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a b s t r a c t

This paper presents simple and exact formation-keeping guidance schemes that use a

new method that is rooted in some recent advances in analytical dynamics. As a result

of this new approach, explicit control inputs to exactly maintain a given formation

configuration are easily determined using continuous thrust propulsion systems. The

complete nonlinear problem is addressed, and no linearizations and/or approximations

are made. The approach provides a marked improvement over existing results in that

the control forces, which cause geometric formation-keeping constraints to be exactly

satisfied for arbitrary reference orbits, are found in closed form. For Keplerian reference

orbits, a much simpler and explicit expression for the control needed to exactly satisfy

formation-keeping constraints than hereto available is obtained. The paper also

includes explicit control results when the follower is inserted into orbit with incorrect

initial conditions, as usually happens in practice. The Hill reference frame, which is

often more intuitive for formation-keeping, is used in the analysis. While this paper

takes an example of a projected circular formation, the methodology that is developed

can be applied to any desired configuration or orbital requirements. Extensive

computational simulations are performed to demonstrate the ease of implementation,

and the numerical accuracy provided by the approach developed herein.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few years, formation flying has received
much attention from the aeronautical and astronautical
community as a new concept to overcome the demerits of
conventional space technologies. By using small, multiple
satellites, total mission costs can be substantially reduced
and missions made more efficient and flexible. Also, the
use of fleets of small satellites flying in formations, instead
of a single monolithic satellite, enables many applications

such as optical interferometry, distributed sensing, grav-
itational field measurements, ionospheric observation,
Earth observation, and 3-D mapping for planetary
explorers. In this paper, a new formation-keeping techni-
que is proposed for formation flying. This control problem
typically occurs when distributed arrays of multiple
satellites are used to form virtual apertures. To success-
fully achieve mission goals related to interferometric
measurements, for example, it is very important to
maintain the desired aperture’s size at all times. In the
formation-keeping the relative motion between the
satellites is referenced with respect to one satellite, called
the leader. The other satellites whose relative motion are
of interest, are designated as the followers. In this paper, it
is assumed that the leader, whose orbit is referred to as
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the reference orbit, is passive, i.e., non-maneuvering, and
only the follower satellites are controlled in order to meet
the desired formation-keeping goals.

We next provide a brief overview of the state-of-the-
art in formation-keeping so as to point out the salient
differences between the approach presented herein and
the approaches that have so far been investigated. Scharf
et al. [1,2] provide a rigorous survey of satellite formation-
flying guidance and control, and a brief history of several
important techniques in formation flying, for example,
path planning, formation-keeping, optimal controller de-
sign, and stability analysis, are introduced. While several
control strategies for formation-keeping have been devel-
oped by various researchers to date, much of the research
focuses on the design of passive apertures, which are
periodic configurations of satellite formations with proper
initial conditions, while reducing the tendency of the
satellites to drift apart due to various perturbations [1–3].
Designing these passive apertures requires an analysis
of the relative motion of satellites in two close, neighbor-
ing orbits, and linearized equations such as the
Hill–Clohessy–Wiltshire (HCW) equations for circular
reference orbits [4,5] and the Tschauner–Hempel (TH)
equations for elliptical reference orbits [6] have been
widely used due to their simplicity. Yan et al. [7] design a
pulse-based controller for the satellites’ periodic motion
using the linear quadratic regulator (LQR) technique. They
consider circular reference orbits, and the HCW equations
are employed. Sparks [8] discretizes the HCW equations
and uses discrete-time LQR theory to maintain a projected
circular formation, which is also chosen as the desired
formation geometry in this paper, in the presence of the
Earth’s nonspherical gravity perturbations. As in [7], a
circular reference orbit is considered. Based on the TH
equations, Inalhan et al. [9] present the initial conditions
with which an array of satellites makes closed orbits
around the leader as seen in the Hill frame. Their results
extend the previous results to unperturbed, elliptical
reference orbits. Tillerson and How [10] propose guidance
algorithms for formation-keeping using linear program-
ming (LP). Their LP approach is based on three linearized
equations of relative motion, including the HCW equa-
tions for unperturbed, circular reference orbits, modified
HCW equations for J2-perturbed circular reference orbits,
and the TH equations for unperturbed, elliptical reference
orbits. Qingsong et al. [11] design a low-thrust fuzzy
controller to solve the formation-keeping problem for a
circular reference orbit. Since in [7–11], the linearized
equations about Keplerian reference orbits are employed,
the solutions derived are suitable only for very small-
sized formations wherein the distances between the
leader and the followers is less than a few kilometers;
the accuracy of the results are limited by the lineariza-
tions used. Using Lyapunov technique, Hadaegh et al. [12]
design an adaptive controller for formation-keeping in the
presence of constant, but unknown disturbances without
linearizing the relative dynamics. Milam et al. [13] find an
optimal control method to maintain a relative geometry.
Their procedure is essentially numerical and they use
their own numerical solver, called the nonlinear trajectory
generation (NTG) software package. No et al. [14] use

power series and trigonometric functions to get closed-
form relative equations of motion (between the satellites)
from general nonlinear dynamics. A series of impulsive
maneuvers is numerically obtained to maintain a forma-
tion configuration that lies within a certain prescribed
spatial region.

Thus we see that previous work mainly focuses on
linearized approaches to the formation-keeping problem
in which the trajectory of the leader is taken to be a
simple circular or elliptical Keplerian orbit, because it is
then easy to design controllers based on traditional linear
control techniques. For arbitrary reference orbits, the
controllers for formation-keeping to date have been
obtained in complicated ways that only lend themselves
to numerical approaches. With the increasing complexity
of future space missions and the need for much higher
accuracies in formation-keeping, however, leader satel-
lites will be required to fly along arbitrarily prescribed
trajectories and the complete nonlinear equations will
need to be included to maintain the desired accuracies.

This paper does away with linearizations and approx-
imations and obtains exact, analytical solutions to the
general formation-keeping problem in which the refer-
ence orbit of the leader can be any (suitably smooth)
arbitrarily prescribed function of time. The closed-form
solutions for the control forces to be applied to the
follower(s) developed herein do not necessitate complex,
time-consuming numerical procedures. They are extre-
mely useful since they provide deeper analytical insights
into the system’s dynamics and control, enabling assess-
ments such as detailed sensitivity analyses. They have an
even more important practical utility since they substan-
tially reduce computational loads thereby making
possible on-orbit computations in real-time.

Our methodology is based on a recent, new approach
to explicitly formulate the equations of motion for
constrained systems proposed by Udwadia and Kalaba
[15–21]. Based on Gauss’s principle [22], they presented
an analytical method to solve the problem of highly
constrained motion even when many non-integrable
constraints are included. Also, this approach does not
distinguish between holonomic or nonholonomic con-
straints unlike the traditional methods such as when
using Lagrange multipliers. Due to simplicity and general-
ity, many researchers have used this method to solve
problems in this field of study. Schutte and Dooley [23]
use this method to study the periodicity of tethered
satellite motion and Lam [24] determines the control
force needed to cause a satellite to move at a fixed
inclination in a circular orbit even when the Earth
oblateness gravity perturbation is considered. Lam et al.
[25] obtain the deterministic control force to maintain the
formation configurations when the formation is around a
non-spherical spinning Mars. The initial conditions used
are the ones that exactly satisfy the given configuration
constraints and the problem is solved in the inertial
coordinate frame of reference. Cho and Yu [26] obtain a
solution to the formation-keeping problem of multiple
satellites circling a spherical Earth. They constrain the
relative distances of the formation in the Hill frame, and
also use the Udwadia–Kalaba approach. They solve the
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problem in the inertial frame first, and then transform to
the Hill frame for better visualization. Though they do not
use any linearization, their reference orbit is limited to an
unperturbed, circular orbit, and they use initial conditions
that exactly fulfill their formation-keeping requirements.

