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1. I N T R O D U C T I O N  

The recursive determination of a generalized inverse of a matr ix  finds extensive applications 
in the fields of statistical inference [1-3], filtering theory, estimation theory [4], and system 

identification [5]. More recently, generalized inverses have found renewed applicability in the 
field of analytical dynamics [6,7]. The reason for the extensive applicability of recursive relations 
is tha t  they provide a systematic method to generate 'updates '  whenever sequential addition of 
da ta  or new information becomes available, and updated estimates which take into account this 
additional information are required. 

The  recursive scheme for the computat ion of the Moore-Penrose (MP) inverse [8,9] of a matr ix  
was ingeniously obtained in a famous paper by Greville in 1960 [2]. Because of its extensive 
applicability, Greville's result is widely stated in almost every book tha t  touches on the subject 

of generalized inverses of matrices. Yet, because of the complexity of his solution technique, 
Greville 's proof is seldom, if ever, quoted or outlined, even in specialized texts  which deal solely 
with generalized inverses of matrices. For example, in books like [4,10-12], Greville's result is 
stated,  but  no constructive proof is provided, most likely because of its perceived complexity. 

In the same vein, Mitra and Bhimasankaram [13] provide several results for the recursive de- 
terminat ion of generalized inverses of matrices; they state their results as several Ansatze and 
prove them by directly verifying their validity using a number of specialized results related to 
generalized inverses of matrices. Their results are equivalent to those presented here. However, 
they provide no constructive proofs for their results and their proofs for the various types of gen- 
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eralized inverses have no underlying reasoning or thread running through them; only verifications 
of the various Ansatze  are carried out. 

In this paper, we present a simple constructive approach inspired in part  by Bellman's opti- 
mality principle, to the recursive determination of various generalized inverses of a matrix. The 
approach relies on a unified underlying theme and shows clearly why and how the differences in 
the recursive forms of the various generalized inverses arise. Thus, our results encompass those 
of Greville [2], and our method of proof, being constructive, provides deeper insights into the 
nature of the recursive determination of generalized inverses. 

For convenience, we introduce the following notation. Given a real matrix A, its MP-inverse G 
satisfies the following four conditions: 

(1) A G A  = A,  

(2) G A G  = G, 
(3) A G  is symmetric, and 
(4) G A  is symmetric. 

We shall denote a matr ix G which satisfies all four of these conditions by A {1'2'a'4}. Similarly, a 
matrix which satisfies only the first and fourth condition above shall be denoted as A {1,4} and 
shall be referred to as the {1,4}-inverse of A, etc. 

The most commonly used generalized inverses of a matrix are the MP-inverse (also denoted 
here as the {1,2,3,4}-inverse), the {1,3}-inverse, the {1,4}-inverse, and the {1}-inverse because 
these inverses are relevant to the solution x of the matrix equation A x  = b or of the relation 
A x  ~ b. We shall begin by defining these generalized inverses (as in [12]) in terms of the relevant 
linear relations which they help solve. The MP-inverse provides the minimum-length solution 
x = A{1'2's'a}b in the set of least-squares solutions of the possibly inconsistent equation A x  ~ b 
for any b, the {1,3}-inverse provides a least-squares solution A{1,S}b to the possibly inconsistent 
equation A x  ~ b for any b, the {1,4}-inverse provides a minimum-length solution A {1,4} b for any b 
for which the equation is consistent, and the {1}-inverse of A provides a solution A{1}b for any b 
for which the equation A x  = b is consistent. This paper is concerned with these four commonly 
used generalized inverses defined above, which we shall denote, in general, by A*. The solution x 
is then expressed, in general, as A*b. Their generalized forms are given in [14]. 

