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A Methodology for Optimal Sensor
Locations for Identification of
Dynamic Systems

The problem of optimally positioning sensors in lumped and distributed parameter dy-

namic systems for the purpose of system identification from time-domain input-output
data is formulated and a methodology for its solution is presented. A linear relation be-
tween small perturbations in a finite-dimensional representation of the system parame-
ters and a finite sample of observations of the system time response is used to determine
approzimately the covariance of the parameter estimates. The locations of a given num-
ber of sensors are then determined such that a suitable norm of the covarignce matrix is
minimized. The methodology is applied to the problem of optimally locating a single sen-
sor in @ building structure modeled by a shear beam, such that the estimates of the stiff-
ness distributions, obtained from the records of strong ground shaking and the building
response at the sensor location, are least uncertain.

Introduction

The problem of the determination of the dynamic parameters
of systems from “input-output” data has become of considerable in-
terest to researchers in many areas of science and engineering. Often,
the systems are extended in one or more spatial dimensions, and
spatial distributions of the dynamic parameters have to be deter-
mined, Some commonly encountered examples of identification of
such distributed systems are: determination of stiffness and damping
distributions from displacement records in building structures,
bridges and dams, determination of rock permeability and porosity
from pressure data in petroleum and geothermal reservoirs, and de-
termination of elastic properties of underground rock from seismic
data. Usually the input-output data are recorded in the time do-
main.

There are usually several alternative locations where different
sensors can be located. On the other hand, due to economic and space
restrictions, the number of sensors is limited. Under these circum-
stances, the following question arises: for a given number of sensors,
where should they be located in the system domain, so that the dy-
namic parameter estimates resulting from identification using the
data obtained thereat have the smallest uncertainty?

This paper is concerned with this problem of optimal sensor loca-
tion for identification using time domain data. A methodology for its
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solution is developed. It is assumed that identification has been car-
ried out by obtaining a close match between the observed time re-
sponse of the system and the simulated model response for a given
excitation. It is further assumed that the estimate of the dynamic
parameters so determined are in the vicinity-of their true values. Then
it is possible to obtain an approximate linear relation between small
variations in the dynamic parameters and the simulated response.

By representing the system parameters in terms of a finite number
of unknowns using a suitable parametrization if necessary, and by
suitably sampling the response at a finite number of time instants,
this linear relation is expressed as a linear matrix equation. Using this
equation, an expression for the covariance matrix representing the
uncertainty on the estimates is obtained. The possibility of having
a priori probabilistic information about the unknowns is pointed out
and it is indicated how such information can be incorporated in de-
termination of the covariance matrix. The minimization of a positive
definite scalar measure of the covariance matrix is proposed as an
optimality criterion for sensor locations.

The proposed methodology is illustrated using the problem of de-
termining the optimal location of a single sensor in a building struc-
ture represented as a discrete shear beam, the shear stiffness at dif-
ferent floor levels being the parameters to be identified (Shah and
Udwadia {5}}).

Theory

Let the L-vector w(t) represent the state of the dynamic system.
It may represent the state of either a lumped parameter system or a
finite dimensional representation of a distributed parameter system

! Numbers in brackets designate References at end of paper.
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obtained through a suitable discretization. Let the state equation
be,

w = ((w, k, ¥(£)) w(0) = given (1)

where k is an .V -vector of the dynamic parameters of the systems and
7(¢) is an n,-vector of inputs driving the system.

[dentification Problem. Let there be [ sensors located in the
system domain, which provide noisy measurements of some functions
of the state of the system.

yeobs(e) = h(wit) s) +6(¢) e (0T

i=12,....1

where s, are the sensor locations and ¢;(¢) are zero mean observation
noise processes. Then. identification consists of determining the es-
timate k of k using these observations.

Usually, this is achieved by determining the estimates k which when
used in the model equations (1) yield calculated values w*!(¢) of the
state variables such that the corresponding values

yioal(e) = h(weal(e); ), i=1,2,...,1 (3)

are as close as possible to the observed values [y;°*(¢)} for ¢ £ (0,

7.

