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Abstract

This paper deals with the boundary feedback control of a bar undergoing axial vibra-

tions. The feedback force is applied to one end of the bar and it is proportional to its

velocity. The problem is of fundamental interest in control theory, structural dynamics,

and the development of �quiet boundaries� in fields like earthquake engineering and

computational mechanics. The system is not self-adjoint and exhibits a variety of inter-

esting behaviors which are explained through a combination of several inter-twined

strands of thought using mathematics, physical interpretations, and numerical simula-

tions. Besides providing a rigorous mathematical solution to the problem, the paper

explains the physical origin of super-stable behavior, introduces the new concept of

super-unstable behavior, and points out that these regimes of behavior are intricately

connected with the continuum model that is used. It is shown that any finite-dimen-

sional approximation of the system, no matter how finely discretized, can not qualita-

tively depict superstable behavior.
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1. Introduction

The use of boundary control of distributed parameter systems is becoming

more and more important in technological applications in numerous fields

ranging from the control of structural and mechanical systems to chemical

and environmental process control [1–4]. This paper explores the dynamics
and control of a simple system modeled by the one dimensional wave equation,

and shows some interesting characteristics which are bestowed on the system�s
behavior by virtue of the boundary conditions imposed at its ends. These

boundary conditions are of some significant interest for they appear in a nat-

ural manner in devising stable controllers for distributed vibrating systems as

well as in the problem of generating �quiet boundaries� in systems where the

reflection of waves from the boundaries of a medium need to be reduced, or

perhaps even completely eliminated.
Unfortunately, from a mathematical standpoint the system is not self-ad-

joint and hence the usual methods for its analysis need to be used with some

care. We shall use a combination of physical interpretations along with a

rigorous analysis of this problem to describe the characteristics of the sys-

tem�s response. Along the way we shall encounter multiple, and connected,

strands of thinking used by mechanicians, control theorists, and

mathematicians.

We consider the problem of the axial vibrations of an elastic bar of unit
length and constant cross sectional area, A0, which is fixed at one end and is

subjected to a force that is proportional to its velocity at the other. The equa-

tion describing its motion is given by

q
o2uðx; tÞ

ot2
¼ EA0

o2uðx; tÞ
ox2

; 0 < x < 1; ð1Þ

with the boundary conditions

uð0; tÞ ¼ 0; and EA0

ouð1; tÞ
ox

¼ �g
ouð1; tÞ

ot
ð2Þ

and the initial conditions

uðx; 0Þ ¼ f ðxÞ; and
ouðx; 0Þ

ot
¼ gðxÞ when 0 < x < 1: ð3Þ

Here q is the density of the bar per unit length, E is its modulus of elasticity,

and the parameter g is a real number. Denoting the wave speed in the bar
by c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EA0=q

p
> 0, and the dimensionless parameter a ¼ EA0

gc , we can rewrite

Eqs. (1)– (3) as

o
2uðx; tÞ
ot2

¼ c2
o
2uðx; tÞ
ox2

; 0 < x < 1; ð1aÞ
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uð0; tÞ ¼ 0; and ac
ouð1; tÞ

ox
¼ � ouð1; tÞ

ot
; and ð2aÞ

uðx; 0Þ ¼ f ðxÞ; and
ouðx; 0Þ

ot
¼ gðxÞ; when 0 < x < 1: ð3aÞ

We note that the system is not self-adjoint, but still begin by considering the

ansatz

uðx; tÞ ¼ expðixtÞvðxÞ; ð4Þ
where we shall, of course, be interested in only the real part of the right hand

side of Eq. (4). Eq. (1a) then becomes

d2v
dx2

þ ðx=cÞ2v ¼ 0; ð5Þ

and the boundary conditions can be expressed as

vð0Þ ¼ 0; and ac
dvð1Þ
dx

¼ �ixvð1Þ: ð6Þ

The solution of Eq. (5), by virtue of the boundary condition at x = 0, is

given by

vðxÞ ¼ A sin
xx
c

� �
; ð7Þ

where A is an arbitrary (complex) constant. The boundary condition at x = 1

yields the relation

tan
x
c

� �
¼ ia ð8Þ

pointing out that for our ansatz to be valid, the value of x must be restricted to

one of those that satisfy Eq. (8). Denoting the complex variable z = p + iq =

x/c, Eq. (8) can be rewritten as

e2iz ¼ e2ip�2q ¼ 1� a
1þ a

: ð9Þ

It is convenient to consider the following three cases:

(1) jaj < 1, so that the solution of Eq. (9) is

pn ¼ np; n ¼ 0; 1; 2; . . . ; and q0ðaÞ ¼ � 1

2
ln

1� a
1þ a

����
���� ð10Þ

and

xn ¼ pncþ iq0ðaÞc ¼ npc� ic
2
ln

1� a
1þ a

����
����; n ¼ 0; 1; 2; . . . ð11Þ
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(2) jaj>1, so that the solution of Eq. (8) is

pn ¼
2nþ 1

2
p; n ¼ 0; 1; 2; . . . ; and q0ðaÞ ¼ � 1

2
ln

1� a
1þ a

����
����; ð12Þ

and

xn ¼ pncþ iq0ðaÞc ¼
2nþ 1

2
pc� ic

2
ln

1� a
1þ a

����
����; n ¼ 0; 1; 2; . . . ð13Þ

(3) a = ±1, so that the solution of Eq. (8) is now

p ¼ arbitrary; and q0 ¼ �1: ð14Þ

It is informative to see the manner in which the xn�s vary with the dimen-

sionless parameter a by considering the real and imaginary parts of tan(z) =

tan(p + iq). This is particularly important to explain the case when a = 1,
which, as we shall see later, has considerable physical significance.

