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Abstract

Two e�cient and numerically stable methods for the computation of the largest p

Lyapunov characteristic exponents of an n dimensional discrete dynamical systems are

presented. The e�ciencies of the proposed methods are compared with the e�ciencies of

other methods through an operation count, and illustrated with an example. Ó 2000

Elsevier Science Inc. All rights reserved.
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1. Introduction

A positive Lyapunov Characteristic Exponent (LCE) of a nonlinear dy-
namical system is often used as an indicator of chaos. If one is interested in
determining whether a dynamical system is chaotic or not, often just a few of
the largest LCEs may provide the answer. If just the largest p LCEs provide the
needed information about the dynamical system, it may be redundant to try to
compute all of them. The issue of computing just the largest p LCEs is ad-
dressed by Benettin et al. [1], Geist et al. [2], and Dieci and Van Vleck [3]. It is
assumed in this note that the dynamical systems under consideration are such
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that the LCEs form a monotonically decreasing sequence, which implies that it
is possible to compute just the largest p LCEs.

Since the computation of the largest p LCEs of a discrete dynamical system
is computationally less expensive then the computation of all the LCEs, this
note deals with the adaptation of the HRQB method provided by von Bremen
et al. [4] (which computes all the LCEs of a discrete dynamical system) to the
computation of only the largest p6 n LCEs. Two methods, herein called
HQRBp1 and HQRBp2, are described.

2. Computation of the largest p LCE's

Consider the autonomous discrete dynamical system

xi�1 � fi�xi�; i � 0; 1; 2; . . . ; x0 given and xi 2 Rn: �1�
The associated linear variational equations are

Yi�1 � Df �xi�Yi � JiYi; Yi 2 Rn�n; i � 0; 1; 2; . . . ; Y0 � I �2�
provided the ffig are di�erentiable and Ji � Df �xi� � ofi=ox� �xi

. A funda-
mental solution of Eq. (2) is Y i � Jiÿ1 � � � J0, with �Y 0�TY 0 � I . Thus the posi-
tive de®nite matrix K � limi!1�Y iT Y i�1=�2i�

exists and the logarithms of its
eigenvalues are the Lyapunov Characteristic Exponents denoted by
k1 P k2 P � � � P kn. If the LCEs are monotonically decreasing, then it is pos-
sible to ®nd the largest p LCEs by considering a reduced system of Eq. (2) (see
[1±3]). The reduced rectangular system is given by

Yi�1 � JiYi; Yi 2 Rn�p; i � 0; 1; 2; . . . ; Y T
0 Y0 � I : �3�

When computing the largest p LCEs, at each iteration we perform a QR-fac-
torization of a matrix and the product of a tangent map times the Q matrix
obtained from the factorization. The essential di�erence between computing all
the LCEs and the largest p of them, lies in the size of the matrices on which we
operate. In the case of all the LCEs, all matrices are square and n by n. For the
case of the largest p LCEs the QR factorization is performed on an n by p
rectangular matrix, thus the resulting Q is n by p and R is p by p. Based on
these observations, we present the following two adaptations of the HQRB
method [4].

2.1. The HQRBp1 method

The HQRBp1 method is essentially the same as the HQRB method [4],
except that only p re¯ectors are computed; also, in the process of ®nding the
action of the tangent map on the re¯ector matrices at the very last step only the
®rst p columns of the product is computed. Using the same notation as in [4],
the action of J on the ®rst p re¯ector matrices is given by
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JQ � JH �1�H �2� � � �H �p�; �4�
where H �i� is the ith re¯ector matrix. Since only the ®rst p columns of the
product JQ are needed, in HQRBp1 we ®rst ®nd the product J �pÿ1� �
JH �1�H �2� � � �H �pÿ1� using the action of the matrices on the re¯ector matrices
without explicitly computing the re¯ector matrices (as done in [4] for the
HQRB). Finally, the last product J �pÿ1�H �p� is performed so that only the ®rst p
columns are determined. As in the HQRB method [4], the matrix H �p� is not
explicitly computed. This approach is e�cient when p is close to n. However,
for the case when the ratio p/n is small, the following new and more e�cient
implementation is derived.

