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Abstract—Using a unified approach, simple derivations for the recursive determination of different
types of generalized inverses of a matrix are presented. These include results for the generalized
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1. INTRODUCTION

The recursive determination of a generalized inverse of a matrix finds extensive applications
in the fields of statistical inference [1-3], filtering theory, estimation theory [4], and system
identification [5]. More recently, generalized inverses have found renewed applicability in the
field of analytical dynamics [6,7]. The reason for the extensive applicability of recursive relations
is that they provide a systematic method to generate ‘updates’ whenever sequential addition of
data or new information becomes available, and updated estimates which take into account this
additional information are required.

The recursive scheme for the computation of the Moore-Penrose (MP) inverse [8,9] of a matrix
was ingeniously obtained in a famous paper by Greville in 1960 [2]. Because of its extensive
applicability, Greville’s result is widely stated in almost every book that touches on the subject
of generalized inverses of matrices. Yet, because of the complexity of his solution technique,
Greville’s proof is seldom, if ever, quoted or outlined, even in specialized texts which deal solely
with generalized inverses of matrices. For example, in books like [4,10-12], Greville’s result is
stated, but no constructive proof is provided, most likely because of its perceived complexity.

In the same vein, Mitra and Bhimasankaram [13] provide several results for the recursive de-
termination of generalized inverses of matrices; they state their results as several Ansatze and
prove them by directly verifying their validity using a number of specialized results related to
generalized inverses of matrices. Their results are equivalent to those presented here. However,
they provide no constructive proofs for their results and their proofs for the various types of gen-
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eralized inverses have no underlying reasoning or thread running through them; only verifications
of the various Ansatze are carried out.

In this paper, we present a simple constructive approach inspired in part by Bellman’s opti-
mality principle, to the recursive determination of various generalized inverses of a matrix. The
approach relies on a unified underlying theme and shows clearly why and how the differences in
the recursive forms of the various generalized inverses arise. Thus, our results encompass those
of Greville [2], and our method of proof, being constructive, provides deeper insights into the
nature of the recursive determination of generalized inverses.

For convenience, we introduce the following notation. Given a real matrix A, its MP-inverse G
satisfies the following four conditions:

(1) AGA = A,

(2) GAG =G,

(3) AG is symmetric, and

(4) GA is symmetric.

We shall denote a matrix G which satisfies all four of these conditions by A{%%34}. Similarly, a
matrix which satisfies only the first and fourth condition above shall be denoted as A{14} and
shall be referred to as the {1,4}-inverse of A, etc.

The most commonly used generalized inverses of a matrix are the MP-inverse (also denoted
here as the {1,2,3,4}-inverse), the {1,3}-inverse, the {1,4}-inverse, and the {1}-inverse because
these inverses are relevant to the solution z of the matrix equation Az = b or of the relation
Az = b. We shall begin by defining these generalized inverses (as in [12]) in terms of the relevant
linear relations which they help solve. The MP-inverse provides the minimum-length solution
xz = A{L23:4}p in the set of least-squares solutions of the possibly inconsistent equation Az ~ b
for any b, the {1,3}-inverse provides a least-squares solution A{1:3}p to the possibly inconsistent
equation Az = b for any b, the {1,4}-inverse provides a minimum-length solution A1:4}p for any b
for which the equation is consistent, and the {1}-inverse of A provides a solution A{1}b for any b
for which the equation Az = b is consistent. This paper is concerned with these four commonly
used generalized inverses defined above, which we shall denote, in general, by A*. The solution z
is then expressed, in general, as A*b. Their generalized forms are given in [14].

Given a real m by k matrix A, one can partition it as [Ax_; a] where Ax_; consists of the first
(k—1) columns of the matrix Ax and a is its last column. The column vector a comprises ‘new’ or
additional information, while the matrix Ax_; comprises accumulated past data. The generalized
inverse A of the updated matrix Ay is then sought in terms of the generalized inverse Aj_; of
the matrix Ax_; which corresponds to past accumulated data, and the vector a containing new or
additional information. The MP-inverse of a matrix A is unique. The other generalized inverses
which we shall deal with here are not in general unique, and so, in what follows, by say A,{cl_"i},
we shall mean any one of the set of {1,4}-inverses of the matrix Ag_;.