This is usually achieved by solving the following minimization
problem:

(2)

Min =§ o f iobo(r) = yi2(r))PWi(r)d @)
=1

where W;(r) are weighting functions which are related to the variances

of ¢(¢).

Optimal Sensor Location Problem. The optimal sensor location
problem consists of determining the [ sensor locations |s;} such that
the resulting parameter estimates k(sy, o, ..., 5;) are as close as
possible to the true parameter values k. Since the estimates of k, de-
pending on the random processes [¢;(£)} are random, the closeness of
k and k must be considered in a statistical sense. Thus mathematically,
the optimal sensor locations are obtained by solvmg the minimization
problem:

Min J; = || E{akAKT}|| )
Isl, 82, ... -'ll
where
Ak = k(sy, $2,...,81) —k, 6)

{|-|| denotes a suitable norm of the matrix function, and E|:} denotes
expectation with respect to the probability distributions of the ob-
servation noise {¢; (r){.

Solution to the Optimal Sensor Location Problem. Let us
define an [-vector,

yT(e) = [Ri(w(e); s0), halw(t); s2), . .., hu(wi(t); s1)] 0]

and a similar [-vector y**(¢). Then the [-vector of observations can
be written as

yoR(e) = y(e) + elt) (8)

where ¢T(¢) = [(¢), ealt), ..., a(t)]. Letusdivide the time interval
[0, T] into equal intervals using M points ¢y, o, t3,. . ., ty. We shall
determine the estimate error considering observations sampled at
these instants.

For the given input ¥(¢), we have y(¢) = y(¢;k) and yal(¢) = yoal(¢;
k). If the estimate vector k is close to the true vector k, then y = yik)
can be expanded in terms of the vector yoal = yal(k). At any time ¢ =
t; we have

J (¢,
y(t)) = yui(z;) +%—2

k= k) +0f |k —K||2 19)
k=y
where dy=2(¢,)/dk is an | X N sensitivity matrix. Denoting the history

mismatch error at time ¢; as m(¢;) = yobs(¢;) — yoalf¢;) weobtam from
(8)
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m(t;) = y(e,) + el¢;) — y2(e)). (10
Using relation (9) and denoting the matrix dy(¢;)/dk by B, we have,
to first order,

m(¢)) = ¢(t;) + Bj(k — k) (11)

Equation (11) is valid at each of the discrete times ¢;, j = 1, 2
M.

Denoting 87 = imT(¢}), mT(¢.),. ..,

.. €Tlta)l, and AT = |B\T|B,T] . ..

? &y ooy

mTEa), T = 1eT(ty), eT(ty),
. |Bu T} we have

8=n+Ak=-k) (12)

where § and n are column vectors both of dimension [M and A is an
{M X N matrix. Let us define § = § — y, so that

Ak -k) =§ (13)

Sipce both 6 and n are random vectors, so is ¢. Then (13) implies that
k — k is a random vector with its statistics related to those of ¢.
Also, A is a random matrix since it depends on the random vector
k. However, if k is sufficiently close to k the matrix A can be expanded
as,
— 24 . .
A=A+;(k—k)+0”k—k||2 (14)
where A is the sensitivity matrix evaluated at the “true” value k.
Using (13) and (14) we obtain,

Ak —k) +0||k —k||2=¢ (15)
The solution of (15) is, to the first order,
k—k =A% (16)
where A¥ is a switable inverse of 4.
- The statistics of the estimate error are
Elk -k} = E{A¥¢] = A¥E(§} an
ard
E'(k —k)(k —k) T} = A¥E|tE|A¥° "18)

From the last two expresalom it is clear that the statistics of the es-
timate error are dependent on the inverse A¥ used. Since A is a
nonsquare matrix, it has no unique inverse. However, the Lanczos
inverse (Lanczos [3]) has some desirable properties that make it
suitable for use here.

