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Abstract

This paper presents a direct proof of the recursive formulae for the generalized LM- inverse of a matrix augmented by
a column vector. The recursive relations are proved by direct verification of the four conditions of the generalized
LM-inverse. Several auxiliary results pertaining to generalized inverses are also provided.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let us begin by considering a set of linear equations
Bx = b, (1)

where B is an m by n matrix, b is an m-vector, and x is an n-vector.
The generalized LM-inverse of the matrix B is the matrix such that the solution

x=Bj,b (2)
minimizes both

G = ||L"2(Bx — b)||* = |1Bx — b]]; (3)
and

H = [|M"2]|" = x|, (4)

where L is an m by m symmetric positive definite matrix and M is an n by n symmetric positive definite matrix.
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Below are the four conditions for the generalized L M-inverse [1].

(i) BB,,B =B, (5)
(i) BjyBBjy = By, (6)
(iii) LBB},, is symmetric, (7)
(iv) MB},,B is symmetric. (8)

We note that the generalized L M-inverse is the more general kind of the Moore—Penrose inverse. The concept
of Moore—Penrose (MP) inverses was first introduced by Moore [2]in 1920 and later independently by Penrose
[3]in 1955. In 1960, Greville [4] gave the first formulae for recursively determining the Moore—Penrose inverse
of a matrix. His algorithm provides an update of the MP inverse of a matrix whenever new information be-
comes available. As a result, the recursive formulae have found extensive use in many areas of applications.
Among them are statistical inference [5], filtering theory, estimation theory [6], system identification [7], opti-
mization and control, and most recently analytical dynamics [8,9]. In 1997 Udwadia and Kalaba [10] provided
an alternative and simple constructive proof of Greville’s formulae, and later [11,12] developed recursive rela-
tions for different types of generalized inverses of a matrix including the least-squares generalized inverse, the
minimum-norm generalized inverse, and the Moore—Penrose (MP) inverse of a matrix.

Recently, the recursive formulae for the generalized M-inverse [13,14] and for the generalized L M-inverse
were obtained. Those for the generalized LM-inverse were proved constructively [15]. In this paper, we pro-
vide a much simpler and alternative proof for the recursive formulae of the generalized LM-inverse, B;,,, of
any given matrix, B, partitionedas B=[4 | a], where 4 is an m by n — 1 matrix and a is a column vector of
m components. We show that the four conditions of the generalized L M-inverse of the recursive formulae are
satisfied. Besides its inherent simplicity, our proof requires several subsidiary properties of the generalized
LM-inverse of a matrix, many of which appear to be hereto unknown; they are presented in the Appendix.
More general than the generalized M-inverse, the generalized LM-inverse finds use in an even wider range
of application areas than the Moore-Penrose inverse — areas ranging from system theory, statistics, filtering,
control theory, and optimization, to signal processing and mechanics.

2. Recursive formulae of the generalized LM-inverse of a matrix augmented by a column vector
2.1. Result

For any given matrix
B=[A4 | a] 9)
its generalized L M-inverse formulae are given by

+ [Aer - AfM,adZ - PdZL

Bj,,=1[4 | al,, = o ], when d = (I — A4},, )a # 0, (10)
L

_ [AXM_ — A4;,, ah— ph
B h

], when d = (I — A4},, )a =0, (11)

where A is an m by (n— 1) matrix, a is a column vector of m components, d; = d'L/(d"Ld), h = /iquMU,

+
B=q" Mg, U= [A(L)M}, q= [vjlp} p= (-4}, AAM 'in, and v = 4], a. Note that L is a symmetric

positive definite m by m matrix, and

M=
E

7 (12

where M is a symmetric positive definite # by n matrix, M_ is the symmetric positive definite (n — 1) by (n — 1),
m is the column vector of (n — 1) components, and  is the scalar.
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It should be noted that the formulae are given in two separate cases; when d # 0 and when d = 0. When
d # 0, the added column vector «a is not a linear combination of the columns of 4, and when d = 0, the added
column vector « is a linear combination of the columns of 4 (see Appendix in Ref. [15] for a proof).