The purpose of this paper is to present explicit and
exact formation-keeping guidance schemes that deter-
mine control inputs and state trajectories directly in the
Hill frame. For the follower satellites we choose the
projected circular orbit (PCO) in which the relative orbit is
a circle when projected onto the local horizontal plane
(see Fig. 1). This geometry has significant practical utility.
Besides being rigorously investigated in many papers
[8,10,27], it was planned [14] to be used for the TechSat-21
mission which was, unfortunately, cancelled later on. We
assume unbounded continuous burn throughout the
maneuvers and place no restrictions on the leader’s
reference orbit. That is, the reference orbit can be an
arbitrary function of time to include the effects of various
disturbances and/or thrust. We extend the practical utility
of the exact, explicit closed-form solutions obtained
herein, to include a method to correct initial-condition
misalignment problems, since in practice there is no
guarantee that the follower satellites are initially inserted
exactly into the desired orbits. Once the reference orbit is
provided, one can immediately generate the necessary
control forces and state trajectories to satisfy the given
constraints on the relative (Hill frame) geometry. Since
the problem is solved in the Hill frame, it lends itself to a
better intuitive understanding. Extensive numerical
simulations are performed to show the simplicity of the
approach developed herein, the effectiveness of the
control strategy generated, the ease of its computational
implementation, and the accuracy of the numerical
results. We also show that the general formulation that
deals with an arbitrarily prescribed reference orbit when
particularized to a Keplerian elliptical orbit yields the
expected results.

The paper is organized in the following manner. In
Section 2, we briefly discuss the fundamental equation of

motion for constrained systems, the Udwadia–Kalaba
equation. Explicit, closed-form expressions for the control
forces are presented. Section 3 deals with the so-called
unconstrained motion that is derived from Newton’s law
of gravitation expressed in the Hill frame. In Section 4, the
two constraints for PCO are introduced, and constrained
motion in the Hill frame is handled in two ways
depending upon the reference orbit. General reference
orbits and their particularization to Keplerian orbits are
considered. In Section 5, if the initial conditions are not
correct for the followers, the new constraint equations are
derived. Finally, in Section 6 numerical simulations are
presented to demonstrate the efficacy and the accuracy of
the closed-form method.

2. Udwadia–Kalaba equation

This section deals with the fundamental equation,
called the Udwadia–Kalaba equation, for constrained
systems. We consider N point-mass particles (or satellites
in this paper) in generalized coordinates. It is assumed
that the initial position and velocity of the particles are
known and that the generalized displacement vector and
generalized velocity vector are denoted by x(t) and _xðtÞ
respectively, where

xðtÞ ¼ ½x1 x2 . . . xn�
T; ð1Þ

and t represents time, the superscript ‘‘T’’ denotes the
transpose of a vector or a matrix, and n is the number of
generalized coordinates. If the forces impressed on the
particles are denoted by

FðtÞ ¼ ½F1ðtÞ F2ðtÞ . . . FnðtÞ�
T; ð2Þ

the Lagrange equation for the unconstrained motion of
the system can now be expressed as an n by 1 matrix
equation

M €xðtÞ ¼ F½xðtÞ; _xðtÞ; t�; ð3Þ

or

€xðtÞ ¼M�1F½xðtÞ; _xðtÞ; t�9aðtÞ; ð4Þ

where M40 is the n by n mass matrix. We denote
by a(t) the unconstrained acceleration of the system at the
time t.

Now p constraints are imposed on this system that is
described by Eqs. (3) and (4). They are of the form

jjðx; _x; tÞ ¼ 0; j¼ 1;2; . . . ; p: ð5Þ

It should be noted that the constraint of Eq. (5) can either
be holonomic or nonholonomic, and time dependent.
Unlike previous research, the fundamental equation that
we will discuss hereafter handles both constraints with
equal ease. By differentiating Eq. (5) with respect to time
once (for nonholonomic constraints) or twice (for holo-
nomic constraints), we get the following constraint
equation of the form

AðxðtÞ; _xðtÞ; tÞ €x ¼ bðxðtÞ; _xðtÞ; tÞ; ð6Þ

where the matrix A is p by n and b is an p by 1 vector. The
presence of the constraint Eq. (6) causes additional forces
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of constraint FC(t) to be applied to the particles and the
resulting equation of motion becomes

M €xðtÞ ¼ F½xðtÞ; _xðtÞ; t�þFC
ðtÞ: ð7Þ

Our task then is the determination of the constraint force
FC(t). Based on the Gauss’s principle of least constraint
[22], Udwadia and Kalaba [28] proposed that the relation
for the constraint force vector is explicitly given by

FC
ðtÞ ¼M1=2

ðAM�1=2
Þ
þ
ðb�AaÞ; ð8Þ

where the superscript ‘‘+ ’’ represents the Moore–Penrose
generalized inverse.

Now from Eqs. (7) and (8), we have the following
equation of motion of the constrained system

M €x ¼MaþM1=2
ðAM�1=2

Þ
þ
ðb�AaÞ; ð9Þ

or

€x ¼ aþM�1=2
ðAM�1=2

Þ
þ
ðb�AaÞ: ð10Þ

In this paper, Eq. (10) is referred to as the Udwadia–
Kalaba equation. The constraint force vector FC(t) in Eq.
(8), enables all the constraints to be exactly satisfied at
every instant of time. In what follows, this constraint force
will be the control force that we shall use to ensure that
the followers exactly satisfy their formation-keeping
requirements.

If we are concerned with only one particle in a
Cartesian inertial frame of reference, things can be much
simpler. Using the fact that the mass matrix M is
M¼mI3�3 where I3�3 is the 3 by 3 identity matrix and
m is the mass of the particle, it can be shown that the
Udwadia–Kalaba equation becomes [28]

€x ¼ aþAþ ðb�AaÞ; ð11Þ

so that

m €x ¼maþmAþ ðb�AaÞ; ð12Þ

and the control (constraint) force FC is explicitly found as

FC
¼mAþ ðb�AaÞ: ð13Þ

In what follows we shall use the terms ‘‘unconstrained
motion’’ to mean ‘‘uncontrolled motion’’; the terms
‘‘constrained motion’’ to mean ‘‘controlled motion’’; and
the terms ‘‘constraint force’’ to mean ‘‘control force.’’

It should be noted that the force FC(t) in Eq. (8) or (13)
minimizes the cost JðtÞ ¼ ðFC

Þ
TM�1FC at each instant of

time among all the control forces that are compatible with
the given constraints. While for simplicity, in this paper,
we have used the weighting matrix to be the matrix M�1

in the cost function J(t), any other positive definite
weighting matrix W could have been chosen (see [21]
for details).

3. Uncontrolled motion

Before adding a control (constraint) force to the
system, we must specify the uncontrolled (unconstrained)
motion that describes the natural behavior of a particle or
a satellite. The leader and the follower satellites move
only under the influence of gravity, and hence, as stated
before, we consider ‘‘unconstrained’’ motion and ‘‘uncon-

trolled’’ motion to have the same meaning. In the case of
constrained motion, proper control forces are needed to
be applied on the unconstrained system to meet the
constraint requirements. Hence, we consider ‘‘con-
strained’’ motion and ‘‘controlled’’ motion to also have
the same meaning.

The motion of a satellite orbiting around the Earth is
governed by Newton’s law of gravitation [29] so that

a¼

€X
€Y
€Z

2
64

3
75¼� GM�

ðX2þY2þZ2Þ
3=2

X

Y

Z

2
64

3
75; ð14Þ

where G is the universal gravitational constant and M� is
the mass of the Earth. Eq. (14) represents the uncon-
strained acceleration vector like Eq. (4). It must be noted
that Eq. (14) is described in the inertial frame, more
precisely the ECI (Earth-Centered Inertial) frame [30]. This
coordinate frame originates at the center of the Earth, the
X axis points towards the vernal equinox, the Y axis is 901
to the east in the equatorial plane, and the Z axis extends
through the North Pole (see Fig. 2).