For,

tanðzÞ ¼ sin 2p
cos 2p þ cosh 2q

þ i
sinh 2q

cos 2p þ cosh 2q
ð15Þ

so that condition (9) requires

sin 2p ¼ 0; or 2p ¼ np; n ¼ 0; 1; 2; . . . ð16Þ
and q = q0(a) must satisfy the relation

sinh 2q
cosh 2q� 1

¼ a: ð17Þ

Fig. 1 shows the two branches of the function on the left hand side of Eq.

(17). The figure shows that for jaj > 1, the value of the root, q0(a), in Eq.

(17) is obtained using the negative sign in Eq. (17); for jaj < 1, the root q0(a)
is obtained using the positive sign in (17). We also see that for a > 0, the value

of q0 > 0; for a < 0, the value of q0 < 0.
The function u(x,t) corresponding to our ansatz defined in Eq. (4) is then

given by

unðx; tÞ ¼ An e
�q0ðaÞct einpct sinfnpxþ iq0ðaÞxg; n ¼ 0; 1; 2; . . . for jaj < 1;

ð18Þ
and

unðx; tÞ ¼ An e
�q0ðaÞct ei

2nþ1
2ð Þpct sin 2nþ 1

2
pxþ iq0ðaÞx

� �
;

n ¼ 0; 1; 2; . . . for jaj > 1: ð19Þ



Fig. 1. The two branches of the function on the left hand side of Eq. (17) are shown. The roots

q0(a) of Eq. (17) for different values of a = �1.4, �0.6, 0.6 and 1.4 are the intersections of the

horizontal lines with the corresponding branches of the curves. As a! ±1, q0 ! ±1.
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From here on, for brevity, we shall suppress showing the explicit depend-

ence of q0 on a. Since we are interested only in the real part of u(x,t), we obtain

the response to our original problem (1a)–(3a), as per our ansatz, to be

unðx; tÞ ¼ Bn e
�q0ðxþctÞ cos½pnðxþ ctÞ þ un� � Bn e

�q0ðct�xÞ cos½pnðx� ctÞ � un�;
ð20Þ

where we have denoted the complex coefficient, An ¼ 2Bn exp iðun þ p
2
Þ, with Bn

a real number. The values of pn in Eq. (20) are given by Eqs. (10) and (12) for

jaj < 1 and jaj > 1 respectively. We can also write relation (20) in another form,

which will be useful to us later on, as

unðx; tÞ ¼ Cn½e�q0ðxþctÞ cos pnðxþ ctÞ � e�q0ðct�xÞ cos pnðct � xÞ�
þ Dn½e�q0ðct�xÞ sin pnðct � xÞ � e�q0ðxþctÞ sin pnðxþ ctÞ� ð21Þ

where the constants Cn and Dn are real.

When a > 0, as stated before, q0 > 0, and relation (20) shows that if our an-

satz is correct, the response un(x,t) must be exponentially damped in time.

Relation (21) indicates that un(x,t) can also be thought of as a set of exponen-
tially damped traveling waves; and, the damping factor, q0(a), does not depend
on the value of the mode number, n.

The situation when jaj = 1 can be seen from Fig. 1. The two braches tend to

±1 as a ! ±1, and accordingly the root q0 ! 1±; the exponent in relations

(20) and (21) goes to �1. And so we find that for a = + 1, our assumed solu-

tion seems to vanish for t > x/c (because q0 = 1), and for a = �1 it explodes at
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t = 0+! There appears to be a vanishing of the amplitude of u(x,t) in one case,

and an �instantaneous� explosion of its amplitude in the other. We shall need to

refine these ideas as we go along, for we notice from the two members in (20)

that it is their difference that is involved. We note that when a = 1, the bound-

ary condition (2a) reads

c
ouð1; tÞ

ox
¼ � ouð1; tÞ

ot
: ð22Þ

Before we move on we must note that while we might be tempted to use the

functions un(x,t) as �eigenfunctions,� the system described by the Eqs. (5) and

(6) is not self-adjoint and therefore such a direct approach could be invalid. In-

deed we shall show that is the case when a = 1.
2. Boundary control and stability

The boundary condition (2) can be viewed as a control force that is applied

to the bar at its boundary x = 1, the force being proportional to the velocity at

this boundary. The effect of the boundary condition (2), or (2a), on the re-

sponse of the bar can be seen by considering the energy E(t) of the vibrating

system given by

EðtÞ ¼ 1

2

Z 1

0

c2
ou
ox

� �2

dxþ 1

2

Z 1

0

ou
ot

� �2

dx: ð23Þ

The function E(t) is positive definite, and its derivative with respect to time is

given by

dE
dt

¼ c2
Z 1

0

ou
ox

o
2u

oxot
dxþ

Z 1

0

ou
ot

o
2u

o
2t

¼ c2
ou
ox

ou
ot

����
1

0

þ
Z 1

0

ou
ot

o
2u

o
2t

� o
2u

o
2x

� �

¼ c2
ouð1; tÞ

ox
ouð1; tÞ

ot
¼ �ac3

ouð1; tÞ
ox

� �2

; ð24Þ

where we have used Eq. (1a) in the third equality and the boundary conditions

(2a) in the fourth. Thus, using E(t) as a Lyapunov function, for aP 0 we have

Lyapunov stability; and for a > 0, we suspect asymptotic Lyapunov stability.