The singular value decomposiaon of matrix A leads to the rela-
tion,

A=UAVT (19)

where U is an (IM X N) matrix, which has an orthogonal set of (M-
vectors ju;, i = 1, 2, .., N] as its columns, A =diag(A;, A, . .., AN),
withA\; 2 A22...2 Ay 20,and Vlsanorthogona.l(NxN)mam.x
mthcolumns!v.,x= 1,2,...,N}

The Lanczos inverse is defined in terms of nonzero singular values
of 4. Let At Ag,. . Ar > 0and Amey = Aspz=.. .= Ay = 0, and let V

['lv Y2y e eey 'l'] = [ulv uz, ..., “r]. and I = diag(h, Xz, veay X,.).
Then the Lanczos inverse is
Av=V35grT (20)

It can be shown (Jackson [2]), that when A\; > Ofori = 1,2,...,,
Lanczos inverse is identical with the least-square solution of.(15).
When only r < iV of the A's are nonzero, Lanczos inverse yields a
least-square solution having smallest Eucledian norm since it elimi-
nates the corresponding components along the insensitive directions
Wret, ¥m+2, . . ., ¥y} Let us denote by ¥, the matrix with these vectors
as its columns.
From equations {17), (18), and (20), we have

=V UTEg
Py =Elk —k)(k - k)T = P I\ OTEe O 1107

ok = Elk — k} (21)

(22)
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Ifr=N.D=0.X=1and V=V, and (21) and (22) yield the statis-
tics of the total estimate error. However, for r < N, these expressions
give the statistics only for the components of (k — k) which are sen-
sitive to the observations; and there will be an additional error in the
estimates given by the projection ag = VoT(k — k) along the columns
of Vy:

6*0 = Voao = VoVoT(k - i) (23)

The statistics of this component of the estimate error cannot be de-
termined from the statistics of £, and additional information about
the true parameter value k is needed for this purpose. If this infor-
mation is available in the form of a priort probability distribution of
k, then the statistics of the component of the estimate error are

Ik_o. = ElVoVoT(k - i)l

pko = EIVOVOT(k - i)(k - f() TVOVOTI

(24)
(25)

where the expectations are taken with respect to the prior probability
distribution of k. Furthermore, if we assume that the random vectors
£ and k are independent, we obtain the statistics of the total estimate
error (k — K)ioral 88

Elsk] = 5k + dko

Py =By + Prg + ko T + dkodk T

(26)
(27)

The optimal sensor locations can be obtained as those which min-
imize a suitable norm of Py. From a practical standpoint, the quan-
tities A4, U, &, and V are unknown since the true value k, about which
the linearization is done, is not known. Hence, in practice, the sensi-
tivity matrix A computed by linearization about the estimate k must
be used. Then, the expressions (17) and (18) are no more rigorously
valid since A, depending on k, is a random matrix depending on the
probability distribution of . However, as indicated in the illustrative
example dealing with the identification of building structure stiff-
nesses, the matrix A, and more specifically, its singular values and the
respective subspaces spanned by U, V, and V do not change appre-
ciably for even relatively large changes in the distribution k. The value
of A and its properties are strongly determined by the structure of
the system model and the sensor locations. These observations are
also found to be true in the problem of identification of porous rock
properties in petroleum reservoirs (Shah [4]). Thus, for a given model
equation and a given set of sensor locations, replacing A by A in the
foregoing analysis does not cause appreciable errors in the evaluation
of Py.

Some Comments on the Statistics of §, Since § = { — 1, statistics
of ¢ can only be obtained if those of the mismatch 8 between the ob-
served and model response are available. However, the latter are not
easily available and must either be assumed or inferred from the re-
sults of the identification computations.

The mismatch § depends on three factors: (i) the errors made while
modeling the system mathematically, (ii) the observation errors #,
and (iit) the degree to which the objective function J is numerically
minimized with respect to the parameter k. The mismatch due to the
modeling errors and the observation error n cannot be in general en-
tirely eliminated by making small changes in the parameter estimates
k; the component of this mismatch along the directions orthogonal
to the subspace spanned by columns of U will remain undiminished.
If sufficient effort is spent in minimizing J, the first two of the
aforementioned components of § will be mainly contributory to the
residual value of J.