Proof. Case 1: (when d # 0)

Because the BB}, and B, B are repetitively used to verify all four properties of the generalized LM-inverse,
we shall first evaluate BB}, and B;,B. By Egs. (9) and (10), we have
Afy — Ay ad; — pd;

BB, =[4 | a][
LM dz

} A, — AdY, ad? — (Ap)dF + ad? (13)

Since Ap = 0 (see Property 1 in Appendix) and d = (I — 44;,, )a, we get

BB;M = AAeri — AAerfadf + aa’zr = AAfo + (I — AAeri)adz = AAer, + ddz. (14)
Again by Egs. (9) and (10), we obtain
A+ _A+ d+ _ d+
T e PR (15
L
_ |:AZLMA —AIM,a(dZA) —p(dZA) ‘Aera - AIM,a(dfa) —p(dfa) (16)
B di A dfa

Using the relations d; 4 = 0 and d;a = 1 (see Properties 4 and 5 in Appendix), we have
AZM,A AZM," - AL+M,a _P} . |:AZMA ‘ —p]
0 1 Lo 1)

We now verify the four properties of the generalized LM-inverse.
Generalized LM-inverse condition 1: BB},,B = B

Using Egs. (9) and (14), we obtain

B},,B = [

(17)

BBj,B = (BB, )B = (A4}, +dd)[4 | a]= [Adf, A+d(did) | Adf, atddia)].  (18)
Because A4;,, A=A,d;A=0,d/a=1(see Properties 4 and 5 in Appendix), and d = (I — A4;,, )a, we have
BB},B =4 AAjy, a+ (I — A4}, Jal =[4 | a]=B.

Generalized LM-inverse condition 2: B},,BB},, = B},
Using Egs. (11) and (14), we get
Apy = Apy ad; —pd;
d;
Ay ALy, + (4}, d)d; — A}y, a(dpA)A, — A4y ad;dd; —p(d;A)A;,, —pd;dd;
(d; A4}, +d;dd} '

B}, BB}y, = B}y, (BBLy) = [ ] A, +dd], (19)

(20)

Since 4;,, AAf,, =4}, s A5, d=0, d;4 =0 (see Properties 3 and 4 in Appendix), and d;dd; =d;, we
obtain

AZFM, - AL+M, adf - szr

BXMBBZM = [ d+
L

} :BXM-

Generalized LM-inverse condition 3: L(BB},,) is symmetric
Since LAA},, and Ldd; are symmetric, using Eq. (14), we have
L(BB},,) = L(44},, +dd}) = LAA;,, + Ldd;,

which is symmetric.
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Generalized LM-inverse condition 4: M (B},,B) is symmetric

Using Egs. (12) and (17), we obtain

| [Afy A|=p] _ [M-Ajy A|~M_p+ i
0 |1 ' A4f,, A

I”;’IT

M(B},,B) = {M‘

= [E“ E“}, (21)

in —mp+m Eyy Ex

where E j, E|,, E» ), andE;, represent the elements (1,1), (1,2), (2,1), and (2,2) of the matrix M(B},,B),
respectively. Note that E, ; is the (n — 1) by (n — 1) matrix, E; » is the column vector of (n — 1) components,
E, ; is the row vector of (n — 1) components, and E, , is the scalar. We see that E1; = M_(4},, A) is symmetric
since 4,,, is the generalized LM _-inverse of 4, while E,, is a scalar, and is therefore symmetric. Thus, for
M (B},,B) to be symmetric, we need to show that E; , is the transpose of E, ;.

Using p = (I — 4},, A)M~'/n, the element E, , can be written as

—M_p+in=—M_(I— A}, AM "in+m=M_(4,, AM~'in = (4],, 4)"m, (22)

which is the transpose of the element E, ;. Hence, M (B},,B) is symmetric.
We have shown that all four generalized L M-inverse conditions are satisfied. Hence, the formula (10) is
verified. [J

Case 2: (when d =0)
We begin again by evaluating BB},, and B},,B quantities that we will need further along. Using Egs. (9) and
(11), we have
A}, — A}, ah—ph

BB, =[4 | a A

= [44;,, — (44;,, a)h — (Ap)h + ah)]. (23)

Since AA4},, a = a and Ap = 0 (see Properties 1 and 2 in Appendix), we get
BB}, = |44},, — ah+ ah] = A4},, . (24)
Using Egs. (9) and (11), we have
B B A}, — A, ah —ph] 4 | a]= [AZMA — A}, ahA — phA| A}, a — A},, aha — pha ‘
H h hA ha
(25)

We next verify the four properties of the Generalized LM-inverse.
Generalized LM-inverse condition 1: BB},,B = B

Using the fact that A4;,, 4 =A and AA;,, a = a (see Property 2 in Appendix), by Eqgs. (9) and (24) we
obtain

BB},,B = (BB},,)B =AA},, [A | a]=[A4},, A |44}, al=[4 | a]=B.
Generalized LM-inverse condition 2: B}, BB;,, = B},
By Egs. (11) and (24), we have
s, oo =i ] [ i~ i)t
(26)
Since 4;,, AA;,, = A}, and hAA;,, = h (see Property 9 in Appendix), we have

AL+M7 - AZM, ah — ph

BZMBBZrM = [ A

|- 55,
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Generalized LM-inverse condition 3: L(BB},,) is symmetric
Because LAA;,, is symmetric, by Eq. (24) we have
(BB},,)" = (44, )" = LAA4},, L' = LBB}, L™".
Generalized LM-inverse condition 4: M (B},,B) is symmetric.

Using Egs. (12), (25), and v = 4;,, a, we obtain

M_|m][A4}, A—vhd — phA|v— vha — pha
M(BLB) = [ it m] [ Y ha ] ’
| M (4}, A~ vhA — phA) + m(hA) ‘M(v — vha — pha) +m(ha) | [El.,l Elyz} 27)
m" (4}, A — vhAd — phd) + m(hA) | m™(v — vha — pha) + m(ha) |~ |Esi Ean]’

where Ej 1, E1,, E>j, and E,, represent the elements (1,1), (1,2), (2,1), and (2,2) of the matrix M(B},,B),
respectively. Note that £, ; is the (n — 1) by (n — 1) square matrix, E,  is the column vector of (n — 1) com-
ponents, E, ; is the row vector of (n — 1) components, and E, , is the scalar. For M(B},,B) to be symmetric, we
need to show that E; ; is symmetric and E| , is the transpose of E; ;.

Let us first show that E; ; is symmetric. We can rewrite E; ; as

Evi=M_A}, A— (M_v+M_p— in)(hA). (28)
Since M_v+M_p—m= ﬁ(hA)T (see Property 12 in Appendix), we get
Ey=M_A4;, A—B(hAd) (hA). (29)

Because M _A4},, A and B(hA)*(hA) are symmetric, E 1.1 1S symmetric.
Next, we will show that E| , is the transpose of E, ;. Let us rewrite E; ; as
Ein=M_v—(M_v+M_p—m)(ha). (30)

Usintg; ha = % (™M _v — m"v) and M_p — in = —(Aj,, A)" i (see Properties 10 and 11 in Appendix) in Eq. (30),
we obtain

1
Ei,=M_v— [M,v— (AfMiA)Tﬂz} [UTM,v—ﬁaTU]E. (31)
On the other hand, E;; can be written as
Eyy =m' (4], A) — (m"v+m'"p — m)(hA). (32)

Using h4d = %(UTM, —m'A4},, A) and m"v+m"p —im = v"M_v —v'm — f (see Properties 8 and 14 in Appen-
dix) in Eq. (32), we get

1
Eyy=m' (A}, A) = [0"M_v—v'mn— B][v"M_ — "4}, A] 5 (33)
which can be simplified to
1
Eyy=0'M_—[v'"M_v—o'm][v"M_ —m'4}, A (34)

E .
It can be seen from Eqgs. (31) and (34) that E| , is the transpose of E, ;. Since we have already shown that E|
is symmetric and since E, is scalar which is symmetric, the symmetry of M(B;,,B) is verified.

We have shown that all four generalized LM-inverse conditions are satisfied. Hence, the formula (11) is
verified. [
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3. Conclusions

The recursive formulae for obtaining the generalized LM-inverse of any general matrix augmented by a col-
umn vector were first given in Ref. 15. There they were derived in a constructive manner. We herein provide an
alternative proof of their formulae by directly verifying that the four conditions of the generalized L M-inverse
are satisfied, thereby confirming the validity of the formulae, and providing several new auxiliary results
related to these generalized inverses.

Appendix A

This section provides some properties that are used for verifying the recursive formulae for determining of
the generalized LM-inverse of a matrix.

Property 1. Ap = 0.

Proof. Since p = (I — 4;,, A)M~'/, we have
Ap=A(I — A4}, AM'm=0. O

Property 2. a = AA},, a (when d= 0).

Proof. Because d = (I — A4},, )a =0, we get
a= A4}, a. O

Property 3. 4}, d =0.

Proof. Since d = (I — A4},, )a, we obtain

A}, d =4}, (I —A44;},, )a=0. O
Property 4. d; 4 = 0.
Proof. Since d = (I — A4, )a and df = (d"Ld) 'd"L, we have
dfd = (d'Ld)"'d"L4 = (d"Ld) ' [(I — 44, )a] L4 = (d"Ld) """ (I — 44, )"L4
— (d"Ld)'a"L(I — 44),, )L'L4=0. O
Property 5. dja = 1.
Proof. Using di = (d"Ld)™'d"L and d = (I — A4j,, )a, we have

. _d'La _ (I — A4}, )a]"La _ a"L(I — A4}, )L 'La
U dLd (I =44}, )al'L[(I — A4}, Ya)  a"L(I — A4}, )L'L(I — A4}, )a
a'L(I — A4}, )a
CdTL(I — A4}, )a

g

Property 6. h = (v'M_ —m")A4;,, .
M
m

3 J

Proof. Since /1 = ;4"MU, where f = q"Mgq, g = [v +‘D} Lo=A5, a, p= (-4}, AM in, M = [

-1
+
and U = [A(L)M

J

} , we have
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1 1[o4+p] " [M_|m][4] ] 1 M_4},
h=—q"MU =— M =TT 4 pT |~ 1 i
R {0 B e ol R TR ey

- 3 [W'M_4f, +p'M_4},, —m'4}, |

Because p'M _A},, = [m"™M~'(I — 4}, A)"\M_4},, ="M 'M_(I — 4},, AM~'M_4;,, =0, we obtain

1 1
h= 3 (WM _4],, —m'4}, )= B(UTM, —m"45, . O

Property 7. v'M _A},, A=v"M _.

Proof. Since v = A}, a and M_4;,, A= (4},, A)'M_, we have

VIM_Af,, A= (4], a) (4], A)'M_ = (4}, A4}, a)'M_ = (4, a)'M_=v"M_. O

Property 8. hd =1 (v"M_ —m"4},, A).

1
B

Proof. Since 7 =1(v"M_ —m")4;,, and v'M _A4;,, A =v"M _ (see Properties 6 and 7 above), we have

1
(W'M_4),, A—m"4},, A) = E(UTM_ —m'd;, A). O

1
B

h4 =

| =

Property 9. hAA},, =h.

Proof. Since & = j (v"M_ —in")4},, (see Property 6 above) and 4}y, A4, = A}, , we get

—_

1
hAAf,, = E(UTM, — )4}, A4}, = B(UTM, —m")A}, =h O
Property 10. ha = ;(v'M_v — m'v).

Proof. Because 4;,, a=vand h=(v"M_ —m")4;,, (see Property 6 above), we have

1
ha=—(v"M_A},, a—m"4}, a) =

p

Property 11. M_p —m = —(4;,, A) m

(™M _v—m"v). O

| =

Proof. Since p = (I — 4},, A)M~"in, we get
M_p—in=M_|[I—A4f,, AM "] —in=—M_A4;,, AM~'in = —(4],, A)'m. O

Property 12. M_v+M _p— i = [M_v— (4], A)'m]" = p(hd)".

Proof. Since M_p —in= —(4;,, A)'in and v"M_ — in"4},, A = phA (see Properties 8 and 11 above), we get
M_v+M_p—in=M_v— (4, A)'m=[p"M_—n'd;, A" =ph4)". O

Property 13. p'M_ =m" (I — 4},, A).

Proof. Because p = (I — A4}, A)M~'in and v = 4;,, a, we have

PIM_=[(I —Afy, AM )" M_ ="M [M_(I — 4], AM~-\M_=mn"(I — 45, 4). O
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Property 14. m v+ m'p —in = v"™M _v — v'm — B.

Proof. Since ¢ = {vj—p], and M = [A’;T_ Z}, we have

1
U+pT[M

ml v+
i . ] [ p] ="M _v4+2p"M_v—2m"v+p"M_p — 2" p + m,

m |m -1

ﬁ:l]TMq:[

where we have used p' Mv = v"Mp, m"v = v"m, and m"p = p'in since they are scalars.

Using p'™M_ = m"(I — 4f,, A) (see Property 13 above), we have p"™M_v=m"(I = 4},, A)4},, a=0 and
PM_p = (1 — Ay A= Afyy AWM i) = ({1 — Afy, M) = T,

Thus, we obtain f = v"M_v — 2w v — ' p + m, which gives

m=p—v"M_v+2m"v+mp.
Using the relation above and again the fact that m"v = v'm, we have

mo+mp—m=mv+mp—(f—v"M_v+2m"v+m'p)=v"M_v—v'n—p O
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