2. MAIN RESULT

Let Ay = [Ak-1 a] be an m by k matrix whose last column is a. Let the m-vector ¢ =
(I — Ax_1A;_,)a and let the m-vector d = (A}_,)T A;_,a/(1 +a' (A}_;) T A%_,a). Then,

(A% — A _jau' )
Ap = k-1 uTk_l , forc#0 (1a)
and
N —A,’;_lauT’
Ap = T , for ¢ =0, (1b)

when we have the following.
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T
c
1 x={1,2,3,4}, u' =4+, dv=d. 2
Part 1: » = {1,2,3,4} Ul = and v (2)
T
Part 2: x = {1,3}, u' = -cc.r—c, and v = any arbitrary m-vector ¢.(3)
T (I — Ag—1 A,
Part 3: x = {1,4}, ul =2 ( chc ! k_l), and v =d. (4)
T (I - Axk—14
Part 4: x = {1}, ul =& ( c:c 14i-1) , and v = any arbitrary m-vector ¢.(5)

From equations (1a) and (1b), notice that the form of the inverse Aj_,is the same for ¢ = 0 and
for ¢ # 0. We have used separate equations here only for convenience.

PROOF OF PART 1. We consider the solution of the least squares problem
Akx=[Ak_1 a] [z] = Ax_12 +as =~ b, (6)

where we have partitioned the vector z into the (k — 1)-vector z and the scalar s. To determine
the minimum-length-least-squares solution = of Axz =~ b, we consider all those pairs (z, s) which
minimize J(z,s) = || Ax—1z + as — b||2, and from these pairs select the one whose length 27 z + s?
is a minimum.

We begin by setting s = s, where s, is some fixed scalar. Thus, we have

T (2,80) = || Ak-12 — (b — as,) |13 (7

Minimizing (7) such that 27 2 is also a minimum from among all (k — 1)-vectors z, we obtain,
from the definition of the MP-inverse,

2(s0) = AN (b as,). (8)

Thus, for a given value of the scalar s,, the (k—1)-vector Z is a function of s,. Using equation (8)
in equation (7), we can now find s, such that

J(5(s0) , 80) = [‘Ak-lA§E§’3'4} (b— as,) + asy — bHZ

(1 = Ae A28 gs — ([ — Ar_ . 411234 p 2 9)
(Y,

is a minimum. Depending on ¢ = (I — Ak_lA,{cl_'f’s’“)a , we must now deal with two cases: the

first when ¢ # 0; the second when ¢ = 0. The first case occurs when a does not lie in the column
space of Ay_1; the second, when the vector a lies in the column space of the matrix Ax_;.

(i) For ¢ # 0, the unique value of s, which minimizes (9) is given by

al (I - Ak—lA,{cEf’a"‘}) (I _ Ak—1A,{c&f’3‘4}) b
i (10)
o7

= p=c{1234}p = T},

c'e

8o =

where in the first equality, we have used the fact that the matrix (I — Ak_lA,{cEf’BA}) is
symmetric, and in the second equality, that it is idempotent. Having found the unique
value §, which minimizes (9), we now obtain from (8), the minimum-length-least-squares
solution of Ayz =~ b as
5(a {1721314} — {17213!4} T
7= A£1’2’3’4}b= [Z(So)] _ [Ak-—l A2y au ]b, (11)

S, u’
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where the first equality follows by the definition of the MP-inverse. Hence,
{1,234} _ 4{1,234} T
AfL234) [AH Apy™au ] , forc#0. (12)

u
For ¢ = 0, we observe from equation (9) that J(3(s,), $o) is not a function of s,. Thus,
we only need to minimize Ji(s,) = 2(s,) " 2(s,) + s2 over all values of s,, where 2(s,) is
given in equation (8). For convenience, we can write this as

