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Abstract—This paper presents a unified framework from which emerge the Lagrange equations, the
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The equations of motion for constrained systems initially developed by Lagrange [1] make
use of Lagrange multipliers. Gibbs [2] and Appell [3] independently obtained equations of
motion for constrained systems by using the concept of quasi-coordinates; these equations
are now referred to as the Gibbs-Appell equations. More recently, Udwadia and Kalaba
[4] have obtained a third set of equations which utilize the concept of the generalized inverse
of a matrix and provide explicit equations of motion for more general constrained systems.
Starting with Gauss’s principle, in this paper we show that all these three sets of equations
can be directly and easily obtained. Furthermore we obtain more general results for the first
two sets of equations than have hereto been obtained thereby expanding their applicability.
The unified approach presented here shows that the three sets of equations are equivalent.

Consider an unconstrained system of n particles in an inertial Cartesian coordinate frame
of reference. Let the masses of the particles be my, m,, ..., m,, respectively. By uncon-
strained we mean that the number of coordinates required to specify the configuration
of the system equals its degrees of freedom. Let the X-, Y- and Z-components of the
position of the jth particle be described by the triplet {xs;_,, x3;-1, X3;} so that the
configuration of the entire system of n particles, at any time ¢, is given by the 3n-vector
x(t) = [x1, X2, X3, ..., X3,]". Similarly, let the known impressed forces on the jth particle be
denoted by the triplet {F;;- ,, F5;-, F3;} so that the forces acting on the system of » particles
can be expressed by the 3n-vector F(t) = [Fy, F,, Fs, ..., F3,]7. By “known” we mean that
the forces are known functions of the positions and velocities of the n particles. We shall
throughout use Cartesian coordinates, for, as we shall see not much additional fundamental
understanding is gained by using generalized coordinates.

Newton’s law now yields

Mx(t) = F(x(1), X(2), t) (1)

where along the diagonal of the 3n x 3n matrix M are the masses of the particles in sets of
threes. The matrix M is positive definite since it is a diagonal matrix with positive entries.
Hence the 3n-vector of acceleration, a, of the unconstrained system at time ¢ is uniquely
obtained as

at): =x(t) = M 'F(x, %, ). 2

Now we assume that this system which has so far been unconstrained is further subjected to
m smooth constraints of the form

(pi(x,k, t)= 05 i= la 2: e, m, (3)

951



952 F. E. Udwadia

which may not necessarily be independent. However, we do demand that the set of
m equations in (3) be consistent, that is, that the satisfaction of any one equation of the set
does preclude the satisfaction of any other. These m equations can be appropriately
differentiated with respect to time ¢t to yield the set of equations

A, X, )X =b(x, %, 1) 4)

where A is a known m X 37 matrix and b is a known 3n-vector. We note that the constraint
set (3) easily accommodates the usual holonomic and non-holonomic constraints met
within analytical dynamics, and includes, in addition, constraints which are non-linearly
dependent on the velocities.

We shall assume that the vectors x(f) and x(¢) are known at some time t, and are
compatible with the constraint set (3). Our aim is to obtain the equation of motion
describing this constrained system of n particles. Specifically, by this we mean that we want
to obtain an expression, which can be evaluated at time ¢, for the acceleration X(t) of the
constrained system. Because of the presence of constraints described by the constraint set
(3), the acceleration X(¢) of the constrained system will, in general, no longer now be the same
as a(t), the acceleration of the unconstrained system.

We thus conceptualize the constrained system in two steps. First we visualize the
unconstrained system described by equation (1), and we then further restrict the motion of
this unconstrained system by the constraint set (3). The entire problem, at any time ¢, is thus
completely described by the two known matrices M and A, the two known vectors F and b,
and the two given initial conditions x(t) and %(¢) at time t. By “known” we again mean that
the quantities are known (or given) functions of x(¢), x(t) and ¢.