Assuming that 7 is a zero-mean Gaussian random variable and that
the modeling errors are small, we may take # and consequently &, to
be zero-mean Gaussian random variables. Denoting the covariance
matrix of § to be Py,

k=0

P, = VI-10TP,U X-17T (28)

When P; = o2/, the foregoing expression reduces to
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B, = «2V 1-29T (29)
If, further, the norm of P, is taken to be its trace, then
[1Pal| = o2 T N2 (30)

=1

Comments on the Choice of r. Inpractice, some of the singulai'
values of A are often very close to zero. The use of such small singular
values in expression (28) would lead to very large values of the co-
variance Py. On the other-hand, if these singular values are taken to
be zero, the dimension of Vg increases and the value of Py, increases.
Thus, generally, there is a value of r for which ||Px|}] is a minimum.
The matrix Py, is inversely related to the commonly used resolution
matrix (Jackson [2]). As more and more directions v; in the parameter
space are excluded from identification by decreasing r, the undeter-
mined component of the parameter vector will become larger and
larger and consequently the resolution will progressively worsen.

Calculation of A. The elements of the sensitivity matrix can be
computed by two alternative methods:

1 Direct integration of the sensitivity equations.

2 Through the use of an adjoint variable (see the Appendix). .
The sensitivity equations are derived by differentiating the system
equation with respect to the parameters taken one at a time. The
linear equations of sensitivity with respect to each parameter are, in
general, coupled and are of the same order as the system equation.
Thus, for N parameters, the integration of (N + 1) sets of equations
similar to the system equation needs to be done over the observation
period. On the other hand, the adjoint variable method requires in-
tegration of [ adjoint (linear) equations in addition to the system
equation, all of which are of the same order. Further, calculation of
the sensitivity of an observed state variable at any time ¢; with respect
to each parameter requires evaluation of a time integral over (0, ¢;).
Thus, if the number of sensors is small compared to that of the pa-
rameters, and if the number of sampling instants M is not very large,
the adjoint variable method is computationally more efficient (Shah
(4]). The adjoint variable method for systems modeled by a set of
linear ordinary differential equations is detailed in the Appendix; the
derivation therein can be easily extended to nonlinear models, and
to systems described by partial differential equations as well as dis-
crete sets of algebraic equations (Shah [6]).

Illustrative Example

As an illustration of the methodology presented in the foregoing,
we present below the resuits concerning optimal location of a sensor
in a building structure for identification using response to earthquake
ground motions.

Problem Statement. The building structure is approximated by
a lumped system consisting of known masses {m,,1=1,2,...,.N|at
the floor levels, connected by columns with unknown shear stiffnesses
Jki, i = 1,2,..., NI The building is assumed to respond as a shear
beam, and the soil-structure interaction is ignored (Fig. 1).

For simplicity of analysis. it is assumed that the records of dis-
placement as functions of time are available: furthermore, the base-
ment motion is assumed to be exactly known, whereas the displace-
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ment record at the upper sensor location is assumed to be corrupted
by observation noise of known statistics.

The upper sensor is to be located so that the estimates of the stiff-
nesses |k}, obtained by matching the model response and the records
with a given degree of accuracy after starting with prior estimates
sufficiently close to the true values to avoid nonuniqueness of the
estimates (Udwadia [8]), have the smallest uncertainty associated with
them. Specifically, the trace of the covariance matrix of the stiffness
estimates is to be minimized with respect to the upper sensor loca-
tion.

LetuT = (u,(t), us(t), ..., untt)) be the displacement vector. Then
the equation governing the motion is

Mo+ Fu=1twl(t), u0)=a0)=0 (33)
where v(¢) is the motion of the base, Vf = diag{my, ma, ..., my), t =
k1, 0,... .OIT. \Fou= Ri + Rier, Fliv1 = —Riey, Fi-rl,; = —Riypsi= 1,
2,...,N =1}, and Fyy = ky. The rest of the elements of F are

zero.
Let the upper sensor be located at the sth floor level. Then, the

observation record is

yobs(t) =y, (t) +9(t), te (0,7) (34)

where 7(t) is the observation noise, which is assumed to be zero-mean
Gaussian white noise with a uniform variance of ;2. No prior infor-
mation about {k;| is assumed.