Given a real m by k matrix Ak, one can partit ion it as [Ak-1 a] where Ak-1 consists of the first 
( k -  1) columns of the matrix Ak and a is its last column. The column vector a comprises 'new' or 
additional information, while the matrix Ak-1 comprises accumulated past data. The generalized 
inverse A~ of the updated matrix Ak is then sought in terms of the generalized inverse A~_ 1 of 
the matrix Ak-1 which corresponds to past accumulated data, and the vector a containing new or 
additional information. The MP-inverse of a matrix A is unique. The other generalized inverses 

~{1,4} which we shall deal with here are not in general unique, and so, in what follows, by say " 'k-1 , 

we shall mean any one of the set of {1,4}-inverses of the matrix Ak-1. 

2. M A I N  R E S U L T  

Let Ak = [Ak-1 a] be an m by k matrix whose last column is a. Let the m-vector c = 
* T * T * ( I  - Ak_lA*k_l)a  and let the m-vector d = ( A k _ l ) T  A*k_la/(1 + a (Ak_ l )  A k _ l a  ). Then, 

and 

A'k_ -- A*k_lau T ] 
A* k = u T J ' 

[ A~_ 1 - A*k_lav T ] 
A~¢ = vT j , 

for c # o (la) 

for c = 0, (lb) 

when we have the following. 
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Par t  1: * = {1 ,2 ,3 ,4} ,  u T = cT 
c T  c ' 

Par t  2: * = {1, 3}, u T = cT 
eTa  , 

c -r ( I  - Ak_,A*k_1) 
Par t  3: * = {1,4}, u T = cTc 

c T ( I  - Ak_,A~_I)  
Par t  4: • = {1}, U T = 

cTc 
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and u = d. (2) 

and u = any  a r b i t r a r y  m-vec to r  q.(3) 

and  v = d. (4) 

and  v = any a rb i t r a ry  m-vec to r  q.(5) 

F rom equat ions  ( l a )  and ( lb ) ,  not ice t h a t  the  form of the  inverse A~_l is  the  s ame  for c = 0 and 
for c ~ 0. We have used separa te  equat ions  here only for convenience. 

PROOF OF PART 1. We consider the  solut ion of the  least  squares  p rob lem 

(6) 

where we have par t i t ioned  the  vector  x into the  (k - 1)-vector z and  the  scalar  s. To de termine  
the  min imum- leng th - l eas t - squares  solut ion x of  A k x  ~ b, we consider all those  pairs  (z, s) which 
minimize  J ( z ,  s) = I I A k _ l z  + as  - bll 2, and f rom these  pairs  select the  one whose  length z T  z + s 2 

is a m in imum.  

We begin by  se t t ing  s = so, where  So is some fixed scalar. Thus,  we have 

J (z ,  So) = I I A k - l z  - (b - aso)II 2. (7) 

Minimizing (7) such t h a t  ~7-~ is also a m i n i m u m  from among  all (k - 1 )wectors  z, we obtain,  
f rom the  definit ion of the  MP-inverse ,  

4{1'2'3'4} (b - aso) . (8) (So)  = " ' k - 1  

Thus ,  for a given value of the  scalar  So, the  ( k - 1 ) - v e c t o r  ~ is a funct ion of so. Using equat ion (8) 
in equa t ion  (7), we can now find so such t h a t  

(b - aso) + aSo b : J (~. ( so ) ,  So) = A21k_l.~k_la{1,2,3 4} 

(9) 
= ( I - A  A{1,2,3,4}, - ( I - A  A (1'2'a '4}'  k - 1 - % _ 1  ) aso k -1  k -1  ,} b 2 

is a m in imum.  Depend ing  on c ( I  " ,U,2,3,4}, = - . ' i k - l ~ k _ l  )a , we mus t  now deal wi th  two cases: the  
first when  c ¢ 0; the  second when  c -- 0. T h e  first case occurs  when  a does not  lie in the  column 

space of Ak-1;  the  second, when  the  vector  a lies in the  column space  of the  ma t r i x  Ak-1 .  

