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Abstract

This paper presents a direct proof of the recursive formulae for the generalized LM- inverse of a matrix augmented by
a column vector. The recursive relations are proved by direct verification of the four conditions of the generalized
LM-inverse. Several auxiliary results pertaining to generalized inverses are also provided.
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1. Introduction

Let us begin by considering a set of linear equations

Bx ¼ b; ð1Þ
where B is an m by n matrix, b is an m-vector, and x is an n-vector.

The generalized LM-inverse of the matrix B is the matrix such that the solution

x ¼ BþLM b ð2Þ
minimizes both

G ¼ L1=2ðBx� bÞ
�� ��2 ¼ Bx� bk k2

L ð3Þ

and

H ¼ M1=2x
�� ��2 ¼ xk k2

M ; ð4Þ

where L is an m by m symmetric positive definite matrix and M is an n by n symmetric positive definite matrix.
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Below are the four conditions for the generalized LM-inverse [1].

ðiÞ BBþLM B ¼ B; ð5Þ
ðiiÞ BþLM BBþLM ¼ BþLM ; ð6Þ
ðiiiÞ LBBþLM is symmetric; ð7Þ
ðivÞ MBþLM B is symmetric: ð8Þ

We note that the generalized LM-inverse is the more general kind of the Moore–Penrose inverse. The concept
of Moore–Penrose (MP) inverses was first introduced by Moore [2] in 1920 and later independently by Penrose
[3] in 1955. In 1960, Greville [4] gave the first formulae for recursively determining the Moore–Penrose inverse
of a matrix. His algorithm provides an update of the MP inverse of a matrix whenever new information be-
comes available. As a result, the recursive formulae have found extensive use in many areas of applications.
Among them are statistical inference [5], filtering theory, estimation theory [6], system identification [7], opti-
mization and control, and most recently analytical dynamics [8,9]. In 1997 Udwadia and Kalaba [10] provided
an alternative and simple constructive proof of Greville’s formulae, and later [11,12] developed recursive rela-
tions for different types of generalized inverses of a matrix including the least-squares generalized inverse, the
minimum-norm generalized inverse, and the Moore–Penrose (MP) inverse of a matrix.

Recently, the recursive formulae for the generalized M-inverse [13,14] and for the generalized LM-inverse
were obtained. Those for the generalized LM-inverse were proved constructively [15]. In this paper, we pro-
vide a much simpler and alternative proof for the recursive formulae of the generalized LM-inverse, BþLM , of
any given matrix, B, partitioned as B ¼ ½A j a �, where A is an m by n � 1 matrix and a is a column vector of
m components. We show that the four conditions of the generalized LM-inverse of the recursive formulae are
satisfied. Besides its inherent simplicity, our proof requires several subsidiary properties of the generalized
LM-inverse of a matrix, many of which appear to be hereto unknown; they are presented in the Appendix.
More general than the generalized M-inverse, the generalized LM-inverse finds use in an even wider range
of application areas than the Moore–Penrose inverse – areas ranging from system theory, statistics, filtering,
control theory, and optimization, to signal processing and mechanics.

2. Recursive formulae of the generalized LM-inverse of a matrix augmented by a column vector

2.1. Result

For any given matrix

B ¼ ½A j a � ð9Þ

its generalized LM-inverse formulae are given by

BþLM ¼ ½A j a �þLM ¼
AþLM�

� AþLM�
adþL � pdþL

dþL

� �
; when d ¼ ðI � AAþLM�

Þa 6¼ 0; ð10Þ

¼
AþLM�

� AþLM�
ah� ph

h

� �
; when d ¼ ðI � AAþLM�

Þa ¼ 0; ð11Þ

where A is an m by (n � 1) matrix, a is a column vector of m components, dþL ¼ dTL=ðdTLdÞ, h ¼ 1
b qTMU ,