2.2. The HQRBp2 method

The di�erence between the HQRBp1 and the HQRBp2 methods is in the
computation of the action of the next tangent map on the p re¯ector matrices.
Taking the transpose of Eq. (4) we get, using the symmetry of the re¯ector
matrices H �i�

QTJ T � H �p�
T � � �H �2�T H �1�

T

J T � H �p� � � �H �2�H �1�J T: �5�
Since only the ®rst p columns of the product JQ is called for, only the ®rst p
rows of the product QTJ T is needed. From Eq. (5), the ®rst p rows of QTJ T can
be computed by multiplying the ®rst p rows of H �p� times all of H �pÿ1�, then
taking the resulting p by n matrix and multiplying it with H �pÿ2�, and so on until
the product is complete. Each H �i� is a re¯ector matrix, and does not need to be
computed explicitly. Since the re¯ector H �i� is given by H �i� � I ÿ w�i�w�i�

T

,

where w�i�is a column vector, then BH �i� � Bÿ Bw�i�w�i�
T

. The product Bw�i�w�i�
T

can be obtained by ®rst ®nding the product Bw�i� and then multiplying by w�i�
T

.
This saves a considerable number of computations as opposed to computing
the outer product w�i�w�i�

T

®rst, and then multiplying by B. Additional com-
putational savings are obtained because the ®rst i ÿ 1 elements of w�i� are zero.
The above described steps constitute the HQRBp2 method.

The order in which re¯ector matrices are multiplied by the next tangent
matrix is di�erent for HQRBp1 and HQRBp2. As a consequence, very small
di�erences (caused by round-o�) in the resulting p columns of JQ could occur
producing di�erences (of the order of the machine precision) in the upper
triangular matrix R, after the QR-factorization of JQ. If the system is close to
singular, at least one of the diagonal elements of R is then close to zero. The
logarithms of the diagonal elements of R are used to compute the LCEs; the
logarithm function being singular at zero, small changes in the diagonal ele-
ments of R will cause large changes in the logarithms of these elements. Thus
for systems that are near singular, the di�erences in the very small LCEs
between HQRBp1 and HQRBp2 could be larger than machine precision.
For example, for the ill-conditioned Hilbert matrix of order n� 10 (with a
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condition number of about 1016 � 1=eps, eps being the machine precision for
Matlab), the largest di�erence in LCEs between HQRBp1 and HQRBp2, at the
end of the third iteration, is of the order of 10ÿ5, and occurs for the smallest
LCE. On the other hand, for the largest LCE the di�erence is of the order of eps.

The classical Gram±Schmidt (CGS) QR-factorization is not as stable as the
HQRB, as shown in [4], and elsewhere. Nevertheless, for the sake of com-
pleteness we discuss the e�ciency of the CGS factorization which can be
performed on rectangular matrices, see for example Golub and Van Loan [5].
The largest p LCEs can thus be obtained by using the CGS factorization
adapted for rectangular matrices. The method using CGS to obtain the largest
p LCEs will be called CGSp.

3. Computational e�ciency of HQRBp1 and HQRBp2

A QR decomposition and a matrix multiplication of a tangent map times the
resulting Q are the two main operations performed at every iteration in the
process of computing the LCEs. A count of the ¯oating point operations (¯ops,
as de®ned in [5]) for the QR decomposition and the product of the next tangent
map and Q is given for HQRBp1, HQRBp2. For the sake of completeness, we
also include CGSp in Table 1.

The values in Table 1 are for the computation of the largest p out of n LCEs,
and it only shows terms in p and n which are of second order and higher.
Depending on p and n one method may be computationally more e�cient than
another. For the extreme case of p � 1, all three methods have the coe�cient
2n2 in the leading term. This is a considerable improvement when compared
with the order n3 term in the cost of computing all the LCEs, see [4], i.e.
HQRBp1 and HQRBp2 are 5

3
n times less expensive than HQRB. For p� n (for

large n), HQRBp1 is the most e�cient with 10
3

n3 ¯ops which is the same as
HQRB [4]; this is followed by CGSp with 4n3, and HQRBp2 with 5n3.