(i) For c ~ 0, the  unique value of so which minimizes  (9) is given by 

a T ( I _ A  A{1,2,3,4}, (1 _ ~ a{1,2,3,4}, k-l k_l )  k-l k-i )b 
cTc (10) 

C T C{1,2,3,4} b : = " ~ c  b = uTb,  

where  in the  first equality,  we have used the  fact t h a t  the  m a t r i x  ( I  - -  .,"l.k_lZlk_ 1 " 4  A{1,2,3,4}\) is 
symmet r i c ,  and  in the  second equality,  t h a t  it is idempoten t .  Hav ing  found the  unique 

value so which minimizes  (9), we now obta in  f rom (8), the  min imum-leng th- leas t - squares  

solut ion of A k x  .~. b as 

- - 2 t k _  1' ' t~'t$ | x = A~l,2,3,4}b _ | ~ = | " k - 1  b, (11) 
L So L uT J 
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where the first equality follows by the definition of the MP-inverse. Hence, 
A{1,2,3,4} .(1,2,3,4} T 1 

-- I lk  1 a u  ] A(kl,2,3, 4} __-- "~k-1 U T - , for c ~ 0. (12) 
, J  

(ii) For c -- 0, we observe from equation (9) that  J(~(so) ,  so) is not a function of so. Thus, 
we only need to minimize J l ( so)  = ~(so)T~.(so) + S 2 over all values of So, where ~(So) is 
given in equation (8). For convenience, we can write this as 

2 2 T 51 (so) = so + SoP1 Pl - 2sop~ p2 + P-~P2, (13) 

A{1,2,3,4} and P2 •{1'2'3'4}h The scalar value so, which where we have denoted Pl = I lk -1  a = " 'k-1  ~" 
minimizes J1(so) is then given by 

pTlp 2 a T /•(1,2,3,4}' T z1{1,2,3,4 } 
~ " k - 1  " ' k - 1  b : vTb.  (14) 

--  - - - -  / ' .{1,2,3,4}~ T .{1,2,3,4} 

Using equation (8) to obtain ~($o), we get 

--{1,2 3 4} T ] F Ail,~, 3,4} 
x : A{l'2'3'a}b : ~ ? ° ) ]  : - A k - l ' '  av ,b, (15) 

so J V T 

from which it follows, as before, that  

A{1,2,3,4} . {1 ,2  3,4} T " 

- -  I l k -  1' OA) A{1,2,3.4} _- "~k-1 for c = 0. (16) 
vT 

This proves the first part of our result given in (2). | 

PROOF OF PART 2. The {1,3}-inverse provides a least-squares solution x = A{kl'3}b to the 
equation A k x  ..~ b. As before, we partit ion the vector x into a (k - 1)-vector z and a scalar s. 
For a fixed so, we minimize 

J (z,  so) = [[Ak-lZ - (b - aSo)[[2~ (17) 

to yield 
a{1,3} (b - aso) (18)" (8°)  = " ' k - 1  

for some {1,3}-inverse of the m by (k - 1) matrix A k - z .  We next minimize 

J ( z ( S o ) ,  So) = Ak-1A{l'3}''k-X (b-a o)+a o-bl: 
- A k _ l A { k  1'3'} - ( I  , z  A{k~3'}) b : (19) 

with respect to so and again need to consider two cases: when c ¢ 0 and where c = 0. 

(i) For c ¢ 0, we obtain the unique value of so which minimizes (19) to be 

( "*k-lZi {1'3}'~ ( I  - ~ .k -1  ~ -"lk_ {1'3}~ 
So = a T \ I  - A k _  1 "] " ) b --- uTb,  (20) 

c T c  

where we have again used the fact tha t  the matrix ( I  - Ak_1A{kl'31 }) is symmetric and 
idempotent. Following the same sort of steps as before, we then obtain the required result 

for this case. 
(ii) For c -- 0, equation (19) shows that  J(£'(so)so) is not a function of so; hence, the choice 

of so is arbitrary. If we let so = qTb, where q is any arbitrary m-vector, we obtain 
statement (3) of our result for this case. The matrix Ak {l'a} so obtained is not unique. 
Moreover, once a {1,3}-inverse is obtained through the use of equations (la),  ( lb),  and (3), 
other {1,3}-inverses may be generated by adding to this {1,3}-inverse any matrix R such 
that  A k R  = O. | 
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A{1,4}/~ PROOF O F  PART 3. The {1,4}-inverse provides a minimum length solution x = "'k v to the 
consistent equation A k x  = b. Again we parti t ion the vector x into a (k - 1)-vector z and a 
scalar s. For a fixed So, we solve the consistent equation 