Solution Technique. The sensitivities of the observations at M
time instants uniformly distributed over (0, T) were computed using
the adjoint variable method (see the Appendix). Both the system
equation and the adjoint equation were integrated using the implicit
Crank- Nicholson scheme. Singular value decomposition of (M X N)
sensitivity matrix A(a;; = dy;/dk;) was carried out using the program
by Bushinger and Golub {1].

The minimization of trace (P:) = trace (P,) with respect to s was
carried out using exhaustive search. In cases where there are many
sensor locations to be determined, exhaustive search is inefficient and

a systematic minimization procedure such as a discrete analog of the

gradient algorithm should be used.

Results and Discussion. Evidently, the optimal sensor location
depends on the true stiffness distribution and on the excitation input
u(t). Furthermore, since the sensitivity matrix is calculated by lin-
earization about an estimate of the unkmown stiffnesses, the exact
solution to the optimal sensor location problem may only be obtained
after a good identification has been carried out. On the other hand,
in reality, an optimal choice of sensor location must often be deter-
mined prior to any substantial strong motion data is available. Thus
it is very important to determine the influence of changes in the prior
stiffness estimates and the inputs on the optimal sensor location.

In view of this, the optimal sensor location was determined for two
types of inputs and two stiffness distributions. The first 20 sec of the
N — S component of the motion recorded during the 1940 EI Centro
earthquake and a simulated white noise (see Udwadia and Shah )R
were alternatively used as the inputs. The stiffness distributions
analyzed were (1) uniform (k; = 1.5 X 10¢) and (2) linearly decreasing
with height (from 2.0 X 104 to 1.0 X 104). In all cases, mass was con-
sidered to be uniformly distributed with height (m; = 3). Furthermore,
in order to study the dependence of the optimal sensor location on
the building height, buildings with three different heights were ana-
lyzed, N = 5, 10, 20.

The integration was carried out using uniform time steps of Az =
0.05 sec. To investigate the influence of observation sampling on the
optimal sensor location, the calculations were, repeated with six dif-
ferent values of M (M = 13, 20, 24, 32, 45,99) for ¥ = 10and T = 10
seconds using a linearly varying stiffness distribution. In addition,
to study the influence of the sampling instants, the analysis of two
cases (with M = 24 and M = 99) was repeated after shifting all the
sampling instants forward in time by half the sampling period. In each
case, the conclusion about the optimal sensor location was identical.
Hence, all the subsequent computations, the results of which are re-

ported here, were carried out using a single value of M = 66 and a fixed
sampling policy.

In each case, the total mismatch, £ between y* and yt™®, was as-
sumed to be a Gaussian random vector with zero-mean and covariance
o2[, where the value of ¢2 was uniform for all cases and different ob-
servation locations. This assumption is justified on the following basis.
The vector nis assumed to be Gaussian with a zero-mean and covar-
iance ¢;°[. Furthermore, it is possible in general to obtain a match
between the observations and the model response to such a degree
that the residual mismatch is of the same order of magnitude as the
observation error (residual value of J = T/Ata)?). For sufficiently
large sampling intervals, different elements of the mismatch vector
may be assumed zero-mean and statistically independent. We further
assume them to be Gaussian. Thus each §; may be assumed to be a
difference of two zero-mean, Gaussian random variables with equal
variance of #,%. The actual value of  does not influence the conclusion
about optimal sensor location.

The results of the calculations are shown in Figs. 2 and 3. In these
figures, the average standard deviation of the error in the individual
parameter estimates (= [trace (Py)/N|"/2, normalized with respect
to the mean of the spatial distribution of the stiffness, is plotted
against the sensor location, s. The optimal sensor location is that value
of s at which the plot has a minimum. The figures show results for V
= 5, 10, and 20, using the El Centro and white noise inputs and both
stiffness distributions. The results are plotted for several values of
r, including r = N. (In most cases with the uniform stiffness distri-
bution, all but one point, with s = 2, fell beyond the upper range of
the vertical scales of the plots when » = N; hence, only one point,
which is the minimum, is plotted in these cases.)