As seen later, it is convenient to define a new
coordinate frame, called the Hill frame. The origin of this
frame is located at the leader satellite that moves in the
reference orbit, the x-axis is directed radially outward
along the local vertical, the z-axis is along the angular
momentum vector, and the y-axis is taken perpendicular
to the xz-plane so as to form a right-handed triad (see
Fig. 2). Since our aim is to handle the problem in the Hill
frame, it is necessary to describe Eq. (14) in this frame by
using the transformation between the ECI frame and the
Hill frame. In general, these two coordinate frames have
the following relationship

x

y

z

2
64
3
75¼R

X

Y

Z

2
64

3
75�

rL

0

0

2
64

3
75; ð15Þ
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Fig. 2. The ECI frame (X�Y�Z) and the Hill frame (x�y�z). For

simplicity, the leader is shown to follow an elliptical orbit. The general

methodology presented in the paper, however, is valid for arbitrarily

prescribed trajectories of the leader.
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or

X

Y

Z

2
64

3
75¼ R�1

xþrL

y

z

2
64

3
75¼ RT

xþrL

y

z

2
64

3
75¼ S

xþrL

y

z

2
64

3
75; ð16Þ

where ½x y z�T denotes the coordinates of an arbitrary
point in the Hill coordinate frame, ½X Y Z�T denotes its
coordinates in the ECI coordinate frame, R is an orthogo-
nal rotation matrix, S is the transpose of R, and rL (the
subscript ‘‘L’’ denotes quantities pertinent to the leader) is
the distance between the origin of the ECI frame and the
origin of the Hill frame (leader). In Eq. (15), we translate
the rotated ECI system by �rL along the x-axis to have
its origin coincide with the leader’s position, namely
with the origin of the Hill frame. Obtaining the proper
rotation matrix R will be the main task in the next section.
Eqs. (15) and (16) can be written more succinctly as
follows

x¼ RX�c; ð17Þ

and

X¼ SxþSc¼ Sxþw; ð18Þ

where x9½x y z�T, X9½X Y Z�T, c9½rL 0 0�T, and w9Sc.
To get the uncontrolled (unconstrained) acceleration a

in the Hill frame, we start from the Lagrange equation

d

dt

@T

@ _x

� �
�
@T

@x
¼Q ðx; _x; tÞ; ð19Þ

where T is the kinetic energy of the system and Q ðx; _x; tÞ
denotes the generalized force of the system which
includes the potential energy. Since the kinetic energy T

must be represented in the inertial frame, it follows that

T ¼ 1
2
_X

T
M _X ¼ 1

2ðx
T _S

T
M _Sxþ _xTSTMS _xþ _wTM _wÞþðxT _S

T
MS _x

þ _wTM _Sxþ _wTMS _xÞ; ð20Þ

where Eq. (18) has been used. Inserting Eq. (20) into (19),
we get the following equation of motion in the Hill frame

STMS €x ¼�2STM _S _x�STM €Sx�STM €wþSTFðX; _X; tÞ; ð21Þ

where FðX; _X; tÞ is given by

FðX; _X; tÞ ¼ FðXÞ ¼�
GM�

ðXTXÞ3=2
MX: ð22Þ

From Eq. (21), the matrix STMS serves as the mass matrix
in the Hill frame. However, the matrix M is M¼mI3�3 for
each particle (or satellite) where m is the mass of the
particle (or satellite), so STMS is just equal to M owing
to the orthogonality of the matrix S. Finally, the
uncontrolled acceleration vector a in the Hill frame can
be described as

a¼�2ST _S _x�ST €Sx�ST €w�
GM�

½ðSxþwÞTðSxþwÞ�3=2
ðxþSTwÞ

ð23Þ

or more explicitly as

a¼

€x

€y

€z

2
64

3
75¼�

€rL

0

0

2
64

3
75�2R _S

_xþ _rL

_y

_z

2
64

3
75�R €S

xþrL

y

z

2
64

3
75

�
GM�

½ðxþrLÞ
2
þy2þz2�3=2

xþrL

y

z

2
64

3
75: ð24Þ

4. Controlled motion

Now we control (constrain) the motion of the follower
satellites and introduce two constraints on the system.
For our examples we maintain the distance between the
leader and follower(s) to be a constant, say r, when
projected on the yz-plane in the Hill frame. Also, to
exclude the possibility that the motion along the x

coordinate diverges, another linear constraint between
the x and z coordinates is applied. We shall assume that
all the follower satellites in the formation can be
continuously controlled. The strength of this paper lies
in the generality and simplicity in adapting the method to
other follower configurations.

In the Hill frame, the constraint equations can be
written as

2x¼ z; ð25Þ

y2þz2 ¼ r2; ð26Þ

where r is the constant distance between the leader and
the follower(s) when projected on the local horizontal
(y�z) plane. Eq. (25) makes the relative motion bounded
for every axis, and it also matches the solutions of the
HCW equations satisfying the constraint Eq. (26) [27].
Since Eqs. (25) and (26) are holonomic, the motion of the
follower(s) must also satisfy the differentiated equations

2 _x ¼ _z; ð27Þ

and

y _yþz_z ¼ 0: ð28Þ

A further differentiation with respect to time yields the
following constraint equation

2 0 �1

0 y z

" # €x

€y

€z

2
64

3
75¼ 0

� _y2
�_z2

" #
; ð29Þ

which is of the form A €x ¼ b, where

A¼
2 0 �1

0 y z

" #
; €x ¼

€x

€y

€z

2
64

3
75;b¼ 0

� _y2
�_z2

" #
: ð30Þ

If we consider the case wherein we have a single
follower, we can use Eq. (11) directly. Since the matrix A is
simple, we can easily get the explicit form of A+

Aþ ¼
1

5y2þ4z2

2y2þ2z2 2z

yz 5y

�y2 4z

2
64

3
75: ð31Þ
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Also, the control force FC can be explicitly found by Eq.
(13). If there are multiple follower satellites, then we must
use the original Udwadia–Kalaba equation (Eq. (10))
where the mass matrix M is given by M¼
diagfm1;m1;m1;m2;m2;m2; . . . ;mN ;mN ;mNg and N is the
number of the follower satellites. The control force FC is
then given by Eq. (8).

Thus, to find a solution to the formation-keeping
problem, we use the Udwadia–Kalaba equation (Eq. (10)
or (11)) in the Hill frame to get the explicit closed-form
expression for the required control force. To this end, we
need a, A, and b, which are given by Eqs. (24) and (30).
What is left is only to determine a rotation matrix R in the
expression for the unconstrained acceleration a given by
Eq. (24) (recall, S=RT). Since the matrix R relates the
ECI frame and the Hill frame, it depends on the trajectory
that the leader is following. We will approach this
problem in two equivalent ways. First, we will get a
rotation matrix R and use our general approach in which
the reference motion of the leader is prescribed as a
function of time. Next, we will use a simpler case when
the leader is in an unperturbed, Keplerian orbit. In this
case, we can directly use the existing theory and do not
have to obtain a rotation matrix R. This simpler reference
orbit is of course a special case of the general one, as will
be shown later.