Indeed, the manifold on which _EðtÞ is semi-positive definite is u(x,t)

�0,ut(x,t)�0 so that zero is asymptotically stable (see Ref. [6] also). On the
other hand for a < 0, the energy of the system keeps increasing and we expect

the boundary control to be unstable. This appears to agree with our conclusion

in the previous section where we found that the ansatz u(x,t) = eixtv(x) will lead

to exponentially decreasing amplitudes (over long enough times) for a > 0, and

exponentially increasing ones for a < 0. The simple energy analysis provided

above does not, however, signal any special type of response when a = ±1.
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We shall show after we determine the system�s response that for these values of
a the system does indeed show peculiar behavior.
3. Response of the system with boundary control

As stated before, our boundary value problem is not self-adjoint and there-

fore direct appeal to methods using eigenfunction expansions need to be car-

ried out with some care. Having been assured of stability for aP 0, in this

section we will concern ourselves primarily with positive values of a, for we

desire our control to be stable. Taking the Laplace Transform of Eq. (1a) with

respect to time, t, we get

d2Uðx; sÞ
dx2

� s2

c2
Uðx; sÞ ¼ � sf ðxÞ þ gðxÞ

c2
:¼ � F ðx; sÞ

c2
; ð25aÞ

Uð0; sÞ ¼ 0; and ac
dUð1; sÞ

dx
¼ f ð1Þ � sUð1; sÞ; ð25bÞ

where we have denoted the Laplace Transform of u(x,t) by U(x,s). In what fol-

lows we shall take the initial condition to be such that f(1) = 0. In fact, we shall

find it convenient to define the functions f(x) and g(x) to be zero outside the

interval (0,1). We note that the function F(x,s) defined in Eq. (25a) is analytic

in the complex variable s.
The Green�s function for the resulting two-point boundary value problem

described by Eqs. (25a) and (25b) can be obtained as

Gðx; n; sÞ ¼

G1ðx; n; sÞ ¼ c
sc1

c2 sinh
s
c x
	 


� c1 cosh
s
c x
	 
� �

sinh s
c n
	 


for n6 x;

G2ðx; n; sÞ ¼ c
sc1

c2 sinh
s
c n
	 


� c1 cosh
s
c n
	 
� �

sinh s
c x
	 


for nP x;

8>>>><
>>>>:

ð26Þ
where we have denoted

c1ðs; aÞ ¼ sinh
s
c
þ a cosh

s
c
; ð27Þ

and

c2ðs; aÞ ¼ a sinh
s
c
þ cosh

s
c
: ð28Þ

This yields

Uðx; sÞ ¼ � 1

c2

Z x

0

G1ðx; n; sÞF ðn; sÞdn�
1

c2

Z 1

x
G2ðx; n; sÞF ðn; sÞdn: ð29Þ
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We observe from relations (26) and (29) that the function U(x,s) (and

G(x,n;s)) has poles, only at s = sn, which are the roots of the equation c1 = 0,

and are given by

tanh
sn
c
¼ �a: ð30Þ

This is, of course, the same as Eq. (8) were we to replace sn by ixn in it.

Hence the roots of Eq. (30) are simply given by

sn ¼ �q0cþ ipnc; n ¼ 0;�1;�2; . . . ; ð31Þ
where q0 is given by Eq. (10), and the values of pn depend on the range of the

parameter a, as before (see Eqs. (10)–(14)). There is no pole at s = 0.

Using relation (26), we can now simplify Eq. (29) to read

Uðx; sÞ ¼ � 1

c

Z x

0

c2ðs; aÞ sinh sx
c � c1ðs; aÞ cosh sx

c

c1ðs; aÞ

� �
sinh

sn
c

� �
F ðn; sÞ

s
dn

� 1

c

Z 1

x

c2ðs; aÞ sinh sn
c � c1ðs; aÞ cosh sn

c

c1ðs; aÞ

" #
sinh

sx
c

h i F ðn; sÞ
s

dn:

ð32Þ

The inverse transform of Eq. (32) then gives the response of the system de-

scribed by Eqs. (1a)–(3a).

We note that for a = 1, relation (17) gives q0 = 1, and all the poles, sn, given

by Eq. (31), lie in the left half complex plane s-plane, their abscissa being at

�1 ! In fact, when a = 1, we have by relations (27) and (28) that c1
(s;1) = c2(s;1). Hence the Green�s function given by Eq. (26) reduces to

Gðx; n; sÞ ¼
G1ðx; n; sÞ ¼ c

s sinh s
c x
	 


� cosh s
c x
	 
� �

sinh s
c n
	 


; for n6 x;

G2ðx; n; sÞ ¼ c
s sinh s

c n
	 


� cosh s
c n
	 
� �

sinh s
c x
	 


; for nP x;

(

ð33Þ
which, we note, is an entire function in the complex s-plane.

The Green�s function being entire says that all values of s lie in the resolvent

set of the operator and hence there are no (finite) points in the spectrum of the

operator. And since the spectrum is empty, the system then has no finite eigen-

values and hence no eigenfunctions! This remarkable behavior of our boundary

controlled system when a = 1 can best be understood by looking at the time re-

sponse of the system. The Laplace transform given in Eq. (32) now simplifies to

Uðx; sÞ ¼ � 1

c

Z x

0

sinh
sx
c
� cosh

sx
c

h i
sinh

sn
c

� �
F ðn; sÞ

s
dn

� 1

c

Z 1

x
sinh

sn
c
� cosh

sn
c

� �
sinh

sx
c

h i F ðn; sÞ
s

dn: ð34Þ
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The inverse transform of U(x,s) given in Eq. (34) can now be trivially ob-

tained as

uðx; tÞja¼1 ¼
1

2
f ðx� ctÞ þ f ðxþ ctÞf g þ 1

2

Z t

0

fgðxþ csÞ þ gðx� csÞgds

� 1

2
f ðct � xÞ þ

Z t

0

gðcs� xÞds

 �

; ð35Þ

where we define the functions f(x) and g(x) to be zero outside the interval (0,1).
Eq. (35) shows that when a = 1, the response of the bar, u(x,t), is made up of

traveling waves. The terms in the bracket on the second line of Eq. (35) are

contributions from the reflection of the leftward traveling waves from the

boundary at x = 0. The negative sign preceding this bracket indicates that at

this fixed boundary, a tensile wave is reflected as a compressive wave, and

vice-versa. We next consider a peculiarity of this solution.

Consider any fixed point on the bar located at x = x0 and any time t0 P 2
c.