b = qTMq, U ¼ AþLM�
0m

� �
, q ¼ vþ p

�1

� �
, p ¼ ðI � AþLM�

AÞM�1
� ~m; and v ¼ AþM�a. Note that L is a symmetric

positive definite m by m matrix, and

M ¼
M�

~mT

~m

�m

����
� �

; ð12Þ

where M is a symmetric positive definite n by n matrix, M� is the symmetric positive definite (n � 1) by (n � 1),
~m is the column vector of (n � 1) components, and �m is the scalar.
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It should be noted that the formulae are given in two separate cases; when d 5 0 and when d = 0. When
d 5 0, the added column vector a is not a linear combination of the columns of A, and when d = 0, the added
column vector a is a linear combination of the columns of A (see Appendix in Ref. [15] for a proof).

Proof. Case 1: (when d 5 0)

Because the BBþM and BþM B are repetitively used to verify all four properties of the generalized LM-inverse,
we shall first evaluate BBþM and BþM B. By Eqs. (9) and (10), we have

BBþLM ¼ A j a½ �
AþLM�

� AþLM�
adþL � pdþL

dþL

� �
¼ AAþLM�

� AAþLM�
adþL � ðApÞdþL þ adþL : ð13Þ

Since Ap = 0 (see Property 1 in Appendix) and d ¼ ðI � AAþLM�
Þa, we get

BBþLM ¼ AAþLM�
� AAþLM�

adþL þ adþL ¼ AAþLM�
þ ðI � AAþLM�

ÞadþL ¼ AAþLM�
þ ddþL : ð14Þ

Again by Eqs. (9) and (10), we obtain

BþLM B ¼
AþLM�

� AþLM�
adþL � pdþL

dþL

� �
½A j a � ð15Þ

¼
AþLM�

A� AþLM�
aðdþL AÞ � pðdþL AÞ
dþL A

AþLM�
a� AþLM�

aðdþL aÞ � pðdþL aÞ
dþL a

����
� �

: ð16Þ

Using the relations dþL A ¼ 0 and dþL a ¼ 1 (see Properties 4 and 5 in Appendix), we have

BþLM B ¼
AþLM�

A

0

AþLM�
a� AþLM�

a� p

1

����
� �

¼
AþLM�

A

0

�p

1

����
� �

: ð17Þ

We now verify the four properties of the generalized LM-inverse.
Generalized LM-inverse condition 1: BBþLM B ¼ B

Using Eqs. (9) and (14), we obtain

BBþLM B ¼ ðBBþLMÞB ¼ ðAAþLM�
þ ddþL Þ A j a½ � ¼ ½AAþLM�

Aþ dðdþL AÞ j AAþLM�
aþ dðdþL aÞ �: ð18Þ

Because AAþLM�
A ¼ A, dþL A ¼ 0, dþL a ¼ 1 (see Properties 4 and 5 in Appendix), and d ¼ ðI � AAþLM�

Þa, we have

BBþLM B ¼ A AAþLM�
aþ ðI � AAþLM�

Þa
��� �

¼ A j a½ � ¼ B:

Generalized LM-inverse condition 2: BþLM BBþLM ¼ BþLM

Using Eqs. (11) and (14), we get

BþLM BBþLM ¼BþLMðBBþLMÞ¼
AþLM�

�AþLM�
adþL �pdþL

dþL

� �
½AAþLM�

þddþL �; ð19Þ

¼
AþLM�

AAþLM�
þðAþLM�

dÞdþL �AþLM�
aðdþL AÞAþLM�

�AþLM�
adþL ddþL �pðdþL AÞAþLM�

�pdþL ddþL
ðdþL AÞAþLM�

þdþL ddþL

" #
: ð20Þ

Since AþLM�
AAþLM�

¼ AþLM�
, AþLM�

d ¼ 0, dþL A ¼ 0 (see Properties 3 and 4 in Appendix), and dþL ddþL ¼ dþL , we
obtain

BþLM BBþLM ¼
AþLM�

� AþLM�
adþL � pdþL

dþL

� �
¼ BþLM :