In what follows we shall use a principle first stated by Gauss in 1829 [5]. Gauss’s
principle states that, at each instant of time ¢, of all the acceleration vectors which satisfy the
constraint equation (4), Nature “chooses”, for the constrained system, the one that minim-
izes the Gaussian G, defined by

Gx(®) = 3[{%(t) — a()" M{x(®) — a()}]. ()

Note that the vector a(t) is known since the elements of M are known constants and those of
F are known functions of x(t), () and ¢, and x(¢) and x(¢) are assumed known at time ¢t. We
are hence left, at each instant of time ¢, with a problem of the constrained minimization of
a quadratic functional of X subject to the linear constraint given by equation (4). Dropping
the arguments of the various quantities for brevity, the problem of constrained motion can
then be simply expressed at each instant of time as:

Find X so as to Minimize [3(x — a)T M(X — a)] subject to AX = b. (6)

There are many ways of solving the constrained minimization problem stated in (6). Three
different approaches immediately suggest themselves. The first is to directly solve the
constrained minimization problem posed in (6). The second is to eliminate the constraint
(thereby converting the constrained minimization problem (6) to a new unconstrained
minimization problem), and then solve this unconstrained minimization problem. The third
approach is to utilize the so-called method of Lagrange multipliers. We shall show below
that the first approach leads to the equation of motion obtained in Udwadia and Kalaba
[4], the second to the Explicit Gibbs—Appell equations [2, 3] and the third to Lagrange’s
equation for non-holonomically constrained systems [1].

The direct approach: the generalized inverse equations
Using the “scaled” acceleration vectors %, = M'*X and a, = M'?a, problem (6) can be
rewritten as
Find X, so as to Minimize [3(X, — a,)" (X, — a,)] subject to Cx, = b, )

where the m x 3n constraint matrix C = AM™'/2, Note that since M is positive definite, the
matrices M'/? and M~ !/2 are well defined. Let us now denote y, = (X, — a,). Then problem
(7) becomes

Find y, so as to Minimize [3y.y,] subject to Cy, = b — Ca,. (8)



Equations of motion for mechanical systems 953

But the minimum “length” solution of the consistent linear equation set, Cy, = b — Ca; is
uniquely given by

Yo =C" (b — Ca) ©)

where C* denotes any of the {1,4}-generalized inverses of matrix C. Though the {1,4}-
generalized inverse, C'** %), is not uniquely determined for a given matrix C, the right-hand
side of equation (9) is unique, and hence the solution y, is unique. Noting that y, = (X — a),
we obtain

%, =a,+ C"¥ D — Ca) (10)
or, noting the definitions of the scaled quantities,
X =a+ M Y2(AM ™24 (h — Aa). (11)

Equation (11)* is a generalization of the equation obtained in Udwadia and Kalaba [4].
Each particular {1,4}-inverse of AM ~'/? used in equation (11) will yield a particular form of
the equation of motion for the constrained system. A different {1,4}-inverse used in equation
(11) will yield a different from for the equation of motion; thus several different forms of the
equations of motion exist. Yet, despite these different forms, the acceleration X [i.e. the
right-hand side of (11)] when evaluated will of course be uniquely determined. One
particular {1,4}-generalized inverse of C is the {1,2,3,4}-generalized inverse, also called the
Moore—Penrose inverse, and hence one particular form of equation (11) is

% =a+M 2(AM™1/3)* (b — Aa) (12)

where the superscript © + * on the matrix (AM ™ /2) denotes its Moore—Penrose inverse. The
form of the equation given in (12) was the one obtained by Udwadia and Kalaba [4].

Conversion to an unconstrained minimization problem: the Gibbs—Appell Equations

Let the matrix A have rank r at time t. Without loss of generality, let us say that the rank
of the left hand m x r submatrix of A is r. If this is not in fact the case, we can easily bring this
about by a relabelling of the components of the vector X. We use this relabelled vector in
both equations (1) and (4) then. More exactly, we consider a suitable permutation matrix
P such that the first » columns of the matrix AP are linearly independent. (Clearly, when the
first # columns of A are already of rank r, the matrix P is the identity matrix.) Then setting
X = P 1%, the equation A(x, %, )k = b(x, X, #) becomes

A(x, %, )% = A(P%, PX, {)PX = b(P%, PX, 1), (13)
or alternately,
AXx=h (14)

where for convenience we have denoted A(P%, PX, t)P by A, and b(P%, PX, t) by b. Thus the
first ¥ columns of the matrix A then, by design, are linearly independent. We thus obtain the
equation of constraint AX = b, in terms of the relabelled vectors denoted by the tildes over
them. In a similar manner, equation (1) transforms, to

~ -~

Mx = F (15)

where we have denoted M = PTMP, and F = PTF(P%, PX, 1). The Gaussian now becomes
G(X) = $(PX — Pa)" M(PX — Pd) = {(X — 4)"M(X — ). (16)

Since M is diagonal, the matrix M is also diagonal and positive definite. We note that
equations (4), (1) and (5) are of the same form as equations (14), (15} and (16), respectively,

* Given any real matrix X, the real matrix Y is called its Moore-Penrose in verse if: (1) XYX =X, (2) YXY = Y,
(3) XY is a symmmetric matrix and, (4) YX is a symmetric matrix. Any matrix which satisfies the first and the fourth
of these four conditions is called the {1,4}-inverse of X. The matrix which satisfies all four of these conditions can
also be written as the {1,2,3,4}-inverse of X.