Notice that 2
c is simply twice the time taken for a wave moving at speed c to

traverse the length of the bar, which has unit length. When a = 1, the response,

u(x0,t0), can be found by evaluating each of the terms given in Eq. (35). Since

t0 P 2
c,

f ðx0 � ct0Þ ¼ f ðx0 þ ct0Þ ¼ f ðct � x0Þ ¼ 0; ð36Þ

and Z t0

0

fgðx0 þ csÞ þ gðx0 � csÞgds ¼
Z t0

0

gðcs� x0Þds ¼
Z 1

0

gðxÞdx: ð37Þ

Hence, using Eq. (35), we find that

uðx; tÞja¼1 � 0 for all tP
2

c
: ð38Þ

Every point of the bar comes to rest in finite time! We shall come back to

this somewhat unusual behavior that is engendered by the boundary controlled

system when a = 1.

It is also interesting to consider the Green�s function when a = �1. Relation
(17) now gives q0 = �1, and so all the poles, sn, which are given by Eq. (31),

lie, as it were, in the right-half of the complex s-plane, their abscissas being

located at 1! From relations (27) and (28) we observe that c1(s;�1) =

�c2(s;�1). Hence, for a = �1, the Green�s function given by Eq. (26) reduces to

Gðx; n; sÞ ¼
G1ðx; n; sÞ ¼ � c

s sinh s
c x
	 


þ cosh s
c x
	 
� �

sinh s
c n
	 


; for n6 x

G2ðx; n; sÞ ¼ � c
s sinh s

c n
	 


þ cosh s
c n
	 
� �

sinh s
c x
	 


; for nP x

(

ð39Þ
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which, like the Green�s function that we obtained for a = 1 in Eq. (33), is also

an entire function in the complex s-plane! And, like for a = 1, there are no

eigenvalues or eigenfunctions when a = �1. The development of this result is

straight-forward and elementary; Datko [5] has used finite Laplace transforms,

and the fact that they are entire functions in the complex plane, to arrive at a

similar result, while Chen [6] has used energy decay rates to look at stabiliza-
tion for systems that satisfy his so-called D-conditions.

However, as we shall see in the next section, this mathematical likeness is a

bit misleading since the response of the system when a = �1 is vastly dissimilar

from that when a = 1. As shown in Fig. 1, the difference lies in the fact that

when a = 1 the Green�s function is entire because all its poles are, as it were,

in the left half s-plane with their abscissas being at �1, while when a = �1

all the poles of the Green�s function are, as it were, in the right half s-plane their

abscissas being at +1! It is this difference that causes the system to be super-
stable in the former case, and super-unstable in the latter.

Having dealt with the case jaj = 1, let us go back to the inversion of U(x,s)

for jaj5 1. Using Eq. (32) we obtain

uðx; tÞ ¼ L�1½Uðx; sÞ�; ð40Þ

where L�1 denotes the inverse Laplace Transform.

Before finding the inverse Laplace transform described by the first term on

the right hand side of Eq. (40), we note from the definitions of c1(s;a) and

c2(s;a) given in Eqs. (27) and (28) that

c2ðs; aÞ ¼ c
dc1ðs; aÞ

ds
: ð41Þ

Since the zeros of c1(s;a) for jaj5 1 are simple, u(x,t) becomes

uðx; tÞ ¼ �
X1
n¼�1

esnt
sinh sn

c x

sn

Z 1

0

sinh
sn
c
n

� �
F ðn; snÞdn ð42Þ

In the above equation we have used relation (41) to determine the residues at

the poles sn = �q0c + ipnc where q0 and pn are given by relations (10) and (12).

After some algebra, Eq. (42) can be rewritten in a more understandable,

though less compact, form as

uðx; tÞ ¼
X1
n¼0

ðCð1Þ
n þ Cð2Þ

n Þ½e�q0ðxþctÞ cos pnðxþ ctÞ � e�q0ðct�xÞ cos pnðct � xÞ�

þ
X1
n¼0

ðDð1Þ
n þ Dð2Þ

n Þ½e�q0ðct�xÞ sin pnðct � xÞ � e�q0ðxþctÞ sin pnðxþ ctÞ�;

ð43Þ
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where

Cð1Þ
n ¼ 1

2

Z 1

0

½eq0n � e�q0n� cos pnnf ðnÞdn; ð44Þ

Dð1Þ
n ¼ � 1

2

Z 1

0

½eq0n þ e�q0n� sin pnnf ðnÞdn; ð45Þ

Cn ¼
1

2

Z 1

0

½eq0n � e�q0n� cos pnngðnÞdn; ð46Þ

Dn ¼ � 1

2

Z 1

0

½eq0n þ e�q0n� sin pnngðnÞdn; ð47Þ

Cð2Þ
n ¼ Cn cosun þ Dn sinun

j sn j
; Dð2Þ

n ¼ Dn cosun � Cn sinun

j sn j
ð48Þ

and un is the phase angle of the pole

sn ¼ �q0cþ ipnc ¼j sn j expðiunÞ: ð49Þ
As before, the values taken by pn are given by relations (10) and (12),

depending on the range of in which the parameter a lies. When ja < 1j,
s0 = �q0c, and the values of CðiÞ

0 and DðiÞ
0 ; i ¼ 1; 2, must then be replaced by

half those found from relations (44) and (48). We have now obtained the com-

plete solution of our boundary control problem.

Comparing the form of Eq. (43) and the un(x,t) obtained in Eq. (21) tells us

that u(x,t) is just what we might have expected our naı̈ve initial ansatz to have

provided us with for eigenfunctions of the system, the response u(x,t) being

nothing other than an expansion in terms of these functions! Each term in
the expansion (46) is an exponentially decaying traveling wave that represents

the continued reflections of the traveling waves from the boundaries.