J1 (So) = s2 + s2p] p1 — 250p] P2 + P3 P2, (13)

where we have denoted p; = AI(C}_,?,BA}
minimizes J1(s,) is then given by

a and ps = A,{cff’a"l}b. The scalar value §,, which

T
T ( 4{1.234)) T 4{1,23,4}
=~ p_lrpz _ a (Ak_l ) Ak-l b= Tb
o= UW+pip) (1284 L1234} (14)
PiPl) 1447 (Ak_’l" ) ALY

Using equation (8) to obtain 2(3,), we get

A~ A{1121374} —_ A{1’2!314} T
= A’{cl,2,3,4}b — [Z {So)] — |: k-1 k—1 av -'b, (15)
So vl
from which it follows, as before, that
A{1y213v4} — A{11213v4}auT
1,2,3.4 k—1 k-1
A,{c b= [ T , for ¢ = 0. (16)
This proves the first part of our result given in (2). ]

PROOF OF PART 2. The {1,3}-inverse provides a least-squares solution z = A,ﬁm}b to the
equation Axz = b. As before, we partition the vector  into a (k — 1)-vector z and a scalar s.
For a fixed s,, we minimize

J (2,50) = || Ak-12 — (b — as,)l3 (17)

to yield

2(s0) = ALY (b - aso), (18)

for some {1,3}-inverse of the m by (k — 1) matrix Ax—;. We next minimize

T (2(50),50) = [[An-1 AL (b - aso) + aso — b

(19)
2
= [[(r - A1 4823) aso - (1 - 441 4053) b“z ,
with respect to s, and again need to consider two cases: when ¢ # 0 and where ¢ = 0.
(i) For ¢ # 0, we obtain the unique value of s, which minimizes (19) to be
o (I - Ak_q A,{cl_’:;} I— A, A,{cl_’?}
5o = ( ) ( )b =u'b, (20)

(ii)

c'ec
where we have again used the fact that the matrix (I — Ak_lA,{Cl_’?} } is symmetric and
idempotent. Following the same sort of steps as before, we then obtain the required result
for this case.

For ¢ = 0, equation (19) shows that J(2(s,)s,) is not a function of s,; hence, the choice
of s, is arbitrary. If we let s, = ¢'b, where ¢ is any arbitrary m-vector, we obtain
statement (3) of our result for this case. The matrix A,ﬁl’a} so obtained is not unique.
Moreover, once a {1,3}-inverse is obtained through the use of equations (1a), (1b), and (3),
other {1,3}-inverses may be generated by adding to this {1,3}-inverse any matrix R such
that A R = 0. |
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PRrROOF OF PART 3. The {1,4}-inverse provides a minimum length solution = = A,{cl"‘}b to the
consistent equation Axz = b. Again we partition the vector z into a (k — 1)-vector 2 and a
scalar s. For a fixed s,, we solve the consistent equation

Ag-12 =b— as,, (21)
yielding the minimum length solution
2(s0) = ALY (b— aso) (22)
for some {1,4}-inverse of Ax_;. We now use equation (22) in equation (21) so that

(I Ar_q ALV }) as, = (1 Ak lA““}) , (23)

obtaining the two cases ¢ = (I — Ag_3 A{ ! })a #0,and ¢ = (I — A lA{ 4})a = 0 as before.
(i) For ¢ # 0, the solution of the consistent equation (23) yields

(I Ak lA““})

T
So = CTC b =Uu b, (24)

from which the result for this case follows on using equation (22).

(if) For ¢ = 0, both the left- and the right-hand sides of equation (23) are zero. We then need to
find s, so as to minimize J1(s,) = £(s,) T 2(s,) + s2, where 2(s,) is given by equation (22).
Setting p1 = A{ ! }a and p; = A,{cf‘:}b, and following the reasoning in Part 1, Case (ii),
we obtain the result given in (4).

