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ABSTRACT 

The newly developed equation of motion for constrained mechanical systems 
are derived using D'Alembert's principle. 

Consider an unconstrained nonlinear mechanical system consisting of 
n particles described in a rectangular inertial frame of reference by the 
equation 

M ~  = F(x,  ~, t). (1) 

Here the 3n-vector of position is denoted by the vector x, and M is a 
constant,  positive definite, diagonal 3n by 3n matrix. The dots refer to 
differentiation with respect to time. By unconstrained we mean that  the 
number  of degrees of freedom of the system equals 3n. The "given force" 
F and the matr ix  M are assumed known. 

Let the mechanical system, in addition, be constrained so that  it satis- 
fies the m consistent equations given by 

~ ( x , ~ , t )  = 0, i = 1 , 2 , . . . , , ~ ,  (2) 

which need not be functionally independent. On differentiating equations 
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(2) we obtain the equation 

A(x, ~, t)i~ = b(x,  ~¢, t), (3) 

where the elements of the m by 3n matrix A as well as those of the m-vector 
b are known functions of x, ~, and t. 

Given the set of initial conditions x(t0) and ~(t0) which satisfy the con- 
straint equations (2), the equation of motion of the constrained mechanical 
system (described jointly by equations (1) and (3)) can now be explicitly 
expressed as [1] 

ME = F ( x , ~ , t )  + M 1 / 2 C + ( b  - Aa), (4) 

where the 3n-vector a = M - 1 F ( x ,  ±, t) and the matrix C = A(x, ~, t ) M  -1/2. 
The superscript "+" denotes the Moore-Penrose inverse of the matrix C. 
We note that  the vector a is simply the acceleration corresponding to the 
unconstrained system as obtained by using equation (1). 

This equation was obtained in [1] by appealing to Gauss' Principle. In 
this paper we present an alternate, and perhaps simpler, proof of this result 
by starting from D'Alembert 's principle. 

We shall find it convenient to recast equation (4) by premultiplying it 
by the matrix M -1/2 to yield the equation 

xs = as + C+(b  - Cas), (5) 

where the "scaled accelerations" xs and a8 are defined, respectively, by the 
relations xs  = M 1/2i[ and a8 = MY/2a. It is this equation (5) which we 
now set out to prove. For ease of notation we will from here on drop the 
arguments of the vectors and the matrices. 

By virtue of the presence of the constraints described by equation set 
(2), forces of constraint will brought into play and the equation of motion 
of the constrained system will therefore become 

M~ = F + F c, (6) 

where F c is the force of constraint. 
Multiplying (6) by M -1/2 we get the equation 

xs = a8 + M-1/2FC. (7) 

Similarly, noting that  C = A M  -1/2, we can express equation (3) as 

C~s = b. (8) 



Equation of Motion for Constrained Systems 341 

Substi tut ing for ~8 from (7) in (8) we get 

C ( M - 1 / 2 F  c) = b - Cas ,  (9) 

which is a linear equation for the 3n-vector M - 1 / 2 F  c. The general solution 
to this linear equation is 

M - 1 / 2 F  c = C + ( b  - Gas)  ÷ ( I  - C + C ) h ,  (10) 

where the 3n-vector h is arbitrary. 
According to D 'Alember t ' s  principle we assume tha t  for any (nonzero) 

vir tual  "displacement" vector v,  the work done by the force of constraint 
F c equals zero. But  given the constraints A~ = b, a virtual displacement 
vector v is defined as any nonzero (infinitesimal) vector which satisfies the 
equation 

Av = 0. (11) 

Hence by D 'Alember t ' s  principle we require tha t  for all vectors v such tha t  
Av  --- 0 we must  have v T F  c ---- 0. Relation (11) can be writ ten in turn  as 
C u  = 0 with the vector u defined as 

v = M - 1 / 2 u .  (12) 

Hence D 'Alember t ' s  principle demands tha t  for all (nonzero) vectors u such 
tha t  C u  = 0 we must  have v T F  c ---- u T M - 1 / 2 F  c ---- 0. Using the expression 
for the 3n-vector M - 1 / 2 F c  obtained in equation (10), we get 

u T ( M - 1 / 2 F  c) ~- u T C + ( b  - Gas)  ÷ u T ( I  -- C+C)h .  (13) 

Also, C u  = 0 is equivalent to u T c  + ----- O. D'Alember t ' s  principle then 
amounts  to requiring tha t  for all (nonzero) vectors u for which u T c  + = 0, 
the right-hand side of (13) must  be zero. But  the right-hand side of (13) 
reduces to u T h  when u is such tha t  u T c  + = O. Hence we must have 
u T h  = 0 for all vectors u which satisfy the relation u T c  + = O. 

This requires tha t  the vector h belong to the column space of the matr ix  
C + and therefore tha t  it can always be expressed as 

h -- C + w  (14) 

for a suitable m-vector  w. Using (14) in (10) yields 

M - 1 / 2 F  c = C + ( b  - CaB) + u T ( I  -- C + C ) C + w  = C + ( b  - Cas) ,  (15) 
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where we have used the property C + C C  + = C + of the Moore-Penrose 
inverse in obtaining the last expression on the right-hand side of (15). 
Using this expression for the 3n-vector M-U2FC in the right-hand side of 
equation (7), we obtain equation (5), and our proof is complete. 

REFERENCES 

1 F.E.  Udwadia and R. E. Kalaba, A new perspective on constrained motion, 
Proc. Roy. Soc. London 439:407-410 (1992). 