Relations (42)–(49) inform us that the response, u(x,t), of the our boundary

controlled system which is described by Eqs. 1a,2a,3a can still be expressed for

jaj 5 1 solely as a weighted sum of the functions un(x,t) that we got in Eq. (21).

To understand the disappearance of the transient solution u(x,t)ja = 1 after a

time greater than 2
c, we now turn to the wave interpretation of this bound-

ary-controlled system.
4. Quiet boundaries and eigenvalues

The problem of interpreting the solution that we have found of our system

that is described by Eqs. (1a)–(3a) revolves around the boundary condition at

x = 1. It is this boundary condition that causes the problem to become non-

self-adjoint, and so to understand the behavior of the solution it is worthwhile



338 F.E. Udwadia / Appl. Math. Comput. 164 (2005) 327–349
looking at the manner in which this boundary alters the waves that travel along

the bar. In order to do this and focus upon the effect of this right hand bound-

ary, let us first imagine that the left-hand boundary of the bar is moved from

x = 0 to x = �1.

The medium of our semi-infinite bar is thus described by relation (1a),

namely, utt = c2uxx, and this medium can sustain a response given as
u(x,t) = u1(x � ct) + u2(x + ct). Thus the medium supports waves that can

travel to the right and the left, with a speed c. We expand the rightward trave-

ling wave (the leftward traveling wave moves towards x = �1 since the bar is

semi-infinite), as u1ðx� ctÞ ¼
R1
�1 AðxÞeiðkx�xtÞ, and consider one harmonic

component of it, namely, v1(x,t) = Aei(kx � xt). This component has an ampli-

tude A, wave number k, and frequency x, so that x = kc. Upon meeting the

right-hand boundary at x = 1, it undergoes, in general, a modification. For,

the total wave field,

vðx; tÞ ¼ v1ðx; tÞ þ vRðx; tÞ ð50Þ
is now required to satisfy the boundary condition thereat, namely,

ac
ovð1; tÞ

ox
¼ � ovð1; tÞ

ot
: ð51Þ

This modification described by Eq. (51), however, can only consist of adding

to our right-traveling wave, v1(x,t), another �reflected� left-traveling wave

vR = ARe�i(kx + xt), where R is the reflection coefficient to be determined by

ensuring that relation (51) is satisfied. This requires

R ¼ � 1� a
1þ a

e2ik: ð52Þ

Several observations can be drawn from relation (52).

Observation 1: When a = 1, the reflection coefficient is zero, and this is true

for all wave numbers! The reflected wave, vR, has zero amplitude, and the total

wave field, v(x,t), remains, by (52), the same as v1(x,t). Such a boundary may be

called a quiet boundary, for it does not disclose its presence by causing any

modification to the wave that impinges on it. And since the medium stops at

x = 1, the wave seems to �disappear� on the right, past this boundary at x = 1.
Observation 2: We can now bring our left boundary of the bar back (from

x = �1) to x = 0. We can easily find that the boundary condition v(0,t) = 0 re-

quires that any leftward traveling wave be reflected from this boundary with

the reflection coefficient R of �1. There is no energy lost in this reflection proc-

ess at x = 0.

Observation 3: We can interpret the response of the system described by Eqs.

(1a)–(3a) as being fundamentally governed by the operator utt = c2uxx that is

valid throughout the domain (0,1). The �boundary conditions� serve to modify
this response. Often they cause reflections of the waves that impinge upon
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them. This may lead to the setting up of interference patterns, and standing

waves, which are often associated with mode shapes (eigenmodes) and frequen-

cies of vibration (eigenfrequencies).

Observation 4: When a = 1, the right boundary condition generates no reflec-

tions, no interference patterns, no standing waves, and hence the response of

the system cannot be expressed in terms of eigenvalues and eigenfunctions. An-
other way of saying this is that the Green�s function is analytic, for all its poles

(eigenvalues) are in the left half s-plane and at an abscissa of �1, as we saw

before. Recall that our naı̈ve initial ansatz gave exponential damping in time,

with the exponent being �1.

Observation 5: When a = 1, energy is irretrievably �leaked� out of the system
because the rightward traveling waves simply �disappear� beyond x = 1, and

nothing is reflected back from the right hand boundary. These rightward trave-

ling waves continue onwards as though the boundary were completely �trans-
parent� to them. The boundary acts as a �sink� of energy and drains the

energy out of the vibrating system, reflecting none back.

Observation 6: For values of a 5 1, this transparency is lost. There is a

continued reflection of the wave from the right hand boundary and this is pri-

marily captured by the expression given in Eq. (43). When a > 1, the reflection

coefficient is positive, and a tensile wave in the bar is reflected as a tensile wave;

when 0 < a < 1, the coefficient is negative and a tensile wave reflects as a com-

pressive wave. With these reflected waves, one would now suspect the emer-
gence of poles in the Green�s function, and indeed they do occur, as given by

relations (31), (10) and (12).

Relation (52) gives us a way to find the rate of decay/amplification of waves

in the bar. Notice that the amplitude of the reflected wave is R times the ampli-

tude of the incoming wave. So it takes a time 2
c to change (on average) the

amplitude of the original wave by a multiplicative factor of R, and therefore

in time t the amplitude of the original wave will get multiplied by R
ct
2 . We note

that the exponential term multiplying the amplitude in our solution is
e�q0ct ¼ ð1�a

1þa Þ
ct=2

, where we have used relation (10); and this is exactly R
ct
2 in

magnitude! Since at each reflection of the traveling waves from the right hand

end of the bar the amplitude gets multiplied by R, the decay (increase) in ampli-

tude will be exponential. And so it will take an infinite duration of time for the

bar to come to complete rest (or for its amplitude to become unbounded) unless

a = 1 (or a = �1).