Generalized LM-inverse condition 3: LðBBþLMÞ is symmetric

Since LAAþLM�
and LddþL are symmetric, using Eq. (14), we have

LðBBþLMÞ ¼ LðAAþLM�
þ ddþL Þ ¼ LAAþLM�

þ LddþL ;

which is symmetric.
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Generalized LM-inverse condition 4: MðBþLM BÞ is symmetric

Using Eqs. (12) and (17), we obtain

MðBþLM BÞ ¼
M�

~mT

~m

�m

����
� �

AþLM�
A

0

�p

1

����
� �

¼
M�AþLM�

A

~mTAþLM�
A

�M�p þ ~m

�~mTp þ �m

����
" #

¼
E1;1 E1;2

E2;1 E2;2

� �
; ð21Þ

where E1,1, E1,2, E2,1, andE2,2 represent the elements (1,1), (1, 2), (2,1), and (2, 2) of the matrix MðBþLM BÞ,
respectively. Note that E1,1 is the (n � 1) by (n � 1) matrix, E1,2 is the column vector of (n � 1) components,
E2,1 is the row vector of (n � 1) components, and E2,2 is the scalar. We see that E1;1 ¼ M�ðAþLM�

AÞ is symmetric
since AþLM�

is the generalized LM�-inverse of A, while E2,2 is a scalar, and is therefore symmetric. Thus, for
MðBþLM BÞ to be symmetric, we need to show that E1,2 is the transpose of E2,1.

Using p ¼ ðI � AþLM�AÞM�1
� ~m, the element E1,2 can be written as

�M�p þ ~m ¼ �M�ðI � AþLM�
AÞM�1

� ~mþ ~m ¼ M�ðAþLM�
AÞM�1

� ~m ¼ ðAþLM�
AÞT ~m; ð22Þ

which is the transpose of the element E2,1. Hence, MðBþLM BÞ is symmetric.
We have shown that all four generalized LM-inverse conditions are satisfied. Hence, the formula (10) is

verified. h

Case 2: (when d = 0)
We begin again by evaluating BBþLM and BþLM B quantities that we will need further along. Using Eqs. (9) and

(11), we have

BBþLM ¼ A j a½ �
AþLM�

� AþLM�
ah� ph

h

� �
¼ ½AAþLM�

� ðAAþLM�
aÞh� ðApÞhþ ah�: ð23Þ

Since AAþLM�
a ¼ a and Ap = 0 (see Properties 1 and 2 in Appendix), we get

BBþLM ¼ ½AAþLM�
� ahþ ah� ¼ AAþLM�

: ð24Þ

Using Eqs. (9) and (11), we have

BþLM B ¼
AþLM�

� AþLM�
ah� ph

h

� �
A j a½ � ¼

AþLM�
A� AþLM�

ahA� phA

hA

AþLM�
a� AþLM�

aha� pha

ha

����
� �

:

ð25Þ

We next verify the four properties of the Generalized LM-inverse.
Generalized LM-inverse condition 1: BBþLM B ¼ B

Using the fact that AAþLM�
A ¼ A and AAþLM�

a ¼ a (see Property 2 in Appendix), by Eqs. (9) and (24) we
obtain

BBþLM B ¼ ðBBþLMÞB ¼ AAþLM�
A j a½ � ¼ ½AAþLM�

A AAþLM�
a

�� � ¼ A j a½ � ¼ B:

Generalized LM-inverse condition 2: BþLM BBþLM ¼ BþLM

By Eqs. (11) and (24), we have

BþLM BBþLM ¼ BþLMðBBþLMÞ ¼
AþLM�

� AþLM�
ah� ph

h

� �
AAþLM�

� �
¼

AþLM�
AAþLM�

� AþLM�
aðhAAþLM�

Þ � pðhAAþLM�
Þ

hAAþLM�

" #
:

ð26Þ
Since AþLM�

AAþLM�
¼ AþLM�

and hAAþLM�
¼ h (see Property 9 in Appendix), we have

BþLM BBþLM ¼
AþLM�

� AþLM�
ah� ph

h

� �
¼ BþLM :
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Generalized LM-inverse condition 3: LðBBþLMÞ is symmetric

Because LAAþLM�
is symmetric, by Eq. (24) we have

ðBBþLMÞ
T ¼ ðAAþLM�

ÞT ¼ LAAþLM�
L�1 ¼ LBBþLM L�1:

Generalized LM-inverse condition 4: MðBþLM BÞ is symmetric.

Using Eqs. (12), (25), and v ¼ AþLM�
a, we obtain

MðBþLM BÞ ¼
M�

~mT

~m

�m

����
� �

AþLM�
A� vhA� phA

hA

v� vha� pha

ha

����
� �

;

¼
M�ðAþLM�

A� vhA� phAÞ þ ~mðhAÞ
~mTðAþLM�

A� vhA� phAÞ þ �mðhAÞ
M�ðv� vha� phaÞ þ ~mðhaÞ
~mTðv� vha� phaÞ þ �mðhaÞ

����
" #

¼
E1;1 E1;2

E2;1 E2;2

� �
; ð27Þ

where E1,1, E1,2, E2,1, and E2,2 represent the elements (1,1), (1, 2), (2,1), and (2,2) of the matrix MðBþLM BÞ,
respectively. Note that E1,1 is the (n � 1) by (n � 1) square matrix, E1,2 is the column vector of (n � 1) com-
ponents, E2,1 is the row vector of (n � 1) components, and E2,2 is the scalar. For MðBþLM BÞ to be symmetric, we
need to show that E1,1 is symmetric and E1,2 is the transpose of E2,1.

Let us first show that E1,1 is symmetric. We can rewrite E1,1 as

E1;1 ¼ M�AþLM�
A� ðM�vþM�p � ~mÞðhAÞ: ð28Þ

Since M�vþM�p � ~m ¼ bðhAÞT (see Property 12 in Appendix), we get

E1;1 ¼ M�AþLM�
A� bðhAÞTðhAÞ: ð29Þ

Because M�AþLM�
A and b(hA)T(hA) are symmetric, E1,1 is symmetric.

Next, we will show that E1,2 is the transpose of E2,1. Let us rewrite E1,2 as

E1;2 ¼ M�v� ðM�vþM�p � ~mÞðhaÞ: ð30Þ

Using ha ¼ 1
b ðvTM�v� ~mTvÞ and M�p � ~m ¼ �ðAþLM�

AÞT ~m (see Properties 10 and 11 in Appendix) in Eq. (30),
we obtain

E1;2 ¼ M�v� M�v� ðAþLM�
AÞT ~m

h i
vTM�v� ~mTv
� � 1

b
: ð31Þ

On the other hand, E2,1 can be written as

E2;1 ¼ ~mT AþLM�
A

� 	
� ~mTvþ ~mTp � �m
� 	

ðhAÞ: ð32Þ

Using hA ¼ 1
b ðvTM� � ~mTAþLM�

AÞ and ~mTvþ ~mTp � �m ¼ vTM�v� vT ~m� b (see Properties 8 and 14 in Appen-

dix) in Eq. (32), we get

E2;1 ¼ ~mTðAþLM�
AÞ � vTM�v� vT ~m� b

� �
vTM� � ~mTAþLM�

A
� � 1

b
; ð33Þ

which can be simplified to

E2;1 ¼ vTM� � vTM�v� vT ~m
� �

vTM� � ~mTAþLM�
A

� � 1

b
: ð34Þ

It can be seen from Eqs. (31) and (34) that E1,2 is the transpose of E2,1. Since we have already shown that E1,1

is symmetric and since E2,2 is scalar which is symmetric, the symmetry of MðBþLM BÞ is verified.
We have shown that all four generalized LM-inverse conditions are satisfied. Hence, the formula (11) is

verified. h
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3. Conclusions

The recursive formulae for obtaining the generalized LM-inverse of any general matrix augmented by a col-
umn vector were first given in Ref. 15. There they were derived in a constructive manner. We herein provide an
alternative proof of their formulae by directly verifying that the four conditions of the generalized LM-inverse
are satisfied, thereby confirming the validity of the formulae, and providing several new auxiliary results
related to these generalized inverses.