4.1. General reference orbits

Let us assume that the reference orbit is arbitrary, and
the position and velocity vector of the leader are given by

rL ¼ ½XLðtÞ;YLðtÞ; ZLðtÞ�
T;vL ¼ ½

_X LðtÞ; _Y LðtÞ; _ZLðtÞ�
T: ð32Þ

This trajectory may be explicitly specified in time in
advance, or it can be computed by integrating a suitable
set of differential equations. It should be noted that these
vectors are represented in the ECI frame. Then, the orbital
angular momentum vector hL is given by

hL ¼ rL � vL: ð33Þ

Now, we find the rotation matrix R that maps the ECI
frame to the Hill frame, that is,

xþJrLJ

y

z

2
64

3
75¼R

XL

YL

ZL

2
64

3
75: ð34Þ

To get the matrix R, let us recall that we have three vector
equations

1

0

0

2
64

3
75¼Rr̂L;

0

1

0

2
64

3
75¼ RðĥL � r̂LÞ;

0

0

1

2
64

3
75¼RĥL; ð35Þ

where r̂L9rL=JrLJ and ĥL9hL=JhLJ (unit vectors). Then,
we have

ð36Þ

Since R is orthogonal, from Eq. (36) we obtain

ð37Þ

Each element of the matrices R, _R , and €R is given in the
Appendix. Having explicitly obtained the rotation matrix
R given by Eq. (37), the uncontrolled acceleration a given
by Eq. (24) can be found, and we can directly obtain the
explicit control for precise formation-keeping given by
using Eq. (8), and the equation of motion of the controlled
system by using Eq. (10).

4.2. Keplerian reference orbits

Assuming Keplerian reference orbits (without pertur-
bations), we can directly use the existing equations of
relative motion expressed in the Hill frame [30]

€x ¼ 2 _yL _yþ €yLyþ _y
2

L x�
GM�ðrLþxÞ

½ðrLþxÞ2þy2þz2�3=2
þ

GM�
r2

L

; ð38Þ

€y ¼�2 _yL _x� €yLxþ _y
2

L y�
GM�y

½ðrLþxÞ2þy2þz2�3=2
; ð39Þ

and

€z ¼�
GM�z

½ðrLþxÞ2þy2þz2�3=2
; ð40Þ

where yL is the orbital rate of the leader and rL is the
distance between the center of the Earth and the leader. In
particular, yL can be treated as the true anomaly for
elliptical reference orbits. Also, it is well-known that yL

and rL are related by the following equations [30]

r2
L
_yL ¼ hL; ð41Þ

and

rL ¼
h2

L=ðGM�Þ

1þeL cosyL
; ð42Þ

where hL is the magnitude of the constant orbital angular
momentum vector of the leader and eL the eccentricity of
the reference orbit. Eqs. (38)–(40) described in the Hill
frame represent uncontrolled relative acceleration a of the
follower with respect to the leader. Now we have all the
quantities needed to place into the Udwadia–Kalaba
equation: A, b, and a from Eqs. (30), (38)–(40). More
explicitly, using Eq. (13) the required control force for a
single follower can be explicitly obtained in a closed form
as

FC
¼

m

5y2þ4z2

�4ðy2þz2Þax�2yzayþ2y2az�2zð _y2
þ _z2
Þ

�2yzax�5y2ay�4yzaz�5yð _y2
þ _z2
Þ

2y2ax�4yzay�ðy2þ4z2Þaz�4zð _y2
þ _z2
Þ

2
664

3
775;
ð43Þ

where ax, ay, and az are given by the right hand sides of
Eqs. (38), (39), and (40), respectively.

ARTICLE IN PRESS

H. Cho, F.E. Udwadia / Acta Astronautica 67 (2010) 369–387374



Author's personal copy

5. Incorrect initial conditions

The constraints must be satisfied at each instant of
time during the maneuver including the initial time (t=0).
In practice, however, it is usually quite difficult to meet
these constraints at the initial time because this requires
inserting the follower(s) into orbit with the exact,
required initial conditions. Hence, we need to modify
our formulation; we do this by using Baumgarte’s
constraint stabilization method [31].

In general the constraint equations may be thought of
as a set of p constraints of the form

jiðx; _x; tÞ ¼ 0; i¼ 1;2; . . . ; p; ð44Þ

where x is an n by 1 generalized coordinate vector and t

represents time. For example, in this paper we have so far
used two (that is, p=2) constraints given by Eqs. (25) and
(26)

j1 ¼ 2x�z¼ 0; ð45Þ

j2 ¼ y2þz2�r2 ¼ 0: ð46Þ

More compactly, we can write Eq. (44) as follows

U¼

j1

j2

^

jp

2
66664

3
77775¼ 0: ð47Þ

In this paper, Eq. (47) becomes

UðtÞ ¼
2xðtÞ�zðtÞ

yðtÞ2þzðtÞ2�r2

" #
¼ 0: ð48Þ

By differentiating the above equation with respect to time
appropriately, we get the general constraint equations
mentioned earlier

Aðx; _x; tÞ €xðtÞ ¼ bðx; _x; tÞ: ð6Þ

In this paper, the constraint equation in the form of Eq.
(6) is given by Eq. (29).

Now, we consider general initial conditions that do not
satisfy the given constraints, which means Uð0Þa0 at the
initial time. We modify the constraint Eq. (47) to [31]

€Uþa _UþbU¼ 0; ð49Þ

where

a¼ diagfa1;a2; . . . ;apg; b¼ diagfb1;b2; . . . ;bpg: ð50Þ

It is well-known that if each ai, bi40, i¼ 1;2; . . . ; p, U
approaches to zero asymptotically. Thus, from Eq. (49), we
get a more general constraint equation, which none-
theless retains the form of Eq. (6).

In this paper so far we have, p=2, so both a and b are
2�2 diagonal matrices and the 2 by 1 matrix U is given
by Eq. (48). Then, Eq. (49) yields the following constraint
equation

2 0 �1

0 y z

" # €x

€y

€z

2
64

3
75¼ �a1ð2 _x�_zÞ�b1ð2x�zÞ

� _y2
�_z2
�a2ðy _yþz_zÞ�

b2

2
ðy2þz2�r2Þ

2
64

3
75;
ð51Þ

which is of the form of A €x ¼ b or Eq. (6). If the initial
conditions do not meet the constraints, we must utilize
Eq. (49) instead of Eq. (47) and use these new quantities A
and b in Eqs. (8) and (10) respectively to get the explicit
closed-form expressions for the required control force and
the explicit equation of motion of the controlled system.

6. Numerical example

In this section, the explicit analytic results given in
Sections 4 and 5 are verified by numerical simulations.
We attempt to find the required control force that will
keep the relative configuration in a circle and a straight
line when projected onto the yz and xz planes in the Hill
frame, respectively. In this section we present two
examples.

In Example 1, there is only one follower satellite, the
leader’s reference orbit is elliptical, and the initial
conditions satisfy the given constraints. In Example 2,
we have two follower satellites, the leader has a more
general motion described by a spiral, and the initial
conditions for the followers do not meet the constraints,
i.e., the followers are not correctly inserted into their
desired orbits initially. In Example 1, since the leader’s
reference orbit is elliptical, we use the two methods
explained in the previous section and show that they yield
very close numerical results. We note that while the
leader’s reference orbit in Example 2 is chosen to be a
spiral, the same control strategy can be easily applied to
any other prescribed reference orbits.

The numerical integration throughout this paper is
done in the Matlab environment, using a variable time
step integrator with a relative error tolerance of 10�12

and an absolute error tolerance of 10�20.

6.1. Example 1: one follower, elliptical reference orbit,

correct initial conditions

Let us assume that the mass of the follower is 1000 kg,
the semi-major axis (aL) and the eccentricity (eL) of the
leader’s orbit (or reference orbit) are 7.0�106 m and 0.1,
respectively. We desire the follower to maintain a
projected circular orbit (PCO) with r=50 km, and the
initial conditions are given by

xð0Þ ¼ 1:30672� 104 m;

yð0Þ ¼ 4:26262� 104 m;

zð0Þ ¼ 2:61344� 104 m;

_xð0Þ ¼ 22:9784 m=s;
_yð0Þ ¼�28:1764 m=s;
_zð0Þ ¼ 45:9568 m=s: ð52Þ

It should be noted that the initial conditions given in Eq.
(52) satisfy the two constraints (Eqs. (25) and (26)).