A k - l Z  = b - aSo, (21) 

yielding the minimum length solution 

~{1,4} (b - aso) (So) = " ' k - 1  (22) 

for some {1,4}-inverse of Ak-1. We now use equation (22) in equation (21) so that  

- Ak 1 A{ 1'41 } (I - Ak-1 "'k-1 ) b ,  (1 Y - -  _ )aSo = A{l'4'  (23) 

_{1,4}, _{1,4}, obtaining the two cases c = (I  - Ak-1 ~tk_ 1 )a # 0, and c = (I  - Ak-1Zik_ 1 )a = 0 as before. 

(i) For c # 0, the solution of the consistent equation (23) yields 

8 o = cTc 

from which the result for this case follows on using equation (22). 
(ii) For c = 0, both the left- and the right-hand sides of equation (23) are zero. We then need to 

find So so as to minimize J l ( s o )  = ~ ( s o ) r ~ ( s o )  + s 2, where ~(so)  is given by equation (22). 
A { 1 , 4 }  n A { 1 , 4 }  h Setting Pl = " 'k-1 ~ and P2 -= "~k-1 v, and following the reasoning in Part  1, Case (ii), 

we obtain the result given in (4). 

We note in passing tha t  the vector b must lie in the range space of the matr ix Ak. Using the 
{1,4}-inverse obtained from equation (la),  ( lb),  and (4), others can be obtained by adding to 
this {1,4}-inverse any matr ix L which satisfies the relation L A k  = O. (See [14].) | 

PROOF OF PART 4. The {1}-inverse provides a solution x = A{kDb to the consistent equation 
A k x  = b. Partit ioning the vector x as before, for a fixed s = so, we obtain equation (21), whose 
solution now is given by 

~. (So) = A{kl_}l (b - aso)  , (25) 

for some {1}-inverse of Ak-1. 
Using this result in (21), we obtain 

When c = ( I  - A k - 1  A~l_}l)a ~ O, the unique solution of (26) is 

8 0  = 
c T c  

From this, result (5) follows for this case. When c = 0, as in Par t  3, both the left- and right-hand 
sides of the consistent equation (26) are zero; hence, So can be arbitrary. We can then choose 
so to equal qTb  where q is any arbitrary m-vector yielding the result provided for this case in (5). 

Again as in Parts  2 and 3 above, the {1}-inverse obtained from equations (la),  ( lb),  and (5) 
can be used to obtain other {1}-inverses by adding to this {1}-inverse any matrix (L + R) where 
L is such that  L A k  = 0 and R is such that  A k R  = O. (See [14].) | 
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3. C O N C L U S I O N S  

In th is  pape r ,  we presen t  a unified app roach  for ob t a in ing  recursive re la t ions  for several  of  t he  

commonly  used genera l ized  inverses of an m by k m a t r i x  A. P a r t  1 of  our  ma in  resul t  which 

deals  w i th  t he  MP- inverse  was o b t a i n e d  by  Grevi l le  [2], bu t  in a more  complex  manner ;  our  p roof  

of th is  pa r t  is s u b s t a n t i a l l y  s impler .  The  unifying t h e m e  used in th is  p a p e r  is b rough t  a b o u t  by  

defining genera l ized  inverses in t e rms  of t he  solut ion(s)  x = A*b of t he  m a t r i x  equa t ion  A x  = b or 

of the  re la t ion  A x  .~ b, and  then  using a p rocedure  akin  to  d y n a m i c  p rog ra mming .  Th i s  resul ts  

in s imi lar  l ines of  reasoning  for ob t a in ing  recursive re la t ions  for t he  var ious  t y p e s  of general ized 

inverses, while  p rov id ing  insight  into why  and  how the  differences a m o n g  t h e m  arise. 
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