954 F. E. Udwadia

with the tildes, substantiating our statement that, from a theoretical standpoint, no loss of
generality occurs by assuming that the first r columns of A are linearly independent. From
here on, for ease of notation, we shall omit the tildes on the various quantities except when
their presence is necessary to facilitate a better understanding.

We now express the constraint equation (14) at time ¢ in terms of the partitioned

acceleration vector XT = [X! X717 as
X,
[A. Al [x] b (1)

%, = Al b — R¥,, (18)

where we have denoted A} A; by R. We next express the Gaussian (16) in terms of the
partitioned subvectors X, and X; as

N . 1%, —a, |"[M. 0 ][%.—a.
G(Xe, X)) = E(x —a)'MEX —a)= El:il B al] I: 0 Mx][il _ al] (19)

where M, and M are diagonal matrices with M, being r x r. Eliminating the subvector
X. from the expression (19) by using equation (18), we obtain
G(X) = 3{X{ M. X, + %] M{X,} — aTM A} (b — Aj%) — af Mj%, + 3a"Ma. (20)

We notice that the first member on the right-hand side in the brackets is simply the “kinetic
energy of acceleration” of the system; this term can be expressed entirely in terms of the
subvector X; as

S(xy) = %{(b — Ayt ALTM AL (b — A% + i;eriI} , (21)
so that
G(%) = S(X) — alM_ AL (b — A;%;) — af My%; + 1a"Ma. (22)

We have thus obtained the Gaussian in terms of the independent subvector %; and hence
converted Gauss’s constrained minimization problem to an unconstrained one. The extrem-
ization of G(X;) over all possible subvectors X; is then obtained by simply setting
dG(%)/dx; = 0, which then yields

dS(xy

X _ Mya, — R™.a, = F, — R'F,. (23)
aX]

In the second equality on the right we have used equation (2) after expressing the impressed
force vector F in its partitioned form as FT = [F} F{] so that F, is an r-vector and F| is
a (3n — r)-vector.

Equation (23) is the Gibbs—Appell Equation. The left-hand side is directly recognized as
the derivative with respect to X, of the “kinetic energy of acceleration” expressed in terms of
the independent acceleration subvector X,. Taking the inner product of the right-hand side
with the generalized virtual displacement vector, yields the virtual work done by the
impressed forces acting on the system of particles. For, a virtual displacement can be
expressed as any vector vI = [v] v/]T which satisfies the relation

[A. A H -0, (24)
Yi

which then yields the relation v, = — Ryv,. The virtual work, W, done by the impressed force
F under virtual displacements which are consistent with the constraints is then simply given
by W = v{F; + v[F, = v{ (; — R"F,). The term in brackets in the last expression is now
recognized as the one appearing on the right-hand side of equation (23).

Furthermore, since S$(X,) is explicitly given in equation (21), we can obtain the Explicit
Gibbs—-Appell equation as

(R™MLR + M)%, = F, — R'F, + RTMLA’b. (25)
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Note that all the quantities on the right-hand side of equation (25) are known functions of
x(t), x(¢) and t. Thus relation (25) provides the acceleration X; of the constrained system at
each instant of time ¢, given that at that instant the vectors x and x are known. Knowing the
vector X;(t), the vector X, () can be obtained by using equation (18), and hence the vector X(¢)
describing the acceleration of the constrained system.

However, viewed upon as a system of differential equations in X,(¢), we observe that the
right-hand side of equation (25) may be a function of quantities such as x, and therefore, in
general, to complete the system of differential equations we would need to add equation
(17). More precisely, it is sufficient to add the equation

[, A] L’;] _b (26)

where A, is the r x r non-singular matrix comprising any r linearly independent rows of A.,
and A; is the r x(3n — r) matrix which comprises the corresponding r rows of A, The
equations of motion describing the constrained system then become

A, A X, | b @)
0 R'™M.R+M,||% ]| |F,—R'F, + RTM.A! |

We may call these the Explicit Gibbs—Appell Equations. As derived here, they are
applicable to more general constraints than those usualily circumscribed in the literature,
because the constraint equations are: (1) allowed to be dependent, and (2) allowed to be
non-linear functions of the velocities.