Fig. 1 shows the regions (for 36 n6 30 and 16 p6 n) in which either
HQRBp1 or HQRBp2 is more e�cient. For small values of p, HQRBp2 is less

Table 1

Operation count for the factorization and action of multiplication by Q

Method Multiplications/divisions Additions/subtractions Total

HQRBp1 2n2p ÿ 1
3
p3 ÿ n2

� 1
2
p2 � 3np

2n2p ÿ 1
3
p3 ÿ n2 � 2np 4n2p ÿ 2

3
p3 ÿ 2n2

�5np � 1
2
p2

HQRBp2 5
2
np2 � n2p ÿ 5

6
p3

� 1
2
np � 1

2
p2

2np2 � n2p ÿ 2
3
p3 ÿ np 9

2
np2 � 2n2p ÿ 3

2
p3

ÿ 1
2
np � 1

2
p2

CGSp n2p � np2 � np n2p � np2 � np 2n2p � 2np2 � 2np

208 F.E. Udwadia et al. / Appl. Math. Comput. 114 (2000) 205±214



expensive than HQRBp1. On the other hand for values of p close to n,
HQRBp1 is more e�cient than HQRBp2 (see Fig. 1). Asymptotically, (for
large n) if less than about 48% of the LCEs are to be computed, HQRBp2 is
numerically more e�cient than HQRBp1. Furthermore, HQRB, which com-
putes all the LCEs (see [4]), is more e�cient than HQRBp2 if more than about
74% of the LCEs are to be computed.

A comparison of the three methods is shown on Fig. 2. Regions (for
36 n6 30 and 16 p6 n) in which either of HQRBp1, HQRBp2 or CGSp is the
most e�cient are indicated. For p close to n, HQRBp1 is the most e�cient;
CGSp is the most e�cient for the intermediate portion. If only the largest LCE
(p� 1) is required to be computed, for n > 6 HQRBp2 is the most e�cient,
albeit by a small amount.

Fig. 3 shows a comparison of the ¯op count for the three methods when
n� 25. A similar behavior is observed for smaller values of n, see insert in
Fig. 3 for n� 5. This ®gure points out the extent to which one method is
computationally more e�cient than the others. We observe that HQPBp1 is
signi®cantly more e�cient than HQPBp2 when p is close to n. For small p/n
ratios, the di�erence in e�ciency between HQRBp2 and HQRBp1 is not highly
signi®cant, though HQRBp2 is more e�cient. Lastly, for any p/n ratio, CGS
when compared to the more e�cient of HQRBp1 and HQRBp2 is at most
about 20% cheaper. The di�erences in e�ciency being small, if any, the HQRB

Fig. 1. Regions of e�ciency: in Region 1, HQRBp1 is more e�cient; in Region 2, HQRBp2 is more

e�cient.
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Fig. 3. Comparison of the e�ciencies of the methods when computing p LCEs, for n� 25. See

insert for n� 5. For p� n, the ¯op count for HBRBp1 is the same as that for HQRB [4].

Fig. 2. Regions of e�ciency: in Region 1, HQRBp1 is more e�cient; in Region 2, CGSp is more

e�cient; and in Region 3, HQRBp2 is more e�cient.
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methods developed in this paper thus appear more desirable, because of their
superior stability, than CGSp.

4. Numerical results using HQRBp1 and HQRBp2

In modeling large dynamical systems, ring geometries are often used (see
for example [7]). The largest LCEs are important indicators that help us
understand the dynamics of these large systems. In the following example
we consider two rings of oscillators which are coupled. Each of the two
rings (Ring X and Ring Y) has n oscillators, and the two rings are con-
nected through the coupling matrices Cxy and Cyx. See Fig. 4 for a drawing
of the system.

The equations governing each of the oscillators are given by

x�i� 1� � Af �x�i�; a� � Cxyf �y�i�; a�;
y�i� 1� � Bf �y�i�; b� � Cyxf �x�i�; a�;

�6�

where

A �

a b b
b a b

b a b
. .

.

b b a

26666664

37777775; B �

c d d
d c d

d c d
. .

.

d d c

26666664

37777775; �7�

and

f �x�i�; a� � 1
� ÿ a1x2

1�i� 1ÿ a2x2
2�i� 1ÿ a3x2

3�i� � � � 1ÿ anx2
n�i�
�T
;

f �y�i�; b� � 1
� ÿ b1y2

1�i� 1ÿ b2y2
2�i� 1ÿ b3y2

3�i� � � � 1ÿ bny2
n�i�
�T
:

�8�

Fig. 4. Two coupled oscillator rings.
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The matrices A, B, Cxy and Cyx are n by n, and the vectors x i� 1� �, y i� 1� �, a

and b are n by 1. With n� 50 and using the parameter values of a � c � 0:75,
b � d � 0:125, bj � 1:2 for all j, together with

aj � 1:9 for j � 10; 20; 30; 40; 50;
1:2 otherwise;

�
and

Cxy i; j� � � Cyx�i; j� � 0:1 for i � j � 20;
0 otherwise;

�
the following numerical results were obtained. To illustrate our algorithm the
six largest LCEs are computed. For comparison purposes among the di�erent
methods it su�ces to consider only 1,000 iterations. The computation of the
LCEs was started after the ®rst 10,000 trajectory points of the system had been
computed. The six largest LCEs using the HQRBp2 after 1,000 iterations were
0.1722, 0.1559, 0.1457, 0.1261 and ÿ0.0727 (note that the ®rst ®ve are positive).

A comparison of the computational e�ciency between HQRB, CGS, CGSp,
HQRBp1 and HQRBp2 is given in Table 2. The table shows the number of
¯ops required to estimate the six largest (or all) LCEs in one iteration. Note
that here n� 50 refers to the number of oscillators in a single ring, and that the
complete system (the two coupled rings) have a total of 100 oscillators. The
values presented in the table exclude the number of ¯ops required to compute
the trajectory and the tangent map. There is a clear advantage in using methods
that just compute the six largest (p� 6) LCEs over methods that compute all of
them. When comparing the methods for computing the six largest (p� 6)
LCEs, the CGS is the more e�cient one, followed closely (by about 5%) by
HQRBp2. However, one must keep in mind that CGS (and thus CGSp) has
been shown to present numerical instabilities which can lead to erroneous
results [4].

An indicator of the computational e�ciency in computing all the LCE's
versus computing the largest p LCEs for a given method is the ratio of the ¯ops
needed to compute all the LCEs to the ¯ops needed to compute the largest p
LCEs. Table 3 shows the theoretical and the numerically computed values of
the ratios of the ¯ops per iteration between CGS and CGSp, and between
HQRB and HQRBp2. For convenience, the theoretical ratios shown are for

Table 2

Flops per Iteration (n� 50, p� 6)

All LCEs p LCEs (p� 6)

HQRB CGS CGSp HQRBp1 HQRBp2

336:8� 104 402� 104 12:8� 104 22:3� 104 13:5� 104
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large values of n and small values of p, using just the leading terms from
Table 1. The expected theoretical values correspond to a system with 100 os-
cillators and when p� 6; the computed values correspond to the actual ¯op
counts presented in Table 2. The fact that the ratio of the ¯ops for CGS to
CGSp is larger than the ratio of the ¯ops for HQRB to HQRBp2 indicates that
relative to the given method, more e�ciency is gained when using CGSp than
when using HQRBp2. The ratios obtained from the theoretical leading term
approximation are in close agreement with the ratios obtained in actual
practice. The ratios obtained from the exact expected theoretical formulas
(formulas including all terms from Table 1) are extremely close to the ratios
actually computed.

Another important aspect of using methods to compute just the largest p
LCEs is the fact that there is a signi®cant reduction in the storage requirements
(depending on p and n) if the computed LCEs are required to be stored at every
iteration.

5. Conclusions

Two e�cient adaptations of the HQRB method (HQRBp1 and HQRBp2)
for computing the largest p LCEs of an n dimensional discrete dynamical
system are presented.

The HQRBp1 method is computationally the least expensive method when p
is close to n. HQRBp2 is asymptotically more e�cient than HQRBp1 for
p < 0.48n, with the e�ciency reversing when the inequality reverses. Both
HQRBp1 and HQRBp2 are numerically backward stable since they are based
on Householder transformations (see [4,6]).
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