Observation 7: When a = 1, the response caused by a displacement pulse is

shown in Fig. 2, indicating that after a time tP 2
c the response u(x,t) of the

system becomes identically zero, and the bar comes to rest in a finite time

duration. This behavior has been referred to by Balakrishnan [1] as �super-
stable.�

The response of the system can be easily obtained by realizing that an ini-

tial displacement, f(x), splits into two waves, 1
2
f ðxþ ctÞ and 1

2
f ðx� ctÞ; the



Fig. 2. The response at successive times due to an initial displacement pulse of width D applied at

x = x0 when a = 1. (b) The displacement pulse initially splits into two, each half moving in the two

directions. (c) Note the �disappearance� of the rightward moving pulse beyond the right end of the

bar. (d) Reflection of the leftward moving pulse shown in (c), from the left hand boundary.

(e) Eventual disappearance of this rightward moving pulse also, beyond the right end of the bar.

(f) The bar at rest, the pulses having totally exited the bar from its right end.
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left-traveling wave reflects off the left-hand boundary at x = 0 to give

� 1
2
f ðct � xÞ. These are the three terms that we obtained in relation (35) related

to the initial displacement f(x). Similarly to obtain the solution corresponding

to an initial velocity, g(x), we know (from D�Alembert�s solution to the wave

equation) that integrals of 1
2
gðxþ ctÞ and 1

2
gðx� ctÞ are similarly involved.

The last member in the brackets in Eq. (35) gives the reflected waves, caused

by reflections of the left-traveling waves off the left boundary where the bar

is fixed. As explained in Observation 1, once the rightward traveling waves

reach the boundary at x = 1, they disappear past it. Consequently, the maxi-

mum time for which the response of the system can be nonzero is 2/c––twice
the time taken for a signal with speed c to traverse the bar.
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We have thus physically interpreted Eq. (35) and we observe now that we

could have written down the solution (35), which was obtained after consider-

able labor in the previous section, directly and quite easily by mere inspection!

Assuming that the bar starts with zero initial velocity and with the displace-

ment pulse shown in Fig. 1, changes in its total energy E(t) with time (see Eq.

(23)) are shown schematically in Fig. 3. Starting with a total initial energy of
E0, the energy remains a constant until the rightward traveling pulse reaches

the right hand edge, beyond which the pulse disappears, causing the energy

to drop to half its starting value at time (1 + x0)/c. After this, the energy re-

mains a constant for the duration of time over which the leftward traveling

pulse reflects from the left hand boundary, turns around, and proceeds right-

wards until it reaches the right hand boundary. On reaching this boundary,

the energy in the bar goes to zero when the pulse moves out of the bar. The

system comes to rest after a time (1 + x0 + D)/c. We notice from Fig. 3 that
_EðtÞ is zero for considerable intervals of time. Hence, viewed as a dynamical

system, asymptotic stability cannot be deduced directly from Lyapunov�s result
by using E(t) as a Lyapunov function; one would need to use something like

Lasalle�s or Krasovskii�s Theorem [8,9] to establish asymptotic stability. In

fact, we have a much stronger result here: the response goes to zero, not expo-

nentially in time, but after a time 2/c, which is finite.

We note that in a similar manner we can show that the response of the sys-

tem cannot be identically zero for any time less than 1/c, for this would be the
minimum time required for a pulse starting at the left hand end to �fall off� the
0 
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Fig. 3. Schematic plot of the total energy versus time for the displacement pulse shown in Fig. 2.

The initial energy in the bar is E0 and it remains a constant until time (1 � x0 � D)/c which

corresponds to the situation shown in Fig. 2(b). As the rightward traveling pulse moves further,

over a time D/c, it disappears leaving the bar with just half its initial energy. The energy in the bar

remains a constant after that until the pulse upon reflection from the left hand end reaches the right

boundary at time (1 + x0)/c which corresponds to Fig. 2(e). Over the next time interval of D/c the

pulse leaves the bar, the bar comes to a dead stop, and all the initial energy has been totally drained

from it.
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right hand end of the bar. Thus when a = 1, the minimum time for the system

to come to rest is 1/c; and the maximum time that the system can have a non-

zero-response is 2/c. In other words, when a = 1, the system must vibrate for all

times less than 1/c, and the system must come to rest for all times greater than

2/c.

Observation 8: For a < 0, the absolute value of the reflection coefficient R,
from relation (52), exceeds unity and the reflected wave is amplified. For

�1 < a < 0, R is negative, and for a < �1 it is positive. For a < 0, energy is

now being continually �pumped into� the bar through the right hand boundary

at each reflection, and the system�s response will explode exponentially, as we

had expected from our arguments in Sections 1 and 2.

Observation 9: When a = �1, the reflection coefficient R in relation (52) be-

comes infinite pointing out that the total wave field v(x,t), of Eq. (50) reaches

an infinite amplitude upon reflection. This happens, in our model, as soon as
the wave pulse in Fig. 2 reaches the right hand boundary. The amplitude of

the system�s response becomes 1 after time tP 1�x0�D
c . And so, an infinite re-

sponse amplitude is reached in finite time to an initial displacement––we have

a �super-unstable� system! There is thus a similarity in the behavior of our

system in this regard with the so-called �finite exit-time� behavior of some non-

linear systems, except, of course, that our system is described by a linear partial

differential equation with constant coefficients!

The value of q0 when a = �1 becomes �1 (see Fig. 1); hence, all the poles,
sn = �q0c + ipnc, move to the right half s-plane and have an abscissa of 1. The

maximum time over which the system�s response could remain finite is then 1
c;

this maximum would occur for a initial displacement pulse located at the left

hand end of the bar.