It is noteworthy that, in essence, the Gibbs—-Appell equations are simply the necessary
conditions for the Gaussian G to be an extremum. Indeed, it can be shown that the %;(f) which
extremizes the Gaussian G, actually minimizes it, and furthermore that this X,(¢) is uniquely
determined. Though of fundamental importance to analytical dynamics, we provide a proof
of this result in Appendix A so as not to interrupt our flow of thought here. Thus, at each
instant of time ¢, the unique solution to the minimization problem posed in (6), is given by
X as described by equation (27).

The method of Lagrange multipliers: the Lagrange equations
We consider, at each instant of time ¢, the minimization of the function

GL(X) = G(X) + AT(Ax — b) (28)
with respect to the acceleration vector x. Setting dG (X)/dX = 0, this yields the equation
M(x —a) = AT), 4 (29)

or, by (1), the equation
Mx =F + ATA (30

which must be solved along with the constraint equation
AxX =b. (31)

Equations (30) and (31) are indeed the Lagrange equations of the first kind. They appear to
fall out quite naturally from Gauss’s principle. In fact, we have shown that these equations
are valid beyond their usual compass, even when the constraints are (1) non-linear functions
of the velocities, and (2) not necessarily independent. Now, we need only to show that the
X obtained from equations (30) and (31) at each instant of time is unique and furthermore
minimizes G;. We relegate the proof of this to Appendix B.

We have therefore shown that the equation sets represented by equations (11) and (27),
and the combination of equations (30) and (31) are all equivalent to each other, each set
yielding the unique acceleration vector X which minimizes the constrained Gaussian as
stated in (6).

We next present the three alternative sets of equations for a problem of constrained
motion which was the subject of considerable investigation by Appell in 1911 [6].
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Hlustrative example

Consider a particle of mass M moving in three-dimensional space whose coordi-
nates relative to an inertial Cartesian coordinate frame of reference are x, y, and z.
The particle is subjected to the given impressed forces MF(x, y,z), MF(x, y, z), and
ME/(X,y,z) in the X-, Y- and Z-directions. The particle is constrained by the two
constraints [6]

P2 =% 4y (32)
and,
222 = 2x%% 4 2% (33)

Clearly, both constraints are not independent, the second being simply a restatement
of the first. We deliberately take these constraint equations to be dependent, in order
to show the influence of taking constraints which are not dependent on the three
different sets of equations. In this trivial example, the dependence is indeed quite obvious;
however, in more realistic problems where a system may be subjected to several tens of
nonintegrable non-linear constraints, determining which of the constraint equations are
independent may not be such a simple matter, both analytically and computationaily.

The Generalized Inverse Equations
These equations of constraint can be expressed, upon differentiation with respect to time,
in the form AX = b, as

X y =2z ..
= 4
[2x 25 - 22'] yi=0 39
z
whence,
I X 2%
+ o 0
= .2 %3 2 y 2y » (35)
53 +y° + 29| 5 23

and the Generalized Inverse Equations of motion are then obtained, using (11), in one
step as

X F, . . ,
2 F.V (XZ +)}2 + 2'2)

It should be noted that we could have opted to use any {1,4}-inverse in this example in
equation (11); here we have chosen to use the {1,2,34}-inverse, commonly known as the
Moore-Penrose inverse.

The Explicit Gibbs—Appell Equations. To obtain the Gibbs—Appell equations we first
need to obtain the submatrices A, and A;. The rank A is unity, and so the matrix A, must
have one column. (It should be noted that determining the rank of the matrix, the rank of A,
and the rank of the matrix A may not be a simple matter both analytically and computa-
tionally when there are a large number of constraint equations, especially in large systems
with several non-holonomic constraints.) We may take these matrices to be (assuming
x # 0).

[x |y
A, _[236] and A,-lizy 22':|’ (37)
so that

R=A:A=[X: :i] (38)
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and the explicit equation (25), which forms part of the Explicit Gibbs—Appell Equation, yields

.3 .. .
y yz Fi(x, y,2)y
1+;2- —;c_z y F;(xaysz)_——x_——
y 2z F(x,y,2)% |° (39)
-2 1+ FZ(X,J’,Z)“F——}—‘—

Were we to be given x, y, z, X, y, and 7 at time ¢, then, since all the elements of the vector on
the right-hand side of (39) and the elements of the matrix on the left-hand side are known
functions of these given quantities, we can determine from (39), the acceleration components
y and % at time t. Knowing these two components of the acceleration, the components X(t)
can be obtained from any one of the two equations of constraint in the set (34).

