,  the flop coun t  

for  Cm is the  lowest .  As  each  o f  the er ror  cr i ter ia  are s imi la r  in the i r  b e h a v i o r  as far  as ind ica t ing  er rors  in L C E s  are 

conce rned ,  the c r i te r ion  Cm m ay  be  p re fe rab le  f rom the  v i e w p o i n t  o f  c o m p u t a t i o n a l  efficiency. 
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In Example 2 the exact LCEs were computed as in Example I using MAPLE. The significant difference in 

comparison with Example 1 is that here the performances of HQRB and MGS are almost identical, see Figs. 9(a) 

and (b), while as before GS produces larger errors for the range ~ < 10 75. 

Tables 7 and 8 show the LCEs and their errors for the three methods after 1000 and 10 000 iterations for 6 = 10 -6.8 

and 6 = 10 -8,  respectively. As expected, no significant difference in the errors in LCEs is observed among the three 

methods for ~ = 10 -6.8 (Table 7). When 6 = 10 -8,  only the error for X4 using GS is significantly greater than the 

errors obtained from MGS and HQRB. This behavior is well predicted by the error criteria Cm, see Fig. 10(a). The 

superior stability of the HQRB method is depicted by tim, see Fig. 10(b). 
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For  tes t ing  the me thods ,  o the r  example s  were  a lso cons idered .  A m o n g  them we exp lored  the cons t an t  map  [ 14]: 

C = j 0 0 0 

e 0 0 " 

0 e 0 

Th i s  e x a m p l e  s h o w e d  f luc tua t ions  in am, bm and Cm for  G S  as the i tera t ion n u m b e r  was var ied  for  a large range  o f  

e (say for  10 -8  < c < ] 0 - 6 ) .  Such  f luctuat ions  in the errors  in o r thogona l i ty  should  warn  us to use the indica tors  
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a,, ,  bm and Cm with caution. For, one could sample the errors in orthogonality at places where the error is "'small", 

and come to wrong conclusions about the validity of the computed LCEs. 

5. Conclusions 

In this paper we have provided a computationally efficient and robust algorithm for computing the LCEs of a 

dynamical system. We base our approach on the recognition that: 

( 1 ) approximations to the LeEs  can be obtained in a direct manner from the diagonal elements of the R matrix in 

the QR-factorization of the tangent map, and 
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(2) such a factorization can be efficiently done through a modification in the use of the HQR algorithm. 

The approach proposed here for determining LCEs is shown to be computationally superior to the GS, MGS, and 

far superior to standard HQR methods. In addition, the numerical experiments reported here show that the algorithm 

is more stable with respect to roundoff errors than both the GS and MGS algorithms. 

Numerical experiments suggest that it may be misleading to use the residual error in the LCEs as a measure of 

the accuracy of their computed values. Three measures of the error in orthogonality of Qm at the mth iteration are 

m (m) T _(m) where q~m) and the ith and j th  columns considered: am :][ QT Qm - I ll2; b m =  maxi, j; i#j  qi qj q)m) are 

of the matrix Qm ; and Cm = [ 1 - I Det(Qm)l]. It appears that am, bm and Cm are comparable in their ability to detect 

the lack of orthogonality; since Cm is computationally by far the cheapest to determine, it might be more useful 

when computation time is an important factor. 
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