Appendix A

This section provides some properties that are used for verifying the recursive formulae for determining of
the generalized LM-inverse of a matrix.

Property 1. Ap = 0.

Proof. Since p ¼ ðI � AþLM�
AÞM�1

� ~m, we have

Ap ¼ AðI � AþLM�
AÞM�1

� ~m ¼ 0: �

Property 2. a ¼ AAþLM�
a (when d = 0).

Proof. Because d ¼ ðI � AAþLM�
Þa ¼ 0, we get

a ¼ AAþLM�
a: �

Property 3. AþLM�
d ¼ 0.

Proof. Since d ¼ ðI � AAþLM�
Þa, we obtain

AþLM�
d ¼ AþLM�

ðI � AAþLM�
Þa ¼ 0: �

Property 4. dþL A ¼ 0.

Proof. Since d ¼ ðI � AAþLM�
Þa and dþL ¼ ðdTLdÞ�1dTL, we have

dþL A ¼ ðdTLdÞ�1dTLA ¼ ðdTLdÞ�1 ðI � AAþLM�
Þa

� �T
LA ¼ ðdTLdÞ�1aTðI � AAþLM�

ÞTLA

¼ ðdTLdÞ�1aTLðI � AAþLM�
ÞL�1LA ¼ 0: �

Property 5. dþL a ¼ 1.

Proof. Using dþL ¼ ðdTLdÞ�1dTL and d ¼ ðI � AAþLM�
Þa, we have

dþL a ¼ dTLa

dTLd
¼

½ðI � AAþLM�
Þa�TLa

½ðI � AAþLM�
Þa�TL½ðI � AAþLM�

Þa�
¼

aTLðI � AAþLM�
ÞL�1La

aTLðI � AAþLM�
ÞL�1LðI � AAþLM�

Þa

¼
aTLðI � AAþLM�

Þa
aTLðI � AAþLM�

Þa ¼ 1: �

Property 6. h ¼ 1
b ðvTM� � ~mTÞAþLM�

.

Proof. Since h ¼ 1
b qTMU , where b = qTMq, q ¼ vþ p

�1

� �
, v ¼ AþLM�

a, p ¼ ðI � AþLM�
AÞM�1

� ~m, M ¼ M�
~mT

~m
�m

����
� �

,

and U ¼ AþLM�
0m

� �
, we have
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h ¼ 1

b
qTMU ¼ 1

b

vþ p

�1

� �T M�

~mT

~m

�m

����
� �

AþLM�

0m

� �
¼ 1

b
vT þ pT j � 1
� � M�AþLM�

~mTAþLM�

" #
;

¼ 1

b
vTM�AþLM�

þ pTM�AþLM�
� ~mTAþLM�

� �
:

Because pTM�AþLM�
¼ ½~mTM�1

� ðI � AþLM�
AÞT�M�AþLM�

¼ ~mTM�1
� M�ðI � AþLM�

AÞM�1
� M�AþLM�

¼ 0, we obtain

h ¼ 1

b
ðvTM�AþLM�

� ~mTAþLM�
Þ ¼ 1

b
ðvTM� � ~mTÞAþLM�

: �

Property 7. vTM�AþLM�
A ¼ vTM�.

Proof. Since v ¼ AþLM�
a and M�AþLM�

A ¼ ðAþLM�
AÞTM�, we have

vTM�AþLM�
A ¼ ðAþLM�

aÞTðAþLM�
AÞTM� ¼ ðAþLM�

AAþLM�
aÞTM� ¼ ðAþLM�

aÞTM� ¼ vTM�: �

Property 8. hA ¼ 1
b ðvTM� � ~mTAþLM�

AÞ.

Proof. Since h ¼ 1
b ðvTM� � ~mTÞAþLM�

and vTM�AþLM�
A ¼ vTM� (see Properties 6 and 7 above), we have

hA ¼ 1

b
ðvTM�AþLM�

A� ~mTAþLM�
AÞ ¼ 1

b
ðvTM� � ~mTAþLM�

AÞ: �

Property 9. hAAþLM�
¼ h.

Proof. Since h ¼ 1
b ðvTM� � ~mTÞAþLM�

(see Property 6 above) and AþLM�
AAþLM�

¼ AþLM�
, we get

hAAþLM�
¼ 1

b
ðvTM� � ~mTÞAþLM�

AAþLM�
¼ 1

b
ðvTM� � ~mTÞAþLM�

¼ h: �

Property 10. ha ¼ 1
b ðvTM�v� ~mTvÞ.

Proof. Because AþLM�
a ¼ v and h ¼ 1

b ðvTM� � ~mTÞAþLM�
(see Property 6 above), we have

ha ¼ 1

b
ðvTM�AþLM�

a� ~mTAþLM�
aÞ ¼ 1

b
ðvTM�v� ~mTvÞ: �

Property 11. M�p � ~m ¼ �ðAþLM�
AÞT ~m.

Proof. Since p ¼ ðI � AþLM�
AÞM�1

� ~m, we get

M�p � ~m ¼ M�½ðI � AþLM�
AÞM�1

� ~m� � ~m ¼ �M�AþLM�
AM�1

� ~m ¼ �ðAþLM�
AÞT ~m: �

Property 12. M�vþM�p � ~m ¼ ½M�v� ðAþLM�
AÞT ~m�T ¼ bðhAÞT.

Proof. Since M�p � ~m ¼ �ðAþLM�
AÞT ~m and vTM� � ~mTAþLM�

A ¼ bhA (see Properties 8 and 11 above), we get

M�vþM�p � ~m ¼ M�v� ðAþLM�
AÞT ~m ¼ ½vTM� � ~mTAþLM�

A�T ¼ bðhAÞT: �

Property 13. pTM� ¼ ~mTðI � AþLM�
AÞ.

Proof. Because p ¼ ðI � AþLM�
AÞM�1

� ~m and v ¼ AþLM�
a, we have

pTM� ¼ ½ðI � AþLM�
AÞM�1

� ~m�TM� ¼ ~mTM�1
� ½M�ðI � AþLM�

AÞM�1
� �M� ¼ ~mTðI � AþLM�

AÞ: �
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Property 14. ~mTvþ ~mTp � �m ¼ vTM�v� vT ~m� b.

Proof. Since q ¼ vþ p
�1

� �
, and M ¼ M�

~mT

~m
�m

����
� �

, we have

b ¼ qTMq ¼
vþ p

�1

� �T M�

~mT

~m

�m

����
� �

vþ p

�1

� �
¼ vTM�vþ 2pTM�v� 2~mTvþ pTM�p � 2~mTp þ �m;

where we have used pTMv = vTMp, ~mTv ¼ vT ~m, and ~mTp ¼ pT ~m since they are scalars.

Using pTM� ¼ ~mTðI � AþLM�AÞ (see Property 13 above), we have pTM�v ¼ ~mTðI � AþLM�AÞAþLM�a ¼ 0 and
pTM�p ¼ ½~mTðI � AþLM�AÞ�½ðI � AþLM�AÞM�1

� ~m� ¼ ~mT½ðI � AþLM�AÞM�1
� ~m� ¼ ~mTp.

Thus, we obtain b ¼ vTM�v� 2~mTv� ~mTp þ �m, which gives

�m ¼ b� vTM�vþ 2~mTvþ ~mTp:

Using the relation above and again the fact that ~mTv ¼ vT ~m, we have

~mTvþ ~mTp � �m ¼ ~mTvþ ~mTp � ðb� vTM�vþ 2~mTvþ ~mTpÞ ¼ vTM�v� vT ~m� b: �
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