We note in passing that the vector b must lie in the range space of the matrix Ay. Using the

{1,4}-inverse obtained from equation (la), (1b), and (4), others can be obtained by adding to
this {1,4}-inverse any matrix L which satisfies the relation LAx = 0. (See [14].) |

ProoF OF PART 4. The {1}-inverse provides a solution z = A,{cl}b to the consistent equation
Aix = b. Partitioning the vector z as before, for a fixed s = s,, we obtain equation (21), whose
solution now is given by

2(s0) = A, (b - as,), (25)

for some {1}-inverse of Ag_;.
Using this result in (21), we obtain

(1- Ak-14,) aso = (1 - Ax-1 4, ) b. (26)
When ¢ = (I — Ag-1 A,{cl_}l)a # 0, the unique solution of (26) is

A (I ~ Ap A,ﬁi}l)
cle

S0 = b=u'b. (27)
From this, result (5) follows for this case. When ¢ = 0, as in Part 3, both the left- and right-hand
sides of the consistent equation (26) are zero; hence, s, can be arbitrary. We can then choose
8o to equal ¢ b where q is any arbitrary m-vector yielding the result provided for this case in (5).

Again as in Parts 2 and 3 above, the {1}-inverse obtained from equations (1a), (1b), and (5)
can be used to obtain other {1}-inverses by adding to this {1}-inverse any matrix (L + R) where
L is such that LA, = 0 and R is such that AxR = 0. (See [14].) ]



130

F. E. UpwADpiA AND R. E. KALABA

3. CONCLUSIONS

In this paper, we present a unified approach for obtaining recursive relations for several of the
commonly used generalized inverses of an m by k matrix A. Part 1 of our main result which
deals with the MP-inverse was obtained by Greville [2], but in a more complex manner; our proof
of this part is substantially simpler. The unifying theme used in this paper is brought about by
defining generalized inverses in terms of the solution(s) = A*b of the matrix equation Az = b or
of the relation Ax = b, and then using a procedure akin to dynamic programming. This results
in similar lines of reasoning for obtaining recursive relations for the various types of generalized
inverses, while providing insight into why and how the differences among them arise.

10.
11.
12.
13.
14.

15.

REFERENCES

C.R. Rao, A note on a generalized inverse of a matrix with applications to problems in mathematical
statistics, Journal of Royal Statis. Society, Ser. B 24, 152-158 (1962).

T.N.E. Greville, Some applications of the pseudoinverse of a matrix, STAM Review 2, 15-22 (1960).
T.N.E. Greville, Note on fitting of functions of several independent variables, STAM J. Appl. Math. 9,
249-253 (1966).

F. Graybill, Matrices and Applications to Statistics, Second edition, Wadsworth, Belmont, CA, (1983).
R.E. Kalaba and F.E. Udwadia, Associative memory approach to the identification of structural and me-
chanical systems, Jour. Optimization Theory and App. 76, 207-223 (1993).

F.E. Udwadia and R.E. Kalaba, A new perspective on constrained motion, Proc. Roy. Soc. of London,
Series A 439, 407-410 (1992).

J.N. Franklin, Least squares solution of equations of motion under inconsistent constraints, Linear Algebra
and Its Applications 222, 9-13 (1995).

. R.A. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51, 406-413 (1955).
. E.H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc. 26, 394-395 (1920).

A. Albert, Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York, (1972).

R.M. Pringle and A.A. Rayner, Generalized Inverse Matrices, Hafner, New York, (1971).

C.R. Rao and S.K. Mitra, Further contributions to the theory of generalized inverse of matrices and its
applications, Sankhya 33, 289-300 (1971).

S.K. Mitra and P. Bhimasankaram, Generalized inverses of partitioned matrices and recalculation of least
squares estimates for data or model changes, Sankhya 33, 395-410 (1971).

F.E. Udwadia and R.E. Kalaba, Analytical Dynamics: A New Approach, Cambridge University Press,
(1996).

C.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, (1971).