First, we find a solution by using the method given by
Section 4.1. At t=0, let us assume that the leader is at the
perigee which is located at the ascending node. Also,
the longitude of the ascending node (OL) and the
inclination (iL) of the leader are given by 301 and 801,
respectively. The initial position and speed of the leader in
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the ECI frame can then be calculated by the following
equations [29]

rLð0Þ ¼ aLð1�eLÞ ¼ 6:3� 106 m;

vLð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM�
rLð0Þ

�
GM�

aL

s
¼ 8:34346� 103 m=s: ð53Þ

Hence, the initial conditions for the leader in the ECI
frame are:

XLð0Þ ¼ rLð0ÞcosðOLÞ ¼ 5:45596� 106 m;

YLð0Þ ¼ rLð0ÞsinðOLÞ ¼ 3:15� 106 m;

ZLð0Þ ¼ 0 m;

_X Lð0Þ ¼�vLð0ÞcosðiLÞsinðOLÞ ¼�7:24414� 102 m=s;

_Y Lð0Þ ¼ vLð0ÞcosðiLÞcosðOLÞ ¼ 1:25472� 103 m=s;

_ZLð0Þ ¼ vLð0ÞsinðiLÞ ¼ 8:21671� 103 m=s: ð54Þ

With the initial conditions given in Eq. (54), we use the
given motion of the leader to obtain the rotation matrix R
given by Eq. (37) and thence (see, Appendix) the
uncontrolled acceleration a given by Eq. (24). We can
use Eqs. (11) and (13) to get the controlled motion and the
explicit control force to be applied to the follower. The
quantities a, A, A+ , and b are given by Eqs. (24), (30), and
(31). The duration of time used for the numerical
integration is three times the orbital period, PL, of the
leader which is given by

PL ¼
2p
nL
¼ 5:82783� 103 s¼ 1:61884 h; ð55Þ

where nL is the mean motion of the leader obtained from
Kepler’s third law as

nL ¼

ffiffiffiffiffiffiffiffiffiffiffi
GM�

a3
L

s
¼ 1:07814� 10�3 rad=s: ð56Þ

Figs. 3 and 4 represent the orbits of the follower
projected on the xz-plane in the Hill frame without and
with control, respectively. The scale is normalized by r.
Without control, the follower shows complex motion,
whereas the follower moves exactly along the constraint
line (2x=z) with the control force. Fig. 5 depicts the orbit
of the follower projected on the yz-plane in the Hill frame
without control. The motion of the follower satellite is
unbounded as seen from its leftwards motion in the
ydirection. In Fig. 6, the controlled motion of the follower
is reported. The trajectory is being maintained very well
with the relative distance of r=50 km.

In Fig. 7 we show the explicitly obtained control force
per unit mass of the follower to maintain the desired
formation and its total magnitude. The force components
are described in the Hill frame and calculated
using Eq. (13). Time is normalized to the period of the
leader (PL).

Figs. 8–11 represent numerical errors in the
satisfaction of the constraints described by Eqs. (25)–
(28), which are denoted by e1ðtÞ ¼ 2x�z, e2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þz2

p
�r, e3ðtÞ ¼ 2 _x�_z, and e4ðtÞ ¼ y _yþz_z. We see that these
errors have orders of magnitude that are commensurate
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Fig. 3. Uncontrolled motion in the xz-plane.

Fig. 4. Controlled motion in the xz-plane.

Fig. 5. Uncontrolled motion in the yz-plane.
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with the relative tolerance used in the numerical
integration of the equations of motion.

Next, we approach the same problem via the method
given by Section 4.2. We use the same initial conditions
for the follower (Eq. (52)) to get the solution. The
quantities a, A, A+ , and b are explicitly given by Eqs.
(24), (30), and (31), and the required control forces can be
directly obtained by Eq. (43). As seen in Eq. (42), however,
rL is an explicit function of the true anomaly (yL) of the
leader, not time, so in order to express rL as a function of
time, Kepler’s equation [30] must be solved. In this paper,
we used the well-known Newton–Raphson numerical
method [30] to do this. As expected, the results obtained
are almost the same as the previous ones. In Fig. 12, the
difference of the required forces and their total magnitude
is represented. They are described in the Hill frame and
we can see that the difference is very small when recalling
the original thrust magnitude depicted in Fig. 7. Fig. 13
depicts the difference between each component of the
relative position vector in the Hill frame obtained using
the general method (Section 4.1) and the special method
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Fig. 7. Components of the required control force in the Hill frame and its magnitude.

Fig. 8. Displacement error for the first constraint.

Fig. 9. Displacement error for the second constraint.Fig. 6. Controlled motion in the yz-plane.
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(Section 4.2). The difference is of the order of 10�4 m,
which is very small when compared with the relative
orbit size r=50 km. This verifies that the general method
explained in Section 4.1 includes the special case
introduced in Section 4.2.

6.2. Example 2: two followers, spiral reference orbit,

incorrect initial conditions

This example is more general than the previous one. In
this case, there are two followers, and the reference orbit
is a spiral, defined as

XL ¼ aL cosðnLtÞ;YL ¼ aL sinðnLtÞ; ZL ¼ kLt; ð57Þ

where aL=7.0�106 m, nL ¼ 1:07814� 10�3 rad=s is the
same mean motion given by Eq. (56), and kL=100 m/s. The
leader’s trajectory in the ECI frame in 3-dimensions is
shown in Fig. 14. Also, the initial conditions for the first
follower (named Follower 1) whose mass is 1000 kg are
given by

x1ð0Þ ¼ 1:76777� 104 m; y1ð0Þ ¼ 3:63553� 104 m;

z1ð0Þ ¼ 3:03553� 104 m;

_x1ð0Þ ¼ 14:2942 m=s;
_y1ð0Þ ¼�28:5884 m=s; _z1ð0Þ ¼ 28:5884 m=s; ð58Þ

where the subscript ‘‘1’’ denotes Follower 1, and the initial
conditions for the second follower (named Follower 2)
whose mass is 800 kg are

x2ð0Þ ¼ �1:78544� 104 m;

y2ð0Þ ¼�3:67189� 104 m; z2ð0Þ ¼�3:06589� 104 m;

_x2ð0Þ ¼�14:2942 m=s;
_y2ð0Þ ¼ 28:5884 m=s; _z2ð0Þ ¼�28:5884 m=s; ð59Þ

where the subscript ‘‘2’’ denotes Follower 2. Here, in order
to stress the strength of this paper we set more complex
and specific constraints instead of the ones in Eqs. (25)
and (26) so that the followers execute a circular orbit of
radius r=50 km around the leader with a prescribed
angular frequency o in the Hill frame. In addition, we add
one more constraint: as seen in the Hill frame at all times,
the two followers must be located diametrically opposite
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Fig. 10. Velocity error for the first constraint.

Fig. 11. Velocity error for the second constraint.

Fig. 12. Difference of the required forces and their total magnitude using the general reference orbit formulation given in Section 4.1 and the elliptical

reference orbit formulation given in Section 4.2.
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each other in their orbits around the leader; that is, the
leader is located at the center of the line joining the two
followers. There are thus the following six constraints in
total:

2x1 ¼ z1;

y1 ¼ r cosðotþjÞ;
z1 ¼ r sinðotþjÞ;
2x2 ¼ z2;

y2 ¼�r cosðotþjÞ;
z2 ¼�r sinðotþjÞ: ð60Þ

Although o and j can have any values, for illustrative
purposes we use o¼ 0:75nL and j=p/4, where nL is given
by Eq. (56). Then, the followers revolve around the leader
three times in the Hill frame while the leader’s orbit
makes four revolutions when projected onto the XY-plane

in the ECI frame. Here, it should be noted that the initial
conditions for Followers 1 and 2 do not meet the six
constraints given by Eq. (60).

