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This paper develops a dynamical model of terrorism. We consider the population in a
given region as being made up of three primary components: terrorists, those susceptible
to both terrorist and pacifist propaganda, and nonsusceptibles, or pacifists. The dynam-
ical behavior of these three populations is studied using a model that incorporates the
effects of both direct military/police intervention to reduce the terrorist population, and
nonviolent, persuasive intervention to influence the susceptibles to become pacifists. The
paper proposes a new paradigm for studying terrorism, and looks at the long-term dy-
namical evolution in time of these three population components when such interventions
are carried out. Many important features—some intuitive, others not nearly so—of the
nature of terrorism emerge from the dynamical model proposed, and they lead to sev-
eral important policy implications for the management of terrorism. The different cir-
cumstances in which nonviolent intervention and/or military/police intervention may be
beneficial, and the specific conditions under which each mode of intervention, or a com-
bination of both, may be useful, are obtained. The novelty of the model presented herein
is that it deals with the time evolution of terrorist activity. It appears to be one of the few
models that can be tested, evaluated, and improved upon, through the use of actual field
data.

Copyright © 2006 Firdaus Udwadia et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The 21st century has been marked by a new kind of warfare—terrorism. The roots of
terrorism can be identified as lying in economic, religious, psychological, philosophical,
and political aspects of society. Incidents of terrorism can often be sparked by the deteri-
oration of some local conditions, in a spatial sense, as perceived by a small segment of so-
ciety. Several qualitative models of terrorism are related to different ways of prioritization
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of terrorist targets, security measures available, and the psychological impact that such
activity may have on the local population in a given area, and in the world at large.
Other qualitative models argue in terms of group behavior that is differentiated as being
ideological, grievance-driven, and understandable (Pitchford [13] ). Several attempts to
study the phenomenon of terrorism using the case-study method have been carried out,
attempting to look at the similarities and differences between various acts of terrorism
while placing them in a historical context. Some models that are more quantitative utilize
the economic approach using utility functions to model terrorist behavior, and to assess
the losses created by terrorist actions (see Blomberg et al. [4]; Chen and Siems [5]; Frey et
al. [10]), while others use optimal control methods to model governmental actions aimed
at maximizing security under the constraints posed by the optimal trajectories selected
by terrorist (see Faria [8]). While it is somewhat questionable whether such rational be-
havior can be imputed to fundamentalist extremist groups, the main difficulties posed by
such models appear to be the ad hoc nature of the utility functions and “costs” assigned
to terrorist groups and their pursuers (see Blomberg et al. [3]; Anderson and Carter [1]).
Also whether extreme events such as suicide bombings fall within the framework of utility
theory appears questionable. Still others try to develop static “rational-actor” models for
negotiating and bargaining with the demands of transnational terrorists (see Sandler et
al. [17]; Atkinson et al. [2]; Sandler and Enders [16]). Strategic response to terrorist activ-
ities using game theoretic approaches has been looked at by Sandler and Arce [15], Frey
and Luechinger [9], d’Artigues and Vignolo [6], and Sandler [14]. Probabilistic assess-
ment of terrorist activities through the analysis of historical data is another approach that
has been used in modeling terrorist activity. Work on rudimentary models of terrorist
activities using game theory by developing attack-defense strategies when multiple tar-
gets are to be defended under resource constraints has also been initiated (Guy Carpenter
[11]). One of the main aims for developing such models of terrorism is the determina-
tion of suitable measures to counteract and control it, and to be able to get a prognosis
of the environment in terms of its level of security and safety. Yet there appear to be very
few models that are truly dynamical in nature and which therefore attempt to look at the
time evolution of terrorist activity in a manner that can be usefully employed to yield
actionable information. (For a thorough overview of the growing literature in this field,
see Enders and Sandler [7].)

In this paper we present a simple dynamical model of terrorism in terms of the dy-
namics of the population of individuals who engage in terrorist activities. We imagine
the population of a certain area (say the Gaza Strip, or the West Bank) as divided into two
categories: terrorists (T) and nonterrorists (NT). The nonterrorists are further divided
into those that are susceptible to terrorist propaganda—this segment of the population
(perhaps, the Wahabis in certain areas of the world, or those educated in madrassas) we
call the susceptibles (S)—and those that are not susceptible to such propaganda, who we
refer to as nonsusceptibles (NS). We stipulate a reasonable model for the dynamics which
includes the effect of military/police action against terrorists and the effect of nonvio-
lent means to wean away the susceptible population from turning to terrorism. (Another
stream of literature concerns the presence of any causal connections between factors like
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education and poverty and the arising and growth of terrorism. See Krueger and Maleck-
ove [12], inter alia.) One of the main motivations for the development of this dynamical
model is the insights it provides to help understand the dynamical evolution of these dif-
ferent populations, to understand the different regimes of dynamical behavior that arise,
and to point us in the right direction for asking the proper questions in order to predict
and interdict terrorist activity.

2. The dynamical model

Let us say that the number of terrorists (T) in a certain geographical region (say, a city) at
time τ is x(τ). As mentioned before, we will think of the nonterrorist population in the
area as being made up of the population of susceptibles (S), y(τ), and of nonsusceptibles
(NS), z(τ).

The number of terrorists in a given period of time can change because of several rea-
sons: (1) direct recruitment by the terrorists of individuals from the susceptible popu-
lation; the effectiveness of this is taken to be proportional to the product of the num-
ber of terrorists and the number of susceptibles; (2) effect of antiterrorist measures that
are directed directly at reducing the terrorist population, such as military and police ac-
tion/intervention, which we assume increases rapidly with, and as the square of, the num-
ber of terrorists in the region under concern; (3) number of terrorists that die from natu-
ral causes, or are killed in action, and/or self-destruct (as in the case of suicide bombers),
which we assume to be proportional to the terrorist population itself; and (4) increase in
the terrorist population primarily through the appeals by terrorists (in the region under
concern) to other terrorist groups, through global propaganda using news media, and/or
through the organized or voluntary recruitment/movement of terrorists from other re-
gions into the region of concern, and also through population growth in this section of
the population; this brings about an increase in the terrorist population that we assume is
proportional to the number of terrorists. We capture these four effects then through the
following differential equation that we posit for the evolution of the terrorist population
in the geographical region of concern:

dx

dτ
= âxy− ̂bx2 +

(

ĉ1− ĉ2
)

x, (2.1)

where we assume for convenience that the parameters â, ̂b, ĉ1, and ĉ2 are constant over the
time-horizon of interest, and nonnegative. We denote time by the parameter τ. The term
containing ĉ2 refers to the death/destruction of members of the terrorist population either
through natural causes or through suicide bombings, and the term containing ĉ1 refers
to their increase either through recruitment from among their own or the importation of
terrorists from other geographical areas. The effectiveness of terrorists to attract suscepti-
bles to their cause is described by the parameter â, and the effectiveness of military/police

action in reducing the numbers of terrorists is characterized by the parameter ̂b.
The change in the number of the susceptibles (S) in a given interval of time is likewise

caused by several factors. (1) Depletion in their population caused by their direct contact
with terrorists whose point of view they adopt. This is just the number of susceptibles
that entered the ranks of terrorists, given before by âxy. (2) Depletion in the population
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of susceptibles caused by nonviolent propaganda done by governmental and nongovern-
mental authorities that convince members of this population to use peaceful methods
of engagement; and/or concessions made to disgruntled groups of susceptibles—these
“carrots” offered may be of an economic, political, or other nature—to convince them to
enter the ranks of the nonsusceptible (NS) population. We model this effect by assuming
that the propaganda and/or concessions are targeted to the susceptible population, and
that this propaganda intensifies rapidly as the number of terrorists in the geographical
area under concern increases. We assume that the change this causes is proportional to
the product x2y. (3) Increase in the population of susceptibles caused by the propaganda
that is created through the notoriety and publicity of terrorist acts that are broadcast on
global information channels, like television and printed media, that cause some members
of the NS population to become susceptibles. (4) Increase in the susceptible population
when individuals from outside the geographical area of concern are incited to move into
the area, first as susceptibles (S), perhaps later going on to become terrorists. We assume
that the changes in the S population attributable to this cause and the previous one are
proportional to the number of terrorists in the region under concern. (5) The increase in
the susceptible population proportional to its own size (e.g., children of individuals edu-
cated in madrassas being educated, likewise, in madrassas). The evolution of the suscep-
tible population adduced from these effects can be expressed by the differential equation

dy

dτ
=−âxy− êx2y +

(

̂f1 + ̂f2
)

x+ ĝ y, (2.2)

where we again assume that the parameters ê, ̂f1, ̂f2, and ĝ are each a constant and non-
negative over the time-horizons of interest. The parameter ê signifies the effectiveness of
nonviolent means in weaning away susceptibles into the NS (pacifist) population. The
effect of individuals from the NS population moving to the S population is given by the

term ̂f1x; the effect of individuals from outside of the region of concern being attracted

to the region and becoming susceptibles is indicated by the term ̂f2x. The growth rate of
the susceptible population is given by ĝ.

Lastly, the change in the number of nonsusceptibles (NS) in a given interval of time is
described by (1) those members of the susceptible population that become NS by virtue
of having altered their persuasions because of the nonviolent actions/propaganda/induce-
ments of governmental and nongovernmental authorities, (2) those who become suscep-
tibles due to the effects of global propaganda done by terrorists through news media,
and the like, and (3) the increase in the NS population, which is proportional to their
population numbers. This then may be described by the equation

dz

dτ
= êx2y− ̂f1x+ ̂hz, (2.3)

where we assume, for simplicity again, that the parameter ̂h, which is the growth rate of
the NS population, is constant and nonnegative. The dynamical system is schematically
illustrated in Figure 2.1. For the purposes of our analysis we will assume that z� x, y.
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Figure 2.1. Schematic showing the dynamical system described by (2.1), (2.2), and (2.3).

We begin by dividing (2.1)–(2.3) by ĉ2 and using the dimensionless time t = ĉ2τ. This
yields the equations

dx

dt
= axy− bx2 + (c− 1)x, (2.4)

dy

dt
=−axy− ex2y + f x+ g y, (2.5)

dz

dt
= ex2y− f1x+hz, (2.6)

where, all the constants are normalized so that a= â/ĉ2, b = ̂b/ĉ2, c = ĉ1/ĉ2, e = ê/ĉ2, f1 =
̂f1/ĉ2, f2 = ̂f2/ĉ2, f = ( f1 + f2), g = ĝ/ĉ2, and h = ̂h/ĉ2. We thus have a nonlinear system
of three differential equations containing a total of 8 constant parameters all of which we
will assume, for the purposes of this analysis, to be nonnegative.

3. Model dynamics

In this section our aim is to understand the unfolding of the dynamics of the system,
to study its various regimes of behavior in the phase space (x, y,z), and investigate the
manner in which the behavior changes as the values of the 8 parameters change.

We begin by noting that (2.6) is uncoupled from (2.4) and (2.5), and hence the entire
dynamics of the evolution of the various populations is dependent only on the latter
two equations. Once x(t) and y(t) are known, the dynamics of the NS population z(t)
is determined from (2.6). Since the system dynamics is then only dependent on the two
coupled equations (2.4) and (2.5), we can rule out the possibility of having populations
x(t) and y(t) that, in the strict technical sense, chaotically change with time. Because x(t)
and y(t) represent the number of terrorists and the number of susceptibles, the region in
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phase space that is of interest to us is limited to x(t), y(t)≥ 0. We will now show that in
this quadrant of the phase space the orbits of the nonlinear dynamical system described
by (2.4) and (2.5) cannot be closed for b, f > 0, and hence the nonlinear system is devoid
of any limit cycles.

3.1. On the orbits of the dynamical system

Result 3.1. The nonlinear dynamical system described by (2.4) and (2.5) above does not
have any limit cycles (closed orbits) in the first quadrant of the phase plane for b, f > 0.

Proof. Consider the function

q(x, y)= ∂

∂x

[

xmyn
{

axy− bx2 + (c− 1)x
}]

+
∂

∂y

[

xmyn
{− axy− ex2y + f x+ g y

}]

= a(m+ 1)xmyn+1− b(m+ 2)xm+1yn + (c− 1)(m+ 1)xmyn

−a(n+ 1)xm+1yn− e(n+ 1)xm+2yn + f nxm+1yn−1 + g(n+ 1)xmyn.

(3.1)

Setting m= n=−1, we then obtain

q(x, y)=−b

y
− f

y2
. (3.2)

Since q(x, y) is negative in the first quadrant for b, f > 0, by Dulac’s criterion there can be
no closed orbits. �

Result 3.2. All orbits that start at t = 0 in the first quadrant x, y ≥ 0 remain in that quad-
rant for all time t > 0.

Proof. We begin by noting that the origin of the phase plane is always a fixed point; we
therefore only need to concentrate on the flow on the x- and y-axes of the positive quad-
rant. Consider the flow on the x-axis. By (2.5) we see that the flow velocity in the y-
direction is given by dy/dt = f x ≥ 0. Since the flow does not have a negative component
of velocity at any point along the positive x-axis, it cannot cross it. Similarly, along the
y-axis, the x-component of the flow velocity is zero, so the flow cannot leave the first
quadrant. �

Furthermore, the flow at any point of the positive x-axis is pointed in either the pos-
itive or negative x-direction. When, in addition, b = f = 0, the flow is pointed in the
positive x-direction for c > 1 and along the negative x-direction for c < 1; when c = 1, the
x-axis becomes a line of fixed points. When f = 0, b > 0, and c > 1, the flow field at any
point on the positive x-axis is pointed in the positive x-direction for x < (c− 1)/b and
in the negative x-direction for x > (c− 1)/b. When c = 1, the fixed point at x = (c− 1)/b
moves to the origin, and the flow at any point on the entire positive x-axis is along the
negative x-direction. For c < 1, b ≥ 0, the x-component of the flow velocity at any point
of the x-axis is always directed along negative x-direction.
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3.2. Fixed points of the dynamical system. We begin by understanding the long-term
evolutionary dynamics of the population of terrorists (T) and susceptibles (S) by iden-
tifying the fixed points of this nonlinear dynamical system described by (2.4) and (2.5).
We observe that the point x0 = y0 = 0 is always a fixed point of the dynamical system. We
now look at the other fixed points of the nonlinear equations (2.4) and (2.5) that lie in
the positive quadrant of the phase space, and to begin with, we differentiate between four
different possible situations. These cases are provided to introduce the different scenarios
of interest in observing the dynamics of terrorism, and later on we will take up each of
them in greater detail.

Case 1. When no intervention (military or nonviolent) is undertaken, that is, when the
parameters b = e = 0. The fixed point of (2.4) and (2.5) is then given by

x0 = g(1− c)
a(1− c− f )

, y0 = 1− c

a
. (3.3)

We note that for the fixed point to lie in the first quadrant, we require c ≤ 1 and ( f + c)≤
1. We will treat this case where there is no intervention as the “baseline situation,” and in
what follows in this section we will assume c < 1 and f + c < 1. What happen when c ≥ 1
and/or f + c ≥ 1 will be taken up later on.

Case 2. When nonviolent intervention is carried out against terrorists while abstaining
from military/police intervention, the parameter b = 0. The fixed point of the dynamical
system is now

x0 =
a( f + c− 1) +

√

a2( f + c− 1)2 + 4eg(1− c)2

2e(1− c)
, y0 = 1− c

a
. (3.4)

We note that the restriction ( f + c) < 1 is no longer required for x0 to be positive. How-
ever, as in the previous case, for y0 to be nonnegative, we require c ≤ 1. We observe that
the effect of nonviolent intervention does not affect the steady state value (y0) of the
population of susceptibles when compared to that with no intervention at all.

Case 3. When military/police intervention against terrorism is carried out in the absence
of nonviolent actions, e = 0, and the fixed point moves to

x0 =
gb− a(1− f − c) +

√

[

gb− a(1− f − c)
]2

+ 4gab(1− c)

2ab
, y0 = 1− c+ bx0

a
.

(3.5)

Military/police intervention appears to increase the steady state value of the susceptible
population when compared with that for no intervention at all.

However, this case is a bit more complicated, as we will see later on, and it could lead to
two fixed points when g > 0, f = 0, and c > 1, one of which will be shown to be unstable.
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Case 4. When both military and nonviolent interventions against terrorism are imple-
mented, that is, when b,e > 0, the fixed point is located at

y0 = 1− c+ bx0

a
, (3.6)

where x0 is the real positive root of the cubic equation

ebx3 +
[

e(1− c) + ab
]

x2 +
[

a(1− c− f )− gb
]

x− g(1− c)= 0. (3.7)

We observe that the addition of nonviolent intervention to military action does not affect
the steady state population of susceptibles. Also, when c < 1, the first two coefficients
of (3.7) (corresponding to the cubic term and the square term) are always positive, the
last coefficient is always negative, and the coefficient of x is sign indefinite. Hence, from
Descartes’ rule of signs there can be only one positive root of this cubic equation. We will
take up the case when c > 1 later on.

3.3. Stability of fixed points. We next inquire into the stability of the fixed points related
to each of the above-mentioned cases.

Linearization of the nonlinear equations around the fixed point (x0, y0) so that x(t)=
x0 +u(t), y(t)= y0 + v(t) leads to the linearized equations

⎡

⎢

⎢

⎣

du

dt
dv

dt

⎤

⎥

⎥

⎦

=
[

ay− 2bx− (1− c) ax
f − ay− 2exy g − ax− ex2

]

(x0,y0)

[

u
v

]

= J(x0,y0)

[

u
v

]

. (3.8)

In relation (3.8) we have denoted the Jacobian evaluated at the fixed point (x0, y0) by
J(x0,y0). Since

J(0,0) =
[

−(1− c) 0
f g

]

, (3.9)

its eigenvalues are λ = −(1− c) and λ = g, so that the fixed point (0,0) is an unstable
saddle point as long as g > 0 (later on, we will briefly consider the case g = 0 which is
nonhyperbolic). The eigenvectors corresponding to the stable and unstable manifolds
are then [(1− c+ g)/ f −1]T and [0 1]T , respectively. The y-axis is thus part of the
unstable manifold of the fixed point (0,0).

Also, for the fixed point (x0, y0), we have, using the equations that govern the fixed
point of the system (2.4) and (2.5),

J(x0,y0) =
⎡

⎢

⎣

−bx0 ax0

−
(

g y0

x0
+ ex0y0

)

− f x0

y0

⎤

⎥

⎦ , x0, y0 > 0. (3.10)

The eigenvalues, λ, of the matrix J(x0,y0) are the roots of the characteristic equation

λ2−
(

− f x0

y0
− bxo

)

λ+ ax0

(

g y0

x0
+ ex0y0

)

+
b f x2

0

y0
= 0. (3.11)
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Noting that for b, f > 0, the trace of the matrix in (3.10) is negative and its determinant
is positive, we find that the fixed point (x0, y0) is either a stable spiral or a stable node.

Thus the fixed point at (x0, y0) is
(1) a stable spiral when

(

f x0

y0
− bx0

)2

< 4ax0

(

g y0

x0
+ ex0y0

)

, (3.12)

(2) a stable node when

(

f x0

y0
− bx0

)2

> 4ax0

(

g y0

x0
+ ex0y0

)

. (3.13)

For each of the four cases considered earlier, the location of the fixed points is provided by
the relation (3.3)–(3.7); they are functions of the six parameters that specify the particular
dynamical system being considered. As an example, for our baseline situation with b =
e = 0, the fixed point given by relation (3.3) is a stable node when f 2 > 4(1− c)(1− c−
f )2/g, and, a stable spiral when f 2 < 4(1− c)(1− c− f )2/g.

It should be observed that the system dynamics looks very different when the param-
eter g = 0. For then, the entire line x = 0 constitutes a line of fixed points. The Jacobian
matrix given in relation (3.8) then becomes

J(0,y;g=0) =
[

ay− (1− c) 0
f − ay 0

]

(3.14)

making the stability of these nonisolated fixed points difficult to ascertain. The eigenval-
ues of the matrix in (3.14) are λ= 0 and λ= ay− (1− c). And so we may only conjecture,
since the fixed points are nonhyperbolic, that for y < (1− c)/a the fixed points along the
y-axis in the phase plane are stable (so that λ < 0), and that for y > (1− c)/a they become
unstable. Numerical simulation shows that this conjecture is correct.

We observe in the above analysis (see (3.3)) that for the baseline situation, for which
b = e = 0, we assumed in addition that c < 1 and ( f + c) < 1. In order to obtain a better
understanding of the “baseline situation” in which there is no military/police intervention
as well as no nonviolent intervention, so that we can later on compare the behavior of the
dynamics when we introduce interventions, we look at this situation here in some greater
detail.

3.4. Baseline case (b = e = 0). We begin by looking at the feasible range of parameters
that might be of interest in a more-or-less realistic situation. We begin with setting the
time scale (recall, we are using t = ĉ2τ to denote our dimensionless time). Imagine a
population of 400,000 inhabitants in a certain region (say, the city of Ar Ramadi in
Iraq). Let us say that in a month, 5% of the terrorists in this city resort to successful
suicide bombings. Thus ĉ2 = 0.05/month, and each unit of dimensionless time, t, then
corresponds to an actual duration, τ, of 20 months (τ = 1/0.05). In this period of 20
months, let us assume that, on average, each terrorist persuades 1 member of the S popu-
lation of this city from every 10,000 of its members to join the terrorist’s cause. Thus
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the parameter a = 1/10,000 = 10−4. Let us say that during these 20 months, the sus-
ceptible population grows by 20 individuals for every 1,000 members of the S popu-
lation, so that g = 0.02. Furthermore, we assume that 5 individuals, on average, from
the nonsusceptible (NS) population are “softened up” and become susceptibles by the
global notoriety/propaganda (through the news media, say) created by the collective ac-
tions/destruction wreaked by every 100 terrorists in this period of time (20 months), so
that f1 = 0.05. Also, since the region under consideration has “porous boundaries” and
attracts terrorists from its neighboring regions (cities), we assume that the destructive
activities of a 100 terrorists within the region cause 10 individuals to move from a neigh-
boring region into the area and join the susceptibles camp, so that f2 = 0.1. Lastly, we
assume that during the 20-month unit of time under consideration, 120 trained terrorists
(on average) move from outside the area into the area under consideration either volun-
tarily or through an organized network of world-wide terrorists as a consequence of the
propaganda and/or requests made by every 100 terrorists who reside within the region;
this makes c = 1.2. We then see that the parameters a= 10−4, c = 1.2, f = f1 + f2 = 0.15,
and g = 0.02 may well be within the realm of possibilities. Were the boundaries of the
region to be assumed “secure,” then we might expect only a trickle of individuals coming
in from neighboring regions/cities into our region of concern (say, the city of Ar Ramadi)
so that both the parameters f2 and c would be much less than unity. However, in reality,
at present it appears unlikely that they would be zero.

Consider the dynamics for b = e = 0 when c = ĉ1/ĉ2 > 1, so that the rate of increase of
terrorists exceeds their destruction/death as seen from the linear term on the right-hand
side of (2.1). Then the dynamical system, as seen from (3.3), points out that there is now
no fixed point in the first quadrant of the phase space. The phase portrait of the nonlinear
system can now best be understood geometrically by noting that (2.4) indicates that the
x-component of the phase velocity is always positive in the first quadrant. The nullcline,
which describes the curve for which the y-component of the phase velocity goes to zero,
is given by the relation axy− f x− g y = 0, whose slope goes to zero when y = f /a. Above
this nullcline the y-component of the velocity is negative, while below the nullcline it is
positive causing the phase trajectories to asymptote to the line y = f /a. The positive x-
component of the velocity of the phase particle causes x to be unbounded as t→∞. We
illustrate this dynamical behavior in Figure 3.1.

We observe that when c > 1, there appears a rapid terrorist expansion; note the increase
in the S population before its sudden drop in Figure 3.1(b). When f = 0, the S population
asymptotically tends to zero.

When c > 1, but ( f + c) > 1, (3.3) again points out that there is no fixed point in the
positive first quadrant. This situation might arise when the borders of the region are
maintained relatively secure, so that the influx of terrorists entering our region of con-
cern is limited, which nonetheless may have a high number of people from the NS popu-
lation (say, disgruntled pacifists who may no longer want to “sit on the sidelines”) who are
persuaded to become susceptibles so that the value of f1 may be large. Another instance
of such dynamical behavior might arise when the boundaries are relatively secure from
known terrorists to prevent their free movement into a region, but there are a substantial
number of “motivated” susceptibles (so that the value of f2 is now large), who are harder
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Figure 3.1. (a) Phase plot showing the flow field and the asymptotic behavior of the dynamical system,
c > 1. Trajectories starting from different initial conditions are shown in color. The solid black line is
the nullcline axy − f x− g y = 0. Notice that the terrorist population increases constantly while the
S population reaches steady state given by y = f /a = 1500. (b) The time evolution of the dynamical
system starting from x(0)= 2, y(0)= 10,000 shows the run-away terrorist population; the susceptible
population reduces to its asymptotic value of 1,500.

to keep track of, and who enter the geographical region, relatively speaking, unchecked.
Figure 3.2 shows the dynamical behavior of the system. We notice that the main geomet-
rical difference between the phase portraits in Figures 3.1 and 3.2 is the presence of the
nullcline shown in green, which now moves to the positive quadrant. The asymptotic
value of x is unbounded, while that of y again approaches f /a, as illustrated.

Figures 3.1 and 3.2 make the bifurcation from unstable to stable behavior clear. When
c > 1, the green nullcline y = (1− c)/a, which is horizontal in the phase plane, intersects
the y-axis at a negative ordinate. Hence there is no fixed point since the other nullcline
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Figure 3.2. Phase plot showing the flow field and the asymptotic behavior of the dynamical system,
when c < 1, f + c > 1. Trajectories starting from different initial conditions are shown in color. The
solid black line is the nullcline axy− f x− g y = 0; the solid green line shows the nullcline ay = 1− c.
The phase particle has a negative x-component of velocity below this green line, indicating a drop
in the terrorist population, and a positive component above it. Notice that the terrorist population
asymptotically increases constantly while the S population again reaches a steady state given by y =
f /a= 1000.

axy − f x− g y = 0 cannot intersect it in the first quadrant. When c = 1, the horizontal
nullcline coincides with the x-axis. As c further decreases, this nullcline moves into the
positive quadrant. However, since the asymptote to the nullcline axy− f x− g y = 0 is at
y = f /a, until f + c < 1, the two nullclines cannot cross, and hence there is no fixed point.
The phase flow indicates that the system is unstable when f + c > 1, with the population
of terrorists continually increasing. When f + c = 1, the nullclines cross at x→∞, and the
system remains unstable.

When c < 1 and ( f + c) < 1, (3.3) points out that we have a fixed point in the first
quadrant that may be either a stable node or a stable spiral. The two nullclines now in-
tersect each other in the first quadrant. We illustrate this in Figure 3.3(a), where we show
the stable spiral correctly predicted, with x0 = 450, y0 = 4500. Here we take c = 0.1 and
f = 0.7. Condition (3.12) is satisfied by the parameters and we obtain a stable spiral.
Figure 3.3(b) shows the dynamics when c = 0.7 and f = 0.1, so that for both these sim-
ulations f + g = 0.8. We note that an increase in the value of c paradoxically reduces the
asymptotic populations of terrorists and susceptibles to x0 = 150, y0 = 1500.

Increasing the parameter a by a factor of 10 yields the time histories shown in Figure
3.4. Comparing Figures 3.3 and 3.4, we notice that the time to reach an effective steady
state has reduced dramatically, somewhat paradoxically.

Lastly, we point out that when b = e = f = 0, the conditions in Result 3.1 of Section 3.1
are no longer satisfied and therefore we can no longer guarantee that there are no limit
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Figure 3.3. (a) Phase plot showing the flow field (with b = e = 0) and the asymptotic behavior of the
dynamical system, when c < 1, f + c < 1, with f + c = 0.8 and c = 0.1. The fixed point is at x0 = 450,
y0 = 4500. Trajectories starting from different initial conditions are shown in color. (b) Phase plot
showing the flