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SUMMARY

This paper uses an associative memory approach to identify the properties of structural and mechanical systems. The
methodology differs from standard identification methods in that it uses a set of parameter vectors simultaneously to
generate the estimated parameter vector. The method develops a technique for sequentially generating genetically
engineered relevant parameter vectors whose use results in accurate identification, while still using small data sets. This
makes the approach promising for on-line, rapid, identification of structures and their health monitoring. ( 1998 John
Wiley & Sons, Ltd.
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INTRODUCTION

Parameter identification of structural and mechanical systems is an important field of applied mechanics.
This is motivated by the need to predict the response of dynamic systems from their models and/or be able to
control such systems so that they perform their functions in an adequate and safe manner. Areas such as the
active control of structures, the control of robotic manipulators and the non-destructive testing of structures
have engendered a host of parameter identification methods.1~10 However, even for systems which can be
reasonably well modelled as being linear, the parameter identification problem often results in a non-linear
optimization problem requiring an iterative approach for its solution. Several on-line and off-line methods,
many based on the Gauss—Newton approach (or its variants) have been developed. Probabilistic methods
such as maximum likelihood estimation and Kalman filtering have also been developed. Yet, when dealing
with the identification of a large number of parameters from input-output measurements in complex,
spatially extended systems the following two basic difficulties persist: (1) the objective function surface may
have multiple maxima and minima so that convergence to the correct parameters is possible only if one starts
from a close enough initial guess of the parameters to be identified, and (2) the inverse problem has the
inherent possibility of yielding non-unique parameter estimates when using response data obtained from
a few locations in a system.

An alternative method which alleviates these difficulties was proposed by Kalaba and Udwadia;11,12 it
uses the conceptual framework of associative memories. For a given input to the system, rather than



iteratively solving the inverse problem starting with a single set of parameter values (the so-called initial
guess) and successively ‘updating’ this single set of parameter values, they suggest solving the forward
problem for several sets of parameter values, for the given input. For each set of parameter values the solution
of the forward problem yields a corresponding output; thus, the identification scheme they suggest ‘associ-
ates’ to each set of parameter values, its corresponding output. Using a parameter m-vector p

j
, they solve the

forward problem, for a given input, to obtain the corresponding output n-vector r
j
. Thus, the identification

scheme relies on providing ‘training vectors’ (i.e. exposure to various sets of parameter values and the
corresponding outputs they produce, for a given input) thereby developing an adequate knowledge base.
When the identification scheme is later presented with a given measured response, it can then estimate the
parameter set which generated it.

This procedure conceptually departs from the methods usually employed for system identification in three
significant respects. Firstly, as mentioned before, instead of using a single parameter vector as the initial
guess, it simultaneously uses several parameter vectors at a time described by the m by N matrix
P"[p

1
p
2
2p

N
], and several sets of corresponding outputs described by the n by N matrix

R"[r
1

r
2
2r

N
]. Secondly, it relies heavily on the solution of forward problems which are usually well posed

and yield unique solutions. We assume that the system’s model is available and that we can compute the
response vector r

j
(suitably sampled in time) as a function of the given input, I, to the system, and the

parameter vector p
j
; hence r

j
"f (p

j
; I) . The usual approaches in system identification rely to a great extent

on solving inverse problems which are usually ill-posed. And, thirdly, the aim of this identification approach
is to directly build an association between various parameter sets and the corresponding outputs (for a given
input). As opposed to this, the usual paradigm employed in system identification, aims to build of an
association between various inputs and the corresponding outputs to the system (while starting from a single
parameter vector, and successively updating it).

Specifically, a simple linear associative m by n memory matrix M defined by the relation P+MR is
determined by using a suitable cost function and minimizing a suitable matrix norm of the error between
P and MR while being attentive to the numerical stability of the results. The association between various
parameter sets and the corresponding responses (for a given input) is thus encapsulated in the memory matrix
M. Then, when presented with a given measured response r* of the system, one obtains an estimate, p' , of the
parameter vector p*, as p'"Mr*.

As pointed out by Kalaba and Udwadia,11 an important issue for obtaining good results from such an
identification scheme concerns the generation of relevant training vectors p

j
, so that a suitable memory

matrix M can be generated. As successively improved training vectors are generated, the memory matrix is
successively improved, as is the estimate of the parameter vector. It is this aspect of the identification scheme
that this paper principally deals with. We develop here a simple iterative scheme, which is related to genetic
algorithms, for the adaptive generation of such training vectors. While comparable in computational
intensity to the schemes described in References 11 and 12, this new approach for obtaining relevant training
vectors is shown to lead to significant improvements in the capability of the associative memory identi-
fication methodology. In Reference 13, Lin and Durand extended the original Kalaba and Udwadia
scheme11,12 employing a weighting algorithm that improves significantly the accuracy of parameter estima-
tion. Our approach contains some elements that are similar to theirs. On the other hand, it has a different
emphasis (no weights are used here), with distinctly different results.

THE IDENTIFICATION METHODOLOGY

The identification scheme using memory matrices may be divided into two conceptual steps: (a) determina-
tion of the memory matrix M for a given initial set of training vectors P"[p

1
p
2
2p

N
] and a corresponding

set of responses R"[r
1

r
2
2r

N
], and (b) generation of relevant training vectors. When the system model is
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subjected to the input I, each parameter vector p
j
when used in the system’s model yields a corresponding

response vector r
j
.

(a) Determination of the memory matrix M. The associative memory approach to system identification
relies on finding a memory matrix which minimizes the multicriterion cost function

J"(1!aL )EMR!PE2#aL EME2, 0)aL (1 (1)

where the parameter â indicates the relative emphasis placed between the cost associated with mapping the
response matrix R to the parameter matrix P (the first term on the right-hand side of equation (1)), and the
cost of the computed memory matrix M being ill-conditioned. When the parameter â is zero, no penalty is
placed on the possible numerical ill-conditioning of the memory matrix M, and all emphasis is placed on
obtaining the best mapping; when a' is close to unity little emphasis is placed on the identification, and much
more emphasis is placed on numerical conditioning.

Defining the Euclidean norm of the matrix M as

EME"JTrMMTMN, (2)

the minimization of J with respect to M yields (see Reference 12 for a derivation),

M"PRTCRRT#A
aL

1!â BID
~1

"PRT[RRT#aI]~1 (3)

where we have denoted, for convenience, the ratio (aL /(1!aL )) by a. It should be noted that while the
result obtained in equation (3) is similar to the least-squares result with the additional use of the regular-
ization parameter a, we now have a greater physical understanding of the role played by this regularization
parameter a in its effort to alter the cost function J from one which emphasizes accurate identification
at the expense of possible numerical ill-conditioning (a, a positive number close to zero) to one
which emphasizes numerical conditioning at the expense of accurate identification (a, a large positive
number).

(b) Generation of relevant training vectors. The use of a set of parameter vectors to determine the linear
mapping M : RPP works well even when the initially guessed parameter vectors are ‘far’ from the actual
parameter vector which describes the system. It was pointed out in Reference 12 that the methodology would
stand to considerable gain if a sequential procedure for determining additional relevant training vectors
could be devised so that by using these training vectors, sequential updates of the estimate of the parameter
vector could be obtained. Such an updating scheme was developed; to the prevalent pool of training vectors,
at each iteration was added a randomly generated training vector which was ‘close’ to the current parameter
estimate. Thus, the pool of training vectors was expanded gradually by one training vector at each iteration,
see Reference 12 for details. In this paper we present a superior way of generating training vectors, which we
have found to be efficacious in handling a number of difficult identification problems.

Consider a dynamic system which is subjected to an input which may or may not be time-varying, and
whose response r* to this input is measured. For example, we could have a five-storey building structure
modelled as a five-degree-of-freedom system subjected to an (input) impulsive force, or to strong earthquake
ground shaking at its base. Its response can be measured at, say, the first- and second-storey levels over
certain time windows and the response data (say equally spaced in time) concatenated into an n-vector r*. If
the stiffness distribution along the structure is to be identified, the true parameter vector p* would contain the
five stiffnesses at each of the five storey levels. The aim is then to identify the 5-vector p* from the input data
and the measured n-vector of response, r*.
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The iterative identification scheme we develop in this paper can be schematically described as follows:

1.0 Initialization:

(a) Starting with a set of initial guesses (initial training vectors) P(0)"[p(0)
1

p(0)
2
2p(0)

NÒ
] of the true

parameter vector p*, generate a set of corresponding responses R(0)"[r(0)
1

r(0)
2
2r(0)

NÒ
], when the system

model is subjected to the given specific input, I; the initial training vectors, p(0)
j

, are selected using our
physical understanding of the system and our knowledge of the ranges in which the parameter values
may lie. The response to the specific input (suitably sampled at certain intervals of time, say) is obtained
from our knowledge of the ‘structure’ of the system model, and can be expressed as r(0)

j
"f (p(0)

j
; I).

(b) Compute the initial memory matrix M(0) using equation (3), with a suitable a.
(c) Using the measured response, r*, of the actual system when subjected to the same input I, determine

a primary estimate of the true parameter vector as p' (0)"M(0)r*.

2.0 Iterate for k"1, 2,2 until convergence

(a) Based on the estimate p' (k~1), generate a relevant set of training vectors p(k)"[p(k)
1

p(k)
2
2p(k)N

k
] and

compute on the basis of the model, the corresponding responses R(k)"[r(k)
1

r(k)
2
2r(k)N

k
] to the given

input I.
(b) Using equation (3), determine the updated memory matrix M(k), as M(k)"P(k)R(k)T[R(k)R(k)T#a

k
I]~1,

with a suitable a
k
.

(c) Compute the updated parameter estimate p' (k)"M(k)r*.

As stated earlier, the initialization step is primarily concerned with the development of the primary
memory matrix M(0) and a primary estimate, p' (0), of the parameter vector; the second step deals with the
creation of a relevant pool of training vectors based on this initial estimate p' (0) so that one iteratively
generates the updated memory matrices M(k), k'0, and thereby iteratively obtains improved estimates of
the parameter vector.

We note that despite the different numbers, N
k
, of training vectors that can be used at each iteration, k, the

updated estimate, p' (k), of the parameter vector is a single vector. In this paper we start with five initial training
vectors (i.e. N

0
"5) and increase their number to N

k
,NM for all future iterations, k'0. Also, we use in our

procedure a constant value of a
k
, with a

k
,a, k*0.

As seen from equation (3), the matrix M(k) depends on the parameter a. The larger a is, the more emphasis,
in general, is given to the identification of the computed parameter vector, the less to stability of the memory
matrix. Consequently, one should keep a as small as possible, but large enough so that M(k) is sufficiently
well-conditioned. The poor conditioning of the memory matrix when using noisy data may lead one to
increase the value of a. In the examples considered in this paper, the value of a was kept between 10~6 and
10~11.

One way of obtaining the new training set P(k) at the kth iteration from the single estimate p' (k~1) is to
randomly perturb this parameter estimate vector by a small amount b

k
. Thus one obtains

p(k)
j, l
"(1#h

j, l
b
k
)p' (k~1)

j
for l"1, 2, 2 , NM ; j"1, 2, 2, m (4)

Here we denote by p(k)
j, l

the jth component of the m-vector p(k)
l

, and by h(k)
j, l

a random number uniformly
distributed in (!0)5, 0)5). It should be noted that each of training vectors in the set P(k) are determined anew
at each iteration. This idea is based on the assumption that at each new iteration we obtain a better
approximation to the true parameter vector. Contrary to what was done in Reference 12, here new training
vectors are not appended at each iteration to the set of old ones thereby expanding the gene pool. In order to
cluster the new training vectors around the true parameter vector, one may decrease this perturbation b

k
as

the iterations progress. In what follows, we provide a way of selecting b
k
adaptively, based on the normalized

response residual.
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Let us denote the error in the parameter estimate at the kth iteration by e(k)"p*!p' (k); the response
residual (for the given input I) corresponding to p' (k) can accordingly be denoted by r(k)

E
"r*!r' (k), where,

r' (k)"f (p' (k), I). The first quantity, e(k), is not computable (except in test cases) since we have no knowledge of
the true parameter p*, while the second one, can be computed since the true (measured) response of the
system r* corresponding to the true parameter p* is known, and the system model is also assumed known.
The parameter b

k
can now be chosen to be a function of the norm of the residual r(k)

E
. For k'0, a simple

choice such as b
k
"o

k
Er(k)

E
E appears to be sufficient (see Figure 2(a)), where the o

k
’s are constants. Here the

norm is defined as ErE"J(1/n)+n
i/1

r2
i

in order to make b independent of n, the length of the vector r. More
generally, one may view the choice of b

k
as indicating how changes in the parameter space affect the response

space. Using a local linearization, we can derive an approximate proportionality relation

b
k
"b

k~1

Er(k)
E

E
Er(k~1)

E
E

, k"1, 2,2 (5)

which leads to

b
k
"

b
0

Er(0)
E

E
Er(k)

E
E"o

k
Er(k)

E
E, k"1, 2, 2 (6)

In the algorithm used here, we have taken o
k
,1/Er*E, k'0.

The choice of relevant training vectors discussed above can be significantly enhanced from ideas related to
the development of gene pools. At each iteration one can choose from among the randomly generated
parameter vectors provided by relation (4) those vectors which lead to small residuals, thereby creating
a ‘good genetic pool’ of relevant training vectors. To do this we generate, at each iteration, as many
candidates as needed to obtain NM relevant training vectors p(k)

i
, let us call them mutations. A mutant

generated the kth iteration is added to the gene pool of relevant training vectors if the residual of the response
it generates is less than a threshold value. A natural choice, for k'0, is the norm of the residual computed at
the previous iteration, normalized with respect to the measured response, namely d

k
Er(k~1)

E
E. In this paper we

choose d
k
,dM "1)5, k'0. Smaller values of dM are found to lead to an excessive number of mutations which

do not meet the pool criteria and therefore have to be rejected as genetically inferior; larger values of
dM deteriorate the quality of the gene pool. Thus, at each iteration, k, a new gene pool of NM training vectors is
created.

The final form that our genetic iterative algorithm then takes is:
1.1. Initialization

(a) based on a physical understanding of the system, determine p' (0) as before in 1.0.
(b) compute r' (0) and Er(0)

E
E/Er*E.

(c) set b
1
"oEr(0)

E
E, o"1/Er*E.

2.1. Iterate for k"1, 2, 2 until Er(k)
E

E(q.
(a) set d

k
, k'0.

(b) generate mutations (candidate training vectors)
(i) p(k)

j, l
"(1#h

j, l
b
k
)p' (k~1)

j
, for l"1, 2, 2; j"1, 2, 2, m.

(ii) compute the responses r(k)
l
"f (p(k)

l
; I) based on the system model for the given input, I.

(iii) accept NM vectors p(k)
l

which satisfy the criterion Er*!r(k)
l

E(d
k
Er(k~1)

E
E.

(c) form (i) the set P(k)"[p(k)
1

p(k)
2 2p(k)N1 ].

(ii) the set R(k)"[r(k)
1

r(k)
2 2r(k)N1 ].

(d) compute the memory matrix M(k)"P(k)R(k)T(R(k)R(k)T#aI)~1.
(e) compute the

(i) parameter estimate p' (k)"M(k)r*.
(ii) estimated response r' k"f (p' (k); I), and the residual r(k)

E
"r*!r' (k).

(iii) perturbation b
k`1

"oEr(k)
E

E.
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Preferably, the iterations should be terminated by monitoring the history of the convergence of each of the
components of the parameter vector, i.e. Ep' (k)

j
!p' (k~1)

j
E, j"1, 2, 2, m. In this paper the identification

algorithm was halted after a fixed number (usually 10) of iterations, mostly to obtain a uniform display of
convergence history.

The computational cost of this algorithm is dominated by the cost of computing the response of the system
to the mutant training vectors. A much smaller contribution to the cost is the generation of the successive
memory matrices and the resulting parameter estimates. In Reference 12 the number of training vectors was
initially smaller, but grew linearly with the number of iterations; in the approach presented here, convergence
occurs with a much smaller number of iterations though the number of training vectors is larger. Conse-
quently, the computational cost of both algorithms is comparable, but the accuracy of the results presented
herein is far superior.

We now present two examples of the ability of the above-mentioned identification scheme to handle
difficult inverse problem.

NUMERICAL RESULTS

It was shown in Reference 12 that the associative memory approach to system identification may be in
certain cases superior to schemes such as the recursive prediction error scheme. Here we consider two
examples of identification problems which have not responded well to methods like Kalman filtering and
recursive-error-prediction methods. The numerical experiments were done using MATLAB with a machine
precision of about 2)2]10~16. In all the experiments, integration was performed using the fourth-order
Runge-Kutta method, and the fixed time step chosen for integration was *t"0)02.

Example 1. (Five degree-of-freedom building structure). A five-degree-of-freedom building structure (see
Figure 1) represented by the equation

Mẍ#CxR #Kx"f (t), x (0) "x
0
, xR (0) "xR

0
(7)

is considered where the 5 by 5 matrix M is taken to be the identity matrix. The matrix K is tridiagonal, and
has the form

K"C
k
5

!k
5

!k
5

k
4
#k

5
!k

4
. . .

. . .

!k
2

k
1
#k

2
D (8)

The matrix C is also tridiagonal and has the a similar form (with damping parameters c
i
’s replacing the k

i
’s).

The aim is to identify the 10 physical parameters which describe the system k
j
, c

j
, j"1, 2, 2 , 5. The exact

parameters are taken to be

k
1
"2080, k

2
"2050, k

3
"2020, k

4
"2100, k

5
"2005

c
1
"1)5, c

2
"1)8, c

3
"2, c

4
"2)5, c

5
"2

and we denote the parameter vectors p
s
"[k

1
k
2

k
3

k
4

k
5
], and p

c
"[c

1
c
2

c
3

c
4

c
5
].

The system is not classically damped. All the parameters are taken to be in consistent units.

A. Response to initial velocity. We subject the system to an initial velocity condition expressed by the
vector xR (0)"[xR

1
(0) xR

2
(0) xR

3
(0) xR

4
(0) xR

5
(0)]T"[10 !10 10 !10 0]T. The initial displacement vector x (0)

is zero, as is the vector f (t) . Table I shows the five initial training vectors used in the identification and the
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Figure 1. Five storey building subjected to: (a) initial velocity; (b) El Centro 1940, S00W

Table I. Five dof building system: errors in initial training vectors

Five training vectors, P(0) Errors in P(0)(%)
RMS

p
1

p
2

p
3

p
4

p
5

p
1

p
2

p
3

p
4

p
5

error %

c
5

2)5 4)0 3)0 2)5 3)0 25)0 100)0 50)0 25)0 50)0 57)0
c
4

2)0 3)0 2)0 2)0 3)0 !20)0 20)0 !20)0 !20)0 20)0 20)0
c
3

4)0 2)7 2)8 2)5 3)0 100)0 35)0 40)0 25)0 50)0 56)5
c
2

2)0 2)0 2)0 2)0 3)0 11)1 11)1 11)1 11)1 66)6 31)4
c
1

2)5 1)9 1)0 2)5 3)0 66)7 26)7 !33)3 66)7 100)0 64)4

k
5

1950 2050 1960 1900 2100 !2)74 2)24 !2)24 !5)24 4)74 3)67
k
4

1900 2100 2000 1950 2100 !9)52 0)0 !4)76 !7)14 0)0 5)73
k
3

2100 1900 2050 2100 2100 3)96 !5)94 1)48 3)96 3)96 4)11
k
2

2000 2020 2200 2200 2100 !2)44 !1)46 7)32 7)32 2)44 4)92
k
1

2200 1940 1900 1950 2100 5)77 !6)73 !8)65 !6)25 0)96 6)22
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Table II. Five dof building system: measurements at first and second floors, a"10~10

Primary estimates, p' (0) Final estimates, p' (10)
Exact

Error % Param. Error % Param. param.

c
5

!69)59 3)39 0)0381 1)9992 2)00
c
4

!9)67 2)74 !0)0106 2)5003 2)50
c
3

!100)01 4)00 0)0053 1)9999 2)00
c
2

!40)26 2)52 !0)0110 1)8002 1)80
c
1

!29)80 1)95 !0)0302 1)5005 1)50

k
5

!7)6 2156)8 !0)001 2005)02 2005
k
4

!0)7 2115)3 !0)001 2100)03 2100
k
3

!4)5 2111)1 !0)001 2020)02 2020
k
2

!0)8 2067)0 !0)002 2050)04 2050
k
1

!7)2 2229)0 !0)002 2080)04 2080

percentage errors in each of the initial guesses of the different parameters. The last column in Table I shows
the root-mean-square-error in each parameter value across the set of 5 initial parameter vectors, and equals

S
1

5

5
+
i/1
C
p'
ij
!p*

i
p*
i

D
2
, j"1, 2, 2 , 10.

We have assumed that our initial estimates of the stiffness parameters are better than those of our damping
parameters, a situation common in the description of building structures. Errors (RMS) in the initial
damping estimates are approximately 20—65 per cent, those in the stiffness estimates are approximately 4—6
per cent.

The equations are integrated using the fourth-order Runge—Kutta method and only the responses
(displacements) at the first and second storeys are used for the identification. Only in Table III do we use
responses from the fourth and fifth storeys for the purpose of comparison. Furthermore, the displacement
data from two short time windows of response, t3[0, 0)6] and t3[0)7, 2)5], are taken for the identification
procedure. The data are concatenated to form the response vector r

j
. At each iteration, a gene pool of NM "51

training vectors is created. Of the mutants generated at each iteration only those that satisfy the criterion
described in Step 2.1(b) (iii) of the method (with d1 "1)5) are included in the gene pool. This leads to
a rejection, on average, of about one mutant or less out of every two which are produced. This value of dM was
kept fixed for all the examples shown in this paper. The regularization parameter a is chosen to be 10~10

(unless indicated otherwise), and the algorithm is halted after k"10 iterations.
Table II shows the primary estimate p' (0) obtained after the 5 initial parameter vectors are used in the

identification process, and the final estimate, p' (10), after 10 iterations. Also shown are the percentage errors in
each of the parameters. The convergence history plotted in Figure 2(a) shows the normalized parameter error
Ep' (k)

S
!p*

S
E/Ep*

S
E in stiffness and Ep' (k)

c
!p*

c
E/Ep*

c
E in damping (in per cent) as a function of the number of

iterations, k. Also shown is the normalized residual error Er*!r(k)E/Er*E between the response using the
actual and the estimated parameters. As seen from the last two columns of Table II, the procedure yields very
accurate estimates of the physical parameters. The reduction in the errors in damping and stiffness values is
by about 3 orders of magnitude. We note that the normalized residual error curve closely follows the curve
for error in stiffness, indicating that the residual is more so dominated by errors in the stiffness, than by those
in damping. It should also be noted that using the norm of the difference of consecutive parameter estimates,
Ep' (k)!p' (k~1)E, as the stopping criterion, the iterations could have been terminated after only 4 iterations
with considerable computational savings. We have chosen a fixed number of 10 iterations for a more uniform
display, and as a verification that the algorithm is robust and does not diverge as the iteration number
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Figure 2. Response to initial velocity
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Table III. Five dof building system: Measurements at fourth and fifth floors a"10~10

Primary estimates. p' (0) Final estimates. p' (10)
Exact

Error % Param. Error % Param. param.

c
5

!76)18 3)52 !0)0006 2)00001 2)00
c
4

!5)40 2)63 !0)00002 2)5000005 2)50
c
3

!100)47 4)01 !0)0048 2)0001 2)00
c
2

!45)64 2)62 0)0019 1)79997 1)80
c
1

40)57 0)89 0)0039 1)49994 1)50

k
5

!8)3 2171)6 0)001 2004)98 2005
k
4

!1)5 2130)7 0)001 2099)97 2100
k
3

!3)5 2090)5 !0)0001 2020)003 2020
k
2

!2)4 2100)2 !0)002 2050)04 2050
k
1

!3)4 2151)1 !0)002 2080)04 2080

increases. Figure 2(b) shows the responses measured at the fifth-storey level and those obtained using the
estimated parameters, for the results depicted in Figure 2(a). To the scale of the figure, the difference is
indistinguishable.

Table III shows similar results were we to use displacement measurements from only the fourth and fifth
storeys over the same two time windows for the identification, all other things remaining unchanged. Again,
the last two columns of the table show that the identification of the physical parameters is very good.
Comparing the results in Tables II and III, we observe that for this input (and the measurement time
windows chosen) the identification results obtained, especially for the damping estimates, are superior when
using responses from the two upper storeys rather than the two lower storeys of the structure, though both
sets of data yield excellent parameter estimates.

The parameter values to be identified in our structural system differ by three orders of magnitude. It is this
disparity in the magnitude of the numbers to be identified that causes the identification problem to become
difficult; if one were using standard optimization methods, because such techniques would lead to climbing
down narrow valleys, the accuracy of the estimated damping parameters would be poor. Our genetic iterative
scheme using the memory matrix approach appears to have little difficulty (see, Tables II and III), and in fact
usually converges to the final estimates in less than five iterations (see Figures 2(a) and 2(c)) while using data
over small intervals of time. This makes the identification approach described herein a good candidate for
real time on-line structural identification and health monitoring.

The regularization parameter a was found to have a significant effect on the ability of the identification
scheme to estimate the parameters accurately, especially the small numbers describing the damping values.
Figure 2(c) shows the effect of a on the accuracy of the identified damping parameters, c

i
when using

displacement data from the first and second storeys. As expected the smaller a is, the greater is the emphasis
placed on identification as opposed to numerical stability, and the accuracy of the identification improves.
The figure indicates that a drop in a by an order of magnitude, improves the accuracy of the damping
estimate by about the same amount. The optimal value of a depends also on the computer machine precision,
here +2)2]10~16.

Table IV shows the results obtained when noisy measurements are used. The displacement measurements
from the first and second storeys are corrupted using a uniformly distributed random noise with a noise-to-
signal ratio of 3 per cent. The same initial training vectors were used. We see that the estimates of the
parameters deteriorate substantially, especially the damping estimates. The measurement noise is enough to
mask the effect of small differences in the damping parameter values, and the identification scheme performs
poorly when trying to estimate them. Due to greater inconsistency in the equation P"MR in the presence of
measurement noise, a greater value of a is needed to ensure numerical stability.
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Table IV. Five dof building system: noise/signal"3%, a"10~6

Primary estimates, p' (0) Final estimates, p' (10)
Exact

Error % Param. Error % Param. param.

c
5

!67)99 3)36 19)7650 1)6047 2)00
c
4

!9)01 2)73 14)7617 2)1310 2)50
c
3

!101)29 4)03 !4)4948 2)0899 2)00
c
2

!38)62 2)49 !9)7925 1)9763 1)80
c
1

!34)86 2)02 !21)3471 1)8202 1)50

k
5

!7)1 2148 !0)7 1991 2005
k
4

!0)2 2104 !3)0 2162 2100
k
3

!4)3 2108 !0)3 2026 2020
k
2

!0)2 2055 !2)3 2096 2050
k
1

!7)4 2235 3)4 2150 2080

Table V. Five dof building system: error RMS norms in final
estimates

Error norms in final estimates

Without noise With 1% noise

a"10~9 a" 10~10 a"10~6 a"10~7

Damping 0)145% 0)021% 4)18% 3)73%
Stiffness 0)004% 0)002% 0)41% 0)77%

Figure 2(d) shows the norm errors in stiffness and damping as a function of iteration number for various
noise levels, using displacement responses from the first and second storeys with a"10~6, all the other
parameters being those used earlier. Table V summarizes the effect of using different a values and the effect of
noise on the identification results. It should be noted that the identification even in the presence of
measurement noise yields acceptable results, especially when one considers that these results are obtained by
looking at very short response time windows for the identification.

B. Response to earthquake excitation. The identification procedure is next applied using the response of the
system to earthquake excitation. The structure is subjected to the base acceleration recorded for the El
Centro S00W component, and response data from a time windows t3[0, 5] is used for the identification.
Using the same five initial parameter guess vectors as in Table I, and response data only from the first and
second storeys, the results of the identification are shown in Table VI. Figure 3(a) shows the errors as
a function of the iteration number and Figures 3(b)—3(d) show the measured and estimated responses for
t3[0, 15] at the fifth, fourth and third storey levels. At the scale of the figure, no discrepancies between the
two sets of responses are observable. Despite this, Table VI shows that the first three damping parameters are
poorly identified indicating that little information about these parameters is available from the input and the
response data used in the identification.

Table VII shows results for the identification procedure had we measured displacement responses from the
fourth and fifth storeys, and only used these in the identification. Again the data for the identification is
gathered over the same time window. Figure 4 shows these results. Table VIII summarizes these results and
we observe that for this particular input acceleration and measurement time window chosen, the identifica-
tion results obtained using data from the lowest two storeys are superior to those obtained from data
gathered at the higher two storeys.
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Table VI. Earthquake, measurement at first and second floors: a"10~11

Primary estimates, p' (0) Final estimates, p' (10)
Exact

Error % Param. Error % Param. param.

c
5

!40)36 2)81 !35)89 2)718 2)00
c
4

26)64 1)83 22)99 1)925 2)50
c
3

!107)98 4)16 !9)76 2)195 2)00
c
2

!13)99 2)05 1)27 1)777 1)80
c
1

38)97 0)92 !0)12 1)502 1)50

k
5

!0)4 2012 0)3 1999)4 2005
k
4

6)5 1963 0)01 2100)1 2100
k
3

!4)6 2144 !0)1 2022)2 2020
k
2

!2)1 2093 0)1 2047)1 2050
k
1

!3)0 2141 0)1 2077)2 2080

Figure 3. Response to earthquake excitation
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Table VII. Earthquake, measurement at fourth and fifth floors: a"10~11

Primary estimates, p' (0) Final estimates, p' (10)
Exact

Error % Param. Error % Param. param.

c
5

!27)62 2)55 !1)08 2)022 2)00
c
4

47)24 1)32 2)74 2)431 2)50
c
3

!179)36 5)59 !95)45 3)909 2)00
c
2

19)40 1)45 33)39 1)199 1)80
c
1

51)81 0)72 43)19 1)852 1)50

k
5

3)5 1934 0)02 2004)7 2005
k
4

14)5 1796 1)0 2079)1 2100
k
3

!2)5 2071 !0)4 2027)9 2020
k
2

9)0 1866 1)5 2020)2 2050
k
1

11)9 2327 !1)3 2107)0 2080

Table VIII. Earthquake: error RMS norms in estimates

1st—2nd floors 4th—5th floors

primary final primary final

Damping 55)85% 21)17% 88)04% 47)38%
Stiffness 3)98% 0)16% 9)62% 1)00%

Example 2. (Coupled non-linear oscillators). Consider the coupled Van-der-Pol-Duffing oscillator de-
scribed by the equations

ẍ#a
1
(b

1
!x2)xR #c

1
(x!y)#d

1
x3"!e sin (ut) (9a)

ÿ#a
2
(b

2
!x2)xR !c

2
(x!y)#d

2
y3"0)2 cos (3t)!0)5 cos (2t) (9b)

with

x (t"0)"0, xR (t"0)"0, y (t"0)"0)2, yR (t"0)"0)1 (9c)

where the dots represent differentiation with respect to time, t. The exact values of the constant parameters
are taken to be

a
1
"5, b

1
"2, c

1
"5, d

1
"2, e"1

a
2
"4, b

2
"2)5, c

2
"5, d

2
"3, u"2

As seen from the parameter values, the system is highly non-linear; such systems pose substantial difficulties
for many identification schemes (see Reference 12). All ten parameters are to be identified using the
methodology presented in the previous section. We note that the identification includes both the system
parameters and parameters related to the forcing function.

Five initial parameter vectors shown in Table IX form the set P(0). Also shown are the percentage errors in
each parameter relative to the exact parameter values. We notice that the initial guesses differ substantially
from the exact values, and the qualitative behavior of the coupled system is strongly dependent on the
parameter values. As before, the RMS errors in each of the estimates are also shown. Two short disjoint
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Figure 4. Coupled Van-der-Pol-Duffing oscillator with forcing function

Table IX. Coupled Van-der-Pol-Duffing oscillator with forcing function: errors in training
vectors

Five training vectors, P(0) Errors in P(0) in %
RMS

p
1

p
2

p
3

p
4

p
5

p
1

p
2

p
3

p
4

p
5

error,%

a
1

6)0 4)5 4)7 5)4 4)0 !20)0 10)0 6)0 !8)0 20)0 14)14
b
1

2)2 1)8 2)3 3)0 2)5 !10)0 10)0 !15)0 !50)0 !25)0 26)65
c
1

4)8 5)3 4)0 4)7 5)2 4)0 !6)0 20)0 6)0 !4)0 10)04
d
1

2)3 1)8 2)4 1)9 1)8 !15)0 10)0 !20)0 5)0 10)0 13)04
e 1)3 0)85 1)2 1)1 1)5 !30)0 15)0 !20)0 !10)0 !50)0 28)72
a
2

4)4 3)7 4)2 3)0 4)3 !10)0 7)5 !5)0 25)0 !7)5 13)13
b
2

3)0 2)7 2)2 2)8 2)3 !20)0 !8)0 12)0 !12)0 8)0 12)77
c
2

5)2 4)8 5)3 4)3 4)9 !4)0 4)0 !6)0 14)0 2)0 7)32
d
2

3)3 2)8 3)2 3)6 2)8 !10)0 6)7 !6)7 !20)0 6)7 11)25
u 3)0 1)8 2)5 1)9 1)5 !50)0 10)0 !25)0 5)0 25)0 27)84
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Table X. Coupled Van-der-Pol-Duffing oscillator with forcing func-
tion: errors in estimates, a"10~9

Primary estimates, p' (0) Final estimates, p' (8)
Exact

Error % Param. Error % Param. param.

a
1

10)71 4)46 5)28 4)74 5)0
b
1

2)40 1)95 !5)33 2)11 2)0
c
1

1)83 4)91 0)19 4)99 5)0
d
1

!1)26 2)03 !3)14 2)06 2)0
e !7)01 1)07 0)18 0)998 1)0
a
2

!2)84 4)11 !2)43 4)10 4)0
b
2

0)96 2)48 2)42 2)44 2)5
c
2

!1)83 5)09 0)01 4)999 5)0
d
2

4)47 2)87 4)25 2)87 3)0
u !2)50 2)05 !0)0008 2)00002 2)0

time-windows are chosen for the identification, t3[0, 0)6] and t3[1, 2)2], and only measurements of x (t) and
y(t) in these intervals are used for the identification. The data are concatenated to form the response vector r

j
.

The regularization parameter a is taken to be 10~9.
Table X shows the primary estimate p' (0) obtained after the five initial parameter vectors are used in the

identification process along with the percentage error in each of the parameters. The number of training
vectors genetically engendered at each iteration was NM "51, k'0. The results after eight iterations, starting
with the primary estimate p' (0), are also shown. Figure 5(a) shows the normalized error Ep' (k)!p*E/Ep*E in
the parameter vector as a function of the iteration number k, along with the normalized response residual.
The responses of the system (for t3[0, 5]) using the exact parameter values and those estimated at the end of
eight iterations are shown in Figures 5(b) and 5(c). At the scale plotted, no difference between the exact and
the estimated responses can be seen.

Tables XI and XII show the results of the identification procedure, using a different set of five initial guess
vectors for the same system as shown in equation (9), except that no forcing term on the right-hand side of
equation (9b) is present. Measurements of x (t) and xR (t) are only used for the identification over the same two
time windows. Figure 5(d) shows the normalized error in the parameter vector and that in the response
residual. As before, the response using the estimated parameters and that using the exact parameter values
are indistinguishable and are therefore not shown.

DISCUSSION AND CONCLUSIONS

In this paper we have used a different paradigm for the identification of structural systems than the one
commonly used. Instead of using several inputs and several outputs to sequentially arrive at the parameters
describing a dynamic system, we use a single input and sets of parameters values to match the measured or
given output. Whereas previous methods start from a single parameter guess and sequentially update it to
match the measured response, here we develop a sequential set of parameters and use them simultaneously to
arrive at an estimate of the unknown parameter vector. Most of the computational time in our approach is
spent on solving the forward problem instead of the inverse problem, another difference between standard
approaches and the one used here. Since forward problems are considerably simpler to solve and have unique
solutions (unlike inverse problems) the method appears to take good advantage of this.

The genetically engineered relevant training vectors are shown to improve the identification results
dramatically by reducing the norm error in the parameter estimates significantly, especially in the absence of
measurement noise. As opposed to prior work,11,12 this significant increase in parameter estimation
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Figure 5. Coupled Van-der-Pol-Duffing oscillator without forcing function

Table XI. Coupled Van-der-Pol-Duffing oscillator without forcing function in equation (9b):
errors in training vectors

Five training vectors, P(0) Errors in P(0) in %
RMS

p
1

p
2

p
3

p
4

p
5

p
1

p
2

p
3

p
4

p
5

error,%

a
1

5)5 4)5 4)7 5)4 5)0 10)0 !10)0 !6)0 8)0 0)0 7)75
b
1

2)2 1)8 2)3 1)9 2)5 10)0 !10)0 15)0 !5)0 25)0 14)66
c
1

4)8 5)3 5)0 4)7 5)2 !4)0 6)0 0)0 !6)0 4)0 4)56
d
1

2)3 1)8 2)4 1)9 1)8 15)0 !10)0 20)0 !5)0 !10)0 13)04
e 1)3 0)85 1)2 1)1 1)0 30)0 !15)0 20)0 10)0 0)0 18)03
a
2

4)4 3)7 4)2 4)0 4)3 10)0 !7)5 5)0 0)0 7)5 6)89
b
2

2)5 2)7 2)2 2)8 2)3 0)0 8)0 !12)0 12)0 !8)0 9)12
c
2

5)2 4)8 5)3 4)3 4)9 4)0 !4)0 6)0 !14)0 !2)0 7)32
d
2

3)3 2)8 3)2 3)0 2)8 10)0 !6)7 6)7 0)0 !6)7 6)83
u 2)3 1)8 2)0 1)9 1)8 15)0 !10)0 0)0 !5)0 !10)0 9)49
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Table XII. Coupled Van-der-Pol-Duffing oscillator without forcing
function in equation (9b): errors in estimates, a"10~9

Primary estimates, p' (0) Final estimates, p' (8)
Exact

Error % Param. Error % Param. param.

a
1

!9)42 5)47 !4)08 5)204 5)0
b
1

0)97 1)98 3)41 1)932 2)0
c
1

!0)98 5)05 0)02 4)999 5)0
d
1

3)54 1)93 !0)69 2)014 2)0
e !8)90 1)09 0)09 0)999 1)0
a
2

!3)57 4)14 3)80 3)848 4)0
b
2

!15)10 2)88 !5)22 2)630 2)5
c
2

6)35 4)68 !1)03 5)051 5)0
d
2

!2)29 3)07 !6)47 3)194 3)0
u !0)99 2)02 !0)31 2)006 2)0

accuracy can be attributed to the combined effect of the following four factors: (1) the generation of an
entirely new set of training vectors at each iteration; (2) the generation of each set of training vectors (using
random perturbations of the estimated parameter) through a selection process which accepts only those
vectors whose response residuals are small; the variance of the random perturbations is adaptively changed
with each iteration; (3) the use of small values of the regularization parameter, a; and (4) the development of
an adaptive scheme which is driven by the information acquired from the response residuals. We demon-
strate that this new memory matrix approach proposed herein is thus a powerful approach for identification
of the physical parameters of a system even when these parameters may differ by several orders of magnitude.
The approach provides remarkably accurate results while using a very small amount of data when compared
with recursive-prediction-error methods or other hill-climbing methods. The latter methods require long
data windows (and large amounts of data) and even with such long windows often yield poor identification
results in such cases, see Reference 12. It is this feature of our methodology which may make it promising for
real-time, on-line, quick identification and health monitoring of complex structural and mechanical systems.
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