However, when viewed as a set of differential equations in the variables y and z, these
equations do not form a complete set, for the quantities F, F, and F, on the right-hand side
of equation (39) are functions of x also. Thus to complete the system, we augment it with any
one of the equations in the set (34). As our Explicit Gibbs—Appell Equation (27) shows we
can then explicitly write the equation of motion as

x y —Z 0
.2 .. X .
y Vz N EFy
22 z
yz z E.zZ
0 —= 1+— =2
%2 + 2 F, + 3

We note that the forms of equations (36) and (40) are different, though they are equivalent. That
equations (36) and (40) are equivalent, can be easily shown by substituting for the acceler-
ation vector in (40) from (36) (and vice versa); such a substitution will render (40) an identity.

The Lagrange Multiplier Equations. Using equation (3), the Lagrange Multiplier Equa-
tions yield for this constrained system.

X F X 2x i

yl=|B |+ ¥y » Lﬂ. (41)

. s . 2
z E, -z =22

This equations along with the constraint equation (31} is a complete characterization of the
motion of the constrained system. Clearly, from equation (41) it is evident that 4, and
A, cannot be determined uniquely, though (4; + 24,) is uniquely determined. In fact,
comparing equation (36) with (41) we can explicitly obtain the 2-vector 4 as

4 2
Ay (—Fxx—FyJ?+FzZ')[1] 5 5 |[w
= 42
[AJ s+ L2lf 2 1|l “2)
5 5

where w, and w, are arbitrary. We note thus that the Lagrange multipliers are now not
unique. Yet, the equation of motion (41) uniquely determines the acceleration vector at time
t, since the arbitrary vector comprising the second member on the right-hand side of
equation (42) will always lie in the null space of the matrix A" so that

X
, (43)
-z
Conclusion

We have shown that the Generalized Inverse Equation of motion, the Gibbs—Appell
Equation and the Lagrange Multiplier Equation of motion constitute three equations
which are equivalent to each other; each equation gives the unique solution to the

ATi=

<

_(Ex+Ey—E2
E+ 7P+ D)

a result in obvious conformity with equation (36).



958 F. E. Udwadia

constrained minimization problem posed by virtue of Gauss’s Principle. It is interesting to
note that though these three equations were developed at intervals of about a century
between them, thus indicating a gradual development in the field of analytical mechanics
over about the last 200 years, they all flow very naturally from Gauss’s principle—indeed
a principle both aesthetic and of enormous applicability.
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APPENDIX A

Uniqueness

Let us assume that there exist two sets of accelerations ¥, and %; which both satisfy equation (25) at time . Since
the right-hand side of equation (25) is only a function of the given values of x(t), %(t) and ¢, the difference (X — X)
satisfies the equation

(RTM_R + M) (%; — %;) = 0. (Al)

But the matrix (RTM.R + M,) is positive definite, hence %; = %;, and uniqueness follows.

Minimization
Since the Hessian matrix
32G(xy)

—— = (R"™,R + M), (A2)
OX{
is positive definite, we have a minimum.
Hence the vector X; which extremizes G(X;) also minimizes it, and it is unique. O
APPENDIX B

Uniqueness

Let there be two vectors % and % (and two corresponding vectors 4 and 1) each of which satisfy equation (30) at
time t. We then have, from equation (30), that

M(x — %) = AT — 2). (B1)
Also, equation (31) yields
AG—%) =0 (B2)
Premultiplying equation (B1) by M™! we then get
(& —%)=M"1AT(4A— 1) (B3)
which in view of (B2) yields,
AMT'ATA -1y =0. (B4)
But this implies that
AT(A—-1)=0. (BS)

Hence, by equation (B1) (X — X) = 0 since M is positive definite, and uniqueness is proved.

Minimization

Since the Hessian matrix of Gy (X) is positive definite, we have a minimum.
Thus the % which extremizes Gy(X), also minimizes it, and it is unique.

Incidentally, we have also shown, by equation (B5), that though the acceleration vector X is uniquely determined,
the Lagrange multiplier vector 4 is not, in general, unique; in fact it is determined only up to an arbitrary vector
which belongs to the null space of A”. O