Observation 10: Were the left hand boundary condition to be c duð0;tÞ
dx ¼ duð0;tÞ

dt ,

instead of u(0,t) = 0, the system discussed above would come to rest for all

times tP maxðx0þD
c ; 1�x0

c Þ. This is an even shorter span of time than 2
c, since

now both boundaries would become quiet; energy would be depleted from both
boundaries with no reflections from either of them.
5. Physical description of the boundary conditions and impedance matching

The interesting behavior of the system described by Eqs. (1)–(3) is funda-

mentally due to the boundary conditions we have imposed. Hence, from a

practical viewpoint, the question of whether such boundary conditions, which
are modeled by Eq. (2), can be physically realized then becomes important [7].

In this section we show that indeed the right hand boundary condition can

be handily realized, and, in fact, understanding its physical implementation

opens up yet another route to understanding the system�s behavior, this time

via the concept of impedance.
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The boundary condition at the left hand end of the vibrating bar can be

implemented by fixing it, the right hand boundary condition can be realized

(for g > 0) by attaching the right hand end of the bar to a dashpot with damp-

ing factor g. This is shown in Fig. 4.

The impedance, Id, of the dashpot is given by

Id ¼ � F d

ouð1;tÞ
ot

¼ g; ð53Þ

where Fd is the force in the dashpot. Also, the impedance at x = 1 of the bar to

an �incoming wave,� given by v1ðx; tÞ ¼ A exp iðkx� xtÞ (see Eq. (50)), which
travels rightwards in the bar and �enters� the bar�s right hand boundary, is given

by

Ib ¼ � F b

ov1ð1;tÞ
ot

¼
EA0

ov1ð1;tÞ
ox

ov1ð1;tÞ
ot

¼ EA0

k
x
¼ EA0

c
: ð54Þ

where, Fb is the force generated in the bar by the incoming wave at x = 1.

When the impedance of the incoming wave is exactly matched by the imped-

ance of the dashpot, we have Ib = Id, so that g ¼ EA0

c , and a = 1 (see the discus-
sion following Eq. (3)). We see that the condition a = 1 corresponds to a

situation of �matched impedances� at the boundary x = 1 and it results in there

being no reflection from it. The energy propagating toward the right in the

wave that enters the right-hand boundary is completely �absorbed� by the dash-

pot; we thus see how the energy of vibration leaves the bar at its right-hand

end, and �disappears� from it. While the impedance matching concept has been

known for some time in application areas such as long transmission lines and

acoustics (see for example, Ref. [7]), the explicit solution, as given in Eqs. (43)–
(48), of the non-self-adjoint boundary value problem and its mathematical

implications appear to have been unavailable so far.

For other values of g > 0, the impedance of the incoming wave and the

impedance of the dashpot are no longer �matched,� and a complete absorption

of the energy of the wave that enters the right hand boundary can no longer

occur. The boundary then �generates� waves thereby reflecting some of the en-

ergy back into the bar. However, since the dashpot absorbs some energy (unless

a = 0 or a = 1) from the incoming wave each time the wave reaches the right
hand boundary, the amplitude of the reflected wave is smaller than the
Fig. 4. One possible physical mechanism for generating the boundary conditions given by Eq. (2).

At the right hand end is a dashpot. When a :¼ EA0

cg ¼ 1, we get the impedance matching condition.
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amplitude of the incoming wave, resulting in an exponential amplitude decay

of the wave in the bar.

When g < 0 (that is, when a < 0) we can no longer have a �passive� dashpot.
We would need an �active� dashpot that inputs energy into the bar, applying a

force that is not resistive, but assistive. The right hand boundary condition (2)

then becomes less straight-forward to physically realize and implement.
6. Numerical simulations

One way of gaining insight into the behavior of the boundary-controlled

system described by Eqs. (1a)–(3a) would be through numerical simulations.

In this section we explore some of the computational difficulties in doing this

from an analytical viewpoint. We then provide some numerical results that cor-
roborate our understanding of the response of the system.

Our Eqs. (1a)–(3a) are linear, and they describe the bar modeled as a

continuum. Any discretization of this system of equations (usually done using

finite difference or finite element approaches) would eventually give us a linear,

constant coefficient, finite-dimensional system of ordinary differential equa-

tions of the form

dw
dt

¼ Ww; wðt ¼ 0Þ ¼ w0; ð55Þ

where the number of elements, N, in the column vector, w, depends on the

number of mesh points we decide to use in discretizing the spatial domain

(0,1), and the N by N square matrix W is a matrix whose elements are constants

that depend on the specific numerical procedures (and degree of approxima-
tions) that we employ in obtaining the finite dimensional approximation (55)

to our continuous system.

The poles of our finite-dimensional system (55), in the s-plane are obtained

from the roots of the equation

detðW � sIÞ ¼ 0: ð56Þ
By the fundamental theorem of algebra, this Nth order polynomial must

have exactly N finite roots (including multiplicities), which are the eigenvalues

of the matrix W.

But we found that for a = 1 all the poles of our continuous system (1a)–(3a)

are in the left half s-plane with their abscissas at �1! Hence there is no way

that the finite dimensional approximation (55) can qualitatively approximate

the continuous system no matter how large we take N to be.

Alternately stated, when a = 1 we know from Section 3 that the continuous

system has no finite poles. Every value of s lies in the resolvent set of the second
derivative operator described by (25b); its spectrum is empty. Clearly this is
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impossible for the finite dimensional matrix approximation, since every N by N

matrix W must have N finite eigenvalues.

The physical manifestation of this mathematical result is the following. We

see that the general solution to Eq. (55) is

wðtÞ ¼ eWtw0;

where W is a constant matrix, and no exponential solution can go to zero in

finite time! Hence the behavior (for a = 1) of our continuous system that comes

to a �dead stop� after a time 2
c can never be qualitatively mimicked by any dis-

crete approximation, no matter how finely we discretize the spatial domain!

This �super-stable� behavior of the continuous system can thus never be quali-

tatively captured by a finite-dimensional approximation. It is a consequence of

the continuum nature of the system described by Eqs. (1a)–(3a).