We have the following constraint matrix U in the form
of Eq. (47)

U¼

2x1�z1

y1�r cosðotþjÞ
z1�r sinðotþjÞ

2x2�z2

y2þr cosðotþjÞ
z2þr sinðotþjÞ

2
6666666664

3
7777777775
¼ 0: ð61Þ

However, since the initial conditions do not meet the
constraints, we must use Eq. (49) instead of Eq. (47) to get
A and b. Inserting Eq. (61) into (49), we get the following
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Fig. 13. Difference between each component of the relative position vector in the Hill frame when using the general formulation and that particularized

to Keplerian reference orbits.

Fig. 14. Leader’s trajectory in the ECI frame in 3-D.
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constraint equation, in the form of A €x ¼ b, given by

2 0 �1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 �1

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

€x1

€y1

€z1

€x2

€y2

€z2

2
6666666664

3
7777777775

¼

�a1ð2 _x1�_z1Þ�b1ð2x1�z1Þ

�o2r cosðotþjÞ�a2ð _y1þor sinðotþjÞÞ�b2ðy1�r cosðotþjÞÞ
�o2r sinðotþjÞ�a3ð_z1�or cosðotþjÞÞ�b3ðz1�r sinðotþjÞÞ

�a4ð2 _x2�_z2Þ�b4ð2x2�z2Þ

o2r cosðotþjÞ�a5ð _y2�or sinðotþjÞÞ�b5ðy2þr cosðotþjÞÞ
o2r sinðotþjÞ�a6ð_z2þor cosðotþjÞÞ�b6ðz2þr sinðotþjÞÞ

2
6666666664

3
7777777775
:

ð62Þ

From Eq. (62), the 6 by 6 matrix A and the 6 by 1 vector b
are both obvious.

For simplicity, we choose ai=0.002, bi=0.001,
i¼ 1;2; . . . ;6. There are two followers, so we use Eqs. (8)
and (10) to get the explicit control forces and the
controlled motion of the two followers. The spiral orbit
specified by Eq. (57) is no longer a Keplerian orbit, so we
must use the general method explained in Section 4.1, and
a, A, and b are given by Eqs. (24) and (62). In this case, the
matrices A and AM�1/2 are both 6 by 6 and nonsingular,
so the Moore–Penrose generalized inverse of AM�1/2 is
just its regular inverse. Using the fact that
ðAM�1=2

Þ
�1
¼M1=2A�1, Eqs. (8) and (10) become very

simple:

FC
¼MðA�1b�aÞ; ð63Þ

and

€x ¼ A�1b; ð64Þ

where

A�1
¼

0:5 0 0:5 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0:5 0 0:5

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775
: ð65Þ

The duration of time over which the numerical integration
is carried out equals four times the orbital period of the
leader in the XY inertial frame, that is, 4PL where PL is
given by Eq. (55).

Figs. 15 and 16 show the controlled and uncontrolled
orbits projected onto the xz and yz planes for Followers 1
and 2, respectively. As before, the scale is normalized to r.
As expected, the uncontrolled motion is unbounded
especially in the z direction. For the controlled motion,
the orbits do not satisfy the constraints initially, but they
merge onto the constraint circle (and onto the line)
progressively with time.

ARTICLE IN PRESS

Fig. 15. Controlled and uncontrolled trajectories projected onto the xz and yz planes for Follower 1.
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Fig. 17 shows the controlled motion of the two
followers in each axis. The solid lines represent Follower
1’s controlled trajectory and the dashed lines represent
Follower 2’s controlled trajectory. As seen they are
diametrically opposite each other in the yz-plane, and
the plots for x(t) and z(t) have the same shape except for a
scaling by two due to the constraints 2x1=z1 and 2x2=z2.
Also, they are sinusoidal with three oscillations (as seen in
the Hill frame) for four revolutions (4PL) of the leader in
the XY-plane because the angular frequency o is set as
o¼ 0:75nL.

Fig. 18 shows the numerical errors in the satisfaction of
the constraints specified in Eq. (60). Denoting
e1ðtÞ ¼ 2x1�z1, e2ðtÞ ¼ y1�r cosðotþjÞ, e3ðtÞ ¼ z1�r
sinðotþjÞ, e4ðtÞ ¼ 2x2�z2, e5ðtÞ ¼ y2þr cosðotþjÞ, and
e6ðtÞ ¼ z2þr sinðotþjÞ, we see that initially these errors
are very large since the follower satellites have not been
inserted into orbit with the correct initial conditions that
satisfy the desired constraints. More specifically, these
initial errors ei(0), i¼ 1;2;3;4;5;6 are of the order of
103 m in all. However, they converge to zero as time
progresses, and at the final time (four revolutions of the
leader in the XY-frame), the final errors eið4PLÞ,
i¼ 1;2;3;4;5;6 are of the order of 10�8, 10�9, 10�8,
10�8, 10�9, and 10�8 m, respectively.

In Figs. 19 and 20, the required control forces (per unit
mass) to maintain the desired formation and their

total magnitude are shown. They are described in
the Hill frame and calculated using Eq. (8) (or Eq. (63)).
Fig. 19 shows the control forces and their total magnitude
for both followers over the duration 0 to 1 PL secs.
As seen, relatively large control forces are brought
into play over this initial time duration to try and
eliminate the large initial insertion errors in the orbits
of the two followers. The maximum magnitudes of these
control forces are 5.109990 N/kg for Follower 1 and
4.90475 N/kg for Follower 2. While such large force may
be hard to be applied to real missions, it shows, however,
that the general method developed in this paper
can easily apply to general and more complex examples.
One can, of course, reduce these magnitudes by choosing
smaller ai’s and bi’s than those used here; but this
would come at the expense of a longer time duration
needed to get the followers to their required PCO orbits. In
Fig. 20, the control forces and their total magnitude for
both followers over the duration 1 PL to 4 PL secs.
are shown. It is noted that the magnitude of thrust in
the z direction dominates the total magnitude for both
followers. Also, the magnitude of the total thrust is
gradually increasing for each follower. Thus, as the
leader gets more distant from the Earth, more thrust
is needed to control the followers’ motion. As seen in
Eq. (63), the control force FC is composed of two
components: MA�1b and Ma. However, the matrices
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Fig. 16. Controlled and uncontrolled trajectories projected onto the xz and yz planes for Follower 2.
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Fig. 18. Numerical errors in satisfaction of the six constraints. Note the values of ei(0), i¼ 1;2;3;4;5;6 at the initial time. They show the errors in inserting

the followers into their desired orbits initially.

Fig. 17. Orbits in the Hill frame of the two followers.
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M and A�1 are constant and each element of the vector
b approaches zero or a sinusoidal, so the effect of
MA�1b would be less significant than that of Ma,

which indicates that the magnitude of the z compo-
nents of Ma for both followers is relatively large and
increasing.
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Fig. 19. Required control forces per unit mass in the Hill frame and the total force magnitude over the duration 0�1 PL secs. The upper row is for Follower

1 and the lower row is for Follower 2.