Forr = N, Py = Py, and the top curve in each case is applicable
when no prior information about the stiffness distribution is available.
In this situation, s = 2 is the optimal location of the sensor, for all cases
with the diverse conditions of input, stiffness distribution, and
building heights considered. On the other hand, whenr < N, Py, is only
one contribution of the total covariance matrix. However, in the light

, of the following discussion, whan r is not much smaliler than N, this

can be seen to be the total covariance when the stiffness distribution
is restricted in a certain manner. Then the plots with r < N reinforce
the previous conclusion concerning the optimal sensor location. For
cases with r « N, the contribution of Py, to Py must be considered
in the analysis after assuming suitable a priori probabilistic infor-
mation about the stiffness distribution.

Figs. 4 and 5 show the v-vectors plotted againat the height for a
structure with IV = 10, for both inputs and both stiffness distributions.
The results for two sensor locations, s = 2and s = 10, are illustrated.
In each plot, the corresponding singular values A are indicated. It is
evident from these plots that in all cases, as A decreases, the v-vectors
have more and more spatial oscillations. (This implies that the data
are not sensitive to the highly oscillatory components of the stiffness
distribution; and consequently such components are not well deter-
mined by the data.) Then, restricting (k — k) to have no components
along the columns of V is tantamount to the restriction that the
stiffness distribution not be very oscillatory. Thus By is the total co-
variance of the estimate error under such a restriction on the stiffness
distribution.

Another important observation from Figs. 4 and 5 is that the v-
vectors associated with several of the larger singular values are aimost
identical for the diverse conditions and for sensors located as far apart
as the second floor and the roof level. (Since these are eigenvectors,
a change of sign is immaterial ) Furthermore, if we consider the sub-
space of EN spanned by the first r of the v-vectors, then changes in
the order of occurance of similar vectors in this group may be ignored.
Then, the respective subspaces spanned by the columns of ¥ and V,
for a given r are aimost identical for all the cases illustrated. Thus,
fixing a value of r < NV implies almost identical restriction on the
stiffness distribution for all the cases. These observations about the
y-vectors were found to be true for all the cases analyzed with different
sensor locations and mith N = §, 10, and 20.

As noted earlier, the calculated covariance of the estimate error
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depends on the inverse A¥ of 4 used in analysis. Hence, this inverse
should reproduce to the best possible extent, the properties of the
iterative correction procedure employed in the identification scheme.
It can be shown that the Lanczos inverse with r < N used in the
foregoing, is consistent with the iterative corrections made in the
first-order gradient algorithm, which is a very efficient scheme for
identification (Udwadia and Shah [7]). The gradient algorithm makes
corrections in the parameter estimates,

N
Ak = aATo= VAUTI = a T M(uwT0)v; (35)

where « is a scalar parameter determined by one-dimensional mini-

ana | viAl AR MADNK 1Q7R

mization of J in the direction of Ak. Thus the correction Ak has the
largest component along that v; which has the largest singular value,
and the corrections in the subspace spanned by the columns of Vo will
be very small. Thus the foregoing covariance analysis with r < N is
consistent with the gradient algorithm in that both ignore corrections
along the less sensitive directions in the parameter space.

The conclusion about sensor location was verified using a simulated
stiffness estimation problem with linearly decreasing “true” stiffness
and N = 10. The estimation was done alternatively using a sensor
located at m; and at my. In each case, the observations were simula
by integrating the model equations with the El Centro input using
the true values of the stiffnesses, and adding a zero-mean purely
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random Gaussian sequence to the response at the sensor location at
sach time step. The standard deviation of this observation noise was
approximately equal to 12 percent of the RMS roof level displace-
ment. In each case, the value of J was reduced to the level of its ex-
pected residual value using a discrete analogue of the first-order
gradient algorithm; in each instance, the initial guess was a uniform
distribution as shown in Fig. 6. This matching was done without any
explicit penaity constraints on the stiffness distribution, implying an
absence of any additional a priori information (7].

It is evident from Fig. 6 that the stiffness estimates obtained th.h
a sensor located at the second floor level are closer to the trus values,
than those obtained with the sensor located at the roof level. This
result is in agreement with our expectations based on the foregoing
analysis.

Journal of Applied Mechanics

Conclusions

1 An approximate analysis is developed for optimally positioning
sensors in lumped and distributed parameter systems for their
identification from time-domain input-output data.

2 Itisfound that when the observations are insensitive to some
components of the unknown parameters, additional information, in
terms of an a priori probability distribution, about the unknowns is
pecessary to determine the accuracy of the parameter estimates.

3 The methodology developed in this work is applied to the
problem of optimal location of a sensor in a building structure. The
sensor is to be so located that the shear stiffnesses of the columns at
the different floor levels can be most accurately determined from the
displacement record obtained by the sensor and from the basement
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input record. It has been found that for a variety of structures with
different heights, different stiffness distributions and for different
inputs, the optimal sensor location is at the floor level immediately
above the basement.
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APPENDIX

Computation of the Sensitivity Matrix
1 Using Sensitivity Equations. System equations are

M+ F(k)u = t(k)u(t) te (0,7T) (36)
u(0) =0, w0)=0
Differentiation with respect to the parameter k; yields,
d? s du ou dF ot
— (=) +FK) (—) = =—u+—0(t), , T
Mdt’<bk;) ( )<bk.-) it e D)
u du
—(0)=0 —(0)=0 (37
bk;( ) bk.-( ) (37)

The integration of (36) is carried out once; subsequently, the inte-
gration of the system (37) is carried out once for each i. Thus, for ¥
parameters, the integration of (N + 1) systems of differential equa-
tions is required, all of which are of the same order.

2 Using Adjoint Variable. From (36), the equation for a vari-
ation Su(t) in u(t) due to a small variation ok in k is (denoting the
corresponding variations in F and f by 5F and ¥),
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Mbia + F(k)éu = =5Fu + Stv
5u(0) = a(0) =0 (38)

Premultiplying (38) by an adjoint vector AT(¢) and integrating over
(0, t1), we obtain

teuicmal ad Annilad Machanics

f " ATMEadt + _f * \TF(k)bu dt
0 0

3
= f '~ AT§Fude + f” ATt dt
0 ()
Integration by parts yields,

. [ . t
ATMBcme — ATMu]eur, + _j; 'XTMsudt + _j; "ATFsudt

11} (1}
a_j; —X"&Fudt+f ATétu dt
]

If we define A(¢) 2o as to satisfy the differential equation,
MTR+FTa=0 te (0,0
At =0
MTA(t) =-[0.0,...,1,0,0,...,0]T

(39)

where the unity in the last vector is in the jth position, then we ob-
tain

3 3
sujit) = _j; ' AToFudt + J; " \Tow de

r__5F T st
- 5 ki f Y dt+f AT d] 40
0'[ 0 .Sk.‘u 0 ék.-u ¢ “0)

i

from the expression (40) it follows that
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2ult) | (yr [——°F v+ -e'-u] at (41)
dk; 0 dk; dk;

Thus once A(¢) is determined by solution of (39), the sensitivity
coefficient of u; at each time is obtained by a quadrature over (0, t1).
If the system is time invariant, then the solution of the adjoint system
(39) need only be done once with t; = T'; solution for any other value
of ¢, can be found from it be merely shifting the argument.

Thus, in addition to the system equation (36), it is necessary to
integrate the adjoint equation (39} once for each sensor location J.
Furthermore, for each observation time ¢,, the quadrature over (0,

stantially reduced by noting that only n, scalar quadratures of the
form f§ up), dt are required, where n, is the number of nonzero el-
ements in F(k); the expressions for different values of i on the right-
hand side of (41) are linear combinations of such integrals. When the
number of sensors { is small, and the number M of samples is not very
large, the adjoint variable method is more efficient than direct inte-
gration of the sensitivity equations. A detailed comparison of the
relative computational requirements of the methods can be found in
Shah [4].

The derivation of the adjoint variable method presented here can
be extended in a straightforward manner to problems with systems

t1) in (41) has to be performed, once for each parameter k;. However,

modeled by either partial differential equations or by discrete sets
the computational effort in evaluation of this integral can be sub-

of algebraic equations.
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