Similar arguments can be made for super-unstable behavior, which causes

the response of the linear system to become unbounded in finite time, when

a = �1. No system described by the constant coefficient set of linear ordinary

differential equations given in Eq. (55) can have an unbounded response in a
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Fig. 5. (a) The initial displacement pulse with zero initial velocity. Comparing with Fig. 2, the

location and width of the pulse are x0 = 0.6 and D = 0.2 respectively. (b)–(d) Energy response of the

system for different values of a = 0.25, 1, and 1.75.
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finite time. Thus super-instability, too, is a consequence of the continuum

nature of the partial differential equation model (1a)–(3a), and it cannot be

qualitatively captured by any finite N-dimensional approximation, no matter

how large N may be.

Having pointed out the difficulty in numerically obtaining a qualitative par-

ity while using a finite-dimensional formulation, we show in Fig. 5(b)–(d) some
computed results for an initial displacement pulse (with zero initial velocity)
Fig. 6. Eigenvalues of the continuous system and its finite dimensional approximation. The matrix

W has dimension 400 by 400. (a) We have shown only those poles of the continuous system with

positive imaginary part. The imaginary parts of all poles of the discrete system are shown. For

display purposes, the continuum poles are displaced slightly to the right. (b) The real part of the

poles of the continuous and discrete system. Notice that all poles of the continuous system have the

same real part for any given value of a.
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shown in Fig. 5(a). The energy-time plots for a = 0.25, 1, and 1.75 are shown.

The value of c is taken to be unity.

The unit length of the continuous bar is discretized using 200 points and the

time interval for the integration is taken to be 0.0005 units of time. The results

are computed using a finite difference scheme correct to O(h2). We note that for

a = 1, the computed results show a small remnant of energy after the time
t ¼ 1þx0þD

c ¼ 1:8 units, the time after which the continuum should, theoretically,

be at rest. This points to the difficulty in qualitatively replicating the behavior

of the continuum by using finite dimensional approximations.

Lastly, we show in Fig. 6 the eigenvalues of the matrixW (see of Eq. (55)), the

finite dimensional approximation to the partial differential equation system

(1a)–(3a) for the range 0.986 a6 1.01. The eigenvalues of the continuum (ob-

tained for Eqs. (31), (10) and (12)) are shown slightly displaced to the right of

those obtained for the matrix W; the latter are obtained by using MATLAB.
We observe that for aP 1, there is a significant deviation of the real parts of

the eigenvalues of the continuous system and its finite dimensional approxima-

tion. For any given value of a, the real parts of the poles of the continuummodel

do not depend on the mode number while those of the finite dimensional approx-

imation do. The plot also shows the extreme sensitivity of the real part of the

eigenvalues of the continuum to the parameter a, which goes to�1 when a = 1.
7. Conclusions

In this paper we study the dynamics of the axial vibrations of a bar subjected

to a control force that is proportional to the velocity at its boundary. The bar is

initially subjected to a prescribed initial displacement and velocity. The system

is not self-adjoint, and we have provided the complete solution of the boundary

control problem along with the physical interpretation of when and why the

eigenvalues and the eigenfunctions disappear for a = ±1. We thereby uncover
and develop an understanding of the interesting phenomena of super-instability

and super-stability. The first causes the system�s response to become unbounded

in finite time, the second causes the systems response to die down in finite time.

Though such behavior (finite exit time) is common in nonlinear systems, we

show that its presence in our linear system is intricately related to the continuum

modeling of the system. Through the interplay of mathematical analysis, stabil-

ity theory, and a physical interpretation of the response of the system, we have

shown that the behavior of the system has several interesting characteristics.
They are as follows:

1. The behavior of the system depends on the value of the parameter that gives

the magnitude of the boundary feedback force. When the parameter a = ±1,

we find that the system has no eigenvalues and no eigenfunctions. Its Green�s
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function is entire. When a = 1, the constant coefficient linear system when

subjected to an initial displacement and/or velocity comes to rest in finite

time. We thus explain the presence of such behavior, which has been referred

to as super-stable [1].

2. When the parameter jaj 5 1, the Green�s function has poles and the system�s
response can be expressed as a weighted sum of a series of eigenfunctions.
Though the system of partial differential equations that describes its

response is not self-adjoint, the bar�s dynamic behavior can thus still be

determined by as an �expansion� in terms of the eigenfunctions, un(x,t). These

functions show that the response can be visualized as a sum of exponentially

damped traveling waves. The presence of such functions is shown to be tied

to the presence of reflections from the boundary of the continuum. Some-

what interestingly, the damping is not dependent on the mode number.

3. Super-stable behavior is explained through the analysis of traveling waves prop-
agating across the medium that produce no reflections at the right hand bound-

ary. This leads to the disappearance of eigenvalues and eigenfunctions; the

Green�s function becomes entire and all its poles have an abscissa of �1. We

show that this behavior occurs when there is a �matching� of impedances between

the incoming wave and the dashpot at the right-hand boundary of the bar.

4. The analysis also shows the presence of �super-unstable� behavior when

a = �1. The response of the linear system goes to infinity in finite time. Again

the system has no eigenvalues or eigenfunctions, and the real part of every
pole of the Green�s function of the system now has an abscissa of 1.

5. It is shown that no finite dimensional model obtained through spatial discre-

tization, no matter how fine, can qualitatively capture the super-unstable or

super-stable behavior of this continuous system. These properties appear to

be intrinsic to the continuum nature of the model that we describe here

through the use of partial differential equations.

The governing equations that we have used to describe the system arise in
numerous fields like structural dynamics, structural control, earthquake engi-

neering, and computational mechanics, and it is hoped that these results will

shed light in these and other application areas where they arise. Though the

impedence concept has been long utilized in acoustics and waves in transmis-

sion lines, the explicit solution of the non-self-adjoint problem and its physical

and mathematical implications related to super-stability and super-instability

do not appear to have been available to date.
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