Fig. 20. Required control forces in the Hill frame per unit mass and total force magnitude over the duration 1 PL�4 PL secs. The upper row is for Follower

1 and the lower row is for Follower 2.
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7. Conclusion

In this paper, a new analytic method for the formation-
keeping problem is presented. The problem is solved in
the Hill frame, which helps us understand the motion
more intuitively. The method presented is simple, and
provides explicit, closed-form analytical expressions for
the control forces needed so as to exactly satisfy the
trajectory requirements of the follower(s). Such closed-
form results for general reference orbits that enable exact
control have hereto been unavailable to date. Further-
more, the method is easy to computationally implement,
and yields results with high numerical accuracy. The
available approaches for formation-keeping to date use
linearizations and/or approximations and almost always
consider Keplerian reference orbits. Researchers who have
considered the entire nonlinear problem, have to date
provided only numerical procedures.

The main contributions of the paper are the following.

1. An explicit, closed-form expression for the control
force required to exactly satisfy formation-keeping
requirements is obtained. Assuming the reference orbit
can be represented by an arbitrary (sufficiently
smooth) function of time, we get explicitly the
closed-form expressions for the control forces required
to maintain the given formation configuration pre-
cisely. By taking an example of a spiral reference orbit,
the ease of implementation and the numerical accu-
racy of this general methodology are demonstrated.

2. Since the control force to be applied to the follower(s)
is explicitly obtained in a closed form and the method
is not computationally intensive, it can be easily used
for on-orbit, real-time control.

3. The full nonlinear control problem is addressed and no
linearizations and/or approximations are made in
arriving at the explicit closed form expressions for
the control forces.

4. Among all the control forces that cause the system to
satisfy the given constraints, the explicit control force

obtained herein is optimal in the sense that it
minimizes JðtÞ ¼ ðFC

Þ
TM�1FC at each instant of time

[21]. Unlike other controllers that use an integral of a
weighted norm of the control force over a suitable time
duration, the control provided here minimizes J(t) at
every instant time.

5. If the reference orbit is a Keplerian orbit, the explicit
control to be applied to the follower satellite(s) can be
easily and more simply obtained, again yielding a
closed-form expression for the control force that
ensures exact satisfaction of the constraints imposed
on the follower’s orbit. Even for this simpler case, the
results herein are new since a closed-form expression
for the necessary optimal (see item 4 above) control
force that is valid for the complete nonlinear problem
is found.

6. In practice, it is difficult to initially insert the follower
satellite(s) exactly into the desired orbit(s). The
problem of finding the necessary control forces when
the follower(s) are inserted into orbit(s) with incorrect
initial conditions has also been addressed in this paper,
and again the explicit closed-form control forces are
obtained. We use a stabilization technique to make the
errors in the satisfaction of the constraints asympto-
tically zero and thereby track the desired constraints.

7. Finally, we note that perturbations caused by factors
such as the presence of the J2 gravitational harmonic,
solar pressure, aerodynamic drag, etc., have not been
included in this study. However, the methodology
developed herein is general, and with a more accurate
model that includes these effects the exact control
forces needed to be applied to the follower(s) can still
be easily obtained in closed form and in a straightfor-
ward manner.

8. It is known that some regions of phase space offer better
initial conditions than others for the formation-keeping
problem [32], in the sense that when starting with initial
conditions in these regions the follower(s) maintain their
configurations for a longer time with relatively low
control energy expenditures. Finding these regions
would be an interesting issue for future work.
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Appendix

In this appendix we give explicit expressions for the elements of the matrices R, _R , and €R . Let us first define the
following expressions that will be used frequently:

rL ¼ ðX
2
L þY2

L þZ2
L Þ

1=2; _rL ¼
XL
_X LþYL

_Y LþZL
_ZL

rL
; €rL ¼

1

r2
L

rLð
_X

2

Lþ
_Y

2

Lþ
_Z

2

LþXL
€X LþYL

€Y LþZL
€ZLÞ

�_rLðXL
_X LþYL

_Y LþZL
_ZLÞ

2
4

3
5;

hL ¼ ½ðYL
_ZL�ZL

_Y LÞ
2
þðZL

_X L�XL
_ZLÞ

2
þðXL

_Y L�YL
_X LÞ

2
�1=2;

_hL ¼
1

hL
½ðYL

_ZL�ZL
_Y LÞðYL

€ZL�ZL
€Y LÞþðZL

_X L�XL
_ZLÞðZL

€X L�XL
€ZLÞþðXL

_Y L�YL
_X LÞðXL

€Y L�YL
€X LÞ�;
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and,

€hL ¼
1

h2
L

hL

ðYL
€ZL�ZL

€Y LÞ
2
þðYL

_ZL�ZL
_Y LÞð

_Y L
€ZLþYL

.’ZL�
_ZL
€Y L�ZL

.’YLÞ

þðZL
€X L�XL

€ZLÞ
2
þðZL

_X L�XL
_ZLÞð

_ZL
€X LþZL

.’XL�
_XL
€ZL�XL

.’ZLÞ

þðXL
€Y L�YL

€XLÞ
2
þðXL

_Y L�YL
_XLÞð

_X L
€Y LþXL

.’YL�
_Y L
€X L�YL .’XLÞ

8>>><
>>>:

9>>>=
>>>;

� _hL

ðYL
_ZL�ZL

_Y LÞðYL
€ZL�ZL

€Y LÞþðZL
_X L�XL

_ZLÞðZL
€X L�XL

€ZLÞ

þðXL
_Y L�YL

_X LÞðXL
€Y L�YL

€XLÞ

( )

2
6666666664

3
7777777775
:

Then, the rotation matrix R=ST, and its derivatives _R , €R are of the form

R¼

R11 R12 R13

R21 R22 R23

R31 R32 R33

2
64

3
75;

_R ¼

_R11
_R12

_R13

_R21
_R22

_R23

_R31
_R32

_R33

2
64

3
75;

€R ¼

€R11
€R12

€R13

€R21
€R22

€R23

€R31
€R32

€R33

2
64

3
75;

where each element of these matrices is given as follows:

R11 ¼
XL

rL
; _R11 ¼

rL
_X L�XL _rL

r2
L

;

€R11 ¼
1

r3
L

½rLðrL
€X L�XL €rLÞ�2_rLðrL

_X L�XL _rLÞ�;

R12 ¼
YL

rL
;

_R12 ¼
rL
_Y L�YL _rL

r2
L

;

€R12 ¼
1

r3
L

½rLðrL
€Y L�YL €rLÞ�2_rLðrL

_Y L�YL _rLÞ�;

R13 ¼
ZL

rL
; _R13 ¼

rL
_ZL�ZL _rL

r2
L

;

€R13 ¼
1

r3
L

½rLðrL
€ZL�ZL €rLÞ�2_rLðrL

_ZL�ZL _rLÞ�;

R21 ¼
1

hLrL
½ZLðZL

_X L�XL
_ZLÞ�YLðXL

_Y L�YL
_X LÞ�;

_R21 ¼
1

h2
L r2

L

hLrLf
_ZLðZL

_X L�XL
_ZLÞþZLðZL

€X L�XL
€ZLÞ�

_Y LðXL
_Y L�YL

_X LÞ�YLðXL
€Y L�YL

€X LÞg

�ð _hLrLþhL _rLÞfZLðZL
_X L�XL

_ZLÞ�YLðXL
_Y L�YL

_X LÞg

" #
;

€R21 ¼
1

h3
L r3

L

hLrL

ð _hLrLþhL _rLÞf
_ZLðZL

_X L�XL
_ZLÞþZLðZL

€X L�XL
€ZLÞ�

_Y LðXL
_Y L�YL

_X LÞ�YLðXL
€Y L�YL

€X LÞg

þhLrL

€ZLðZL
_X L�XL

_ZLÞþ2 _ZLðZL
€X L�XL

€ZLÞþZLð
_ZL
€X LþZL .’XL�

_X L
€ZL�XL .’ZLÞ

� €Y LðXL
_Y L�YL

_X LÞ�2 _Y LðXL
€Y L�YL

€X LÞ�YLð
_X L
€Y LþXL .’YL�

_Y L
€X L�YL .’XLÞ

8<
:

9=
;

�ð €hLrLþ2 _hL _rLþhL €rLÞfZLðZL
_X L�XL

_ZLÞ�YLðXL
_Y L�YL

_X LÞg

�ð _hLrLþhL _rLÞf
_ZLðZL

_X L�XL
_ZLÞþZLðZL

€X L�XL
€ZLÞ�

_Y LðXL
_Y L�YL

_X LÞ�YLðXL
€Y L�YL

€X LÞg

2
666666664

3
777777775

�2ð _hLrLþhL _rLÞ
hLrLf

_ZLðZL
_X L�XL

_ZLÞþZLðZL
€X L�XL

€ZLÞ�
_Y LðXL

_Y L�YL
_X LÞ�YLðXL

€Y L�YL
€X LÞg

�ð _hLrLþhL _rLÞfZLðZL
_X L�XL

_ZLÞ�YLðXL
_Y L�YL

_X LÞg

" #

2
6666666666666664

3
7777777777777775

;

R22 ¼
1

hLrL
½XLðXL

_Y L�YL
_X LÞ�ZLðYL

_ZL�ZL
_Y LÞ�;

_R22 ¼
1

h2
L r2

L

hLrLf
_X LðXL

_Y L�YL
_X LÞþXLðXL

€Y L�YL
€X LÞ�

_ZLðYL
_ZL�ZL

_Y LÞ�ZLðYL
€ZL�ZL

€Y LÞg

�ð _hLrLþhL _rLÞfXLðXL
_Y L�YL

_X LÞ�ZLðYL
_ZL�ZL

_Y LÞg

" #
;
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€R22 ¼
1

h3
L r3

L

hLrL

ð _hLrLþhL _rLÞf
_X LðXL

_Y L�YL
_X LÞþXLðXL

€Y L�YL
€X LÞ�

_ZLðYL
_ZL�ZL

_Y LÞ�ZLðYL
€ZL�ZL

€Y LÞg

þhLrL

€X LðXL
_Y L�YL

_X LÞþ2 _X LðXL
€Y L�YL

€X LÞþXLð
_X L
€Y LþXL

.’YL�
_Y L
€X L�YL .’XLÞ

� €ZLðYL
_ZL�ZL

_Y LÞ�2 _ZLðYL
€ZL�ZL

€Y LÞ�ZLð
_Y L
€ZLþYL .’ZL�

_ZL
€Y L�ZL .’YLÞ

8<
:

9=
;

�ð €hLrLþ2 _hL _rLþhL €rLÞfXLðXL
_Y L�YL

_X LÞ�ZLðYL
_ZL�ZL

_Y LÞg

�ð _hLrLþhL _rLÞf
_X LðXL

_Y L�YL
_X LÞþXLðXL

€Y L�YL
€X LÞ�

_ZLðYL
_ZL�ZL

_Y LÞ�ZLðYL
€ZL�ZL

€Y LÞg

2
666666664

3
777777775

�2ð _hLrLþhL _rLÞ
hLrLf

_X LðXL
_Y L�YL

_X LÞþXLðXL
€Y L�YL

€X LÞ�
_ZLðYL

_ZL�ZL
_Y LÞ�ZLðYL

€ZL�ZL
€Y LÞg

�ð _hLrLþhL _rLÞfXLðXL
_Y L�YL

_X LÞ�ZLðYL
_ZL�ZL

_Y LÞg

" #

2
6666666666666664

3
7777777777777775

;

R23 ¼
1

hLrL
½YLðYL

_ZL�ZL
_Y LÞ�XLðZL

_X L�XL
_ZLÞ�;

_R23 ¼
1

h2
L r2

L

hLrLf
_Y LðYL

_ZL�ZL
_Y LÞþYLðYL

€ZL�ZL
€Y LÞ�

_X LðZL
_X L�XL

_ZLÞ�XLðZL
€X L�XL

€ZLÞg

�ð _hLrLþhL _rLÞfYLðYL
_ZL�ZL

_Y LÞ�XLðZL
_X L�XL

_ZLÞg

" #
;

€R23 ¼
1

h3
L r3

L

hLrL

ð _hLrLþhL _rLÞf
_Y LðYL

_ZL�ZL
_Y LÞþYLðYL

€ZL�ZL
€Y LÞ�

_X LðZL
_X L�XL

_ZLÞ�XLðZL
€X L�XL

€ZLÞg

þhLrL

€Y LðYL
_ZL�ZL

_Y LÞþ2 _Y LðYL
€ZL�ZL

€Y LÞþYLð
_Y L
€ZLþYL .’ZL�

_ZL
€Y L�ZL .’YLÞ

� €X LðZL
_X L�XL

_ZLÞ�2 _X LðZL
€X L�XL

€ZLÞ�XLð
_ZL
€X LþZL .’XL�

_X L
€ZL�XL .’ZLÞ

8<
:

9=
;

�ð €hLrLþ2 _hL _rLþhL €rLÞfYLðYL
_ZL�ZL

_Y LÞ�XLðZL
_X L�XL

_ZLÞg

�ð _hLrLþhL _rLÞf
_Y LðYL

_ZL�ZL
_Y LÞþYLðYL

€ZL�ZL
€Y LÞ�

_X LðZL
_X L�XL

_ZLÞ�XLðZL
€X L�XL

€ZLÞg

2
666666664

3
777777775

�2ð _hLrLþhL _rLÞ
hLrLf

_Y LðYL
_ZL�ZL

_Y LÞþYLðYL
€ZL�ZL

€Y LÞ�
_X LðZL

_X L�XL
_ZLÞ�XLðZL

€X L�XL
€ZLÞg

�ð _hLrLþhL _rLÞfYLðYL
_ZL�ZL

_Y LÞ�XLðZL
_X L�XL

_ZLÞg

" #

2
6666666666666664

3
7777777777777775

;

R31 ¼
YL
_ZL�ZL

_Y L

hL
; _R31 ¼

1

h2
L

½hLðYL
€ZL�ZL

€Y LÞ�
_hLðYL

_ZL�ZL
_Y LÞ�;

€R31 ¼
1

h3
L

hLfhLð
_Y L
€ZLþYL .’ZL�

_ZL
€Y L�ZL .’YLÞ�

€hLðYL
_ZL�ZL

_Y LÞg

�2 _hLfhLðYL
€ZL�ZL

€Y LÞ�
_hLðYL

_ZL�ZL
_Y LÞg

2
4

3
5;

R32 ¼
ZL
_X L�XL

_ZL

hL
; _R32 ¼

1

h2
L

½hLðZL
€X L�XL

€ZLÞ�
_hLðZL

_X L�XL
_ZLÞ�;

€R32 ¼
1

h3
L

hLfhLð
_ZL
€X LþZL

.’XL�
_X L
€ZL�XL .’ZLÞ�

€hLðZL
_X L�XL

_ZLÞg

�2 _hLfhLðZL
€X L�XL

€ZLÞ�
_hLðZL

_X L�XL
_ZLÞg

2
4

3
5;

R33 ¼
XL
_Y L�YL

_X L

hL
; _R33 ¼

1

h2
L

½hLðXL
€Y L�YL

€X LÞ�
_hLðXL

_Y L�YL
_X LÞ�;

and

€R33 ¼
1

h3
L

hLfhLð
_X L
€Y LþXL .’YL�

_Y L
€X L�YL

.’XLÞ�
€hLðXL

_Y L�YL
_X LÞg

�2 _hLfhLðXL
€Y L�YL

€X LÞ�
_hLðXL

_Y L�YL
_X LÞg

2
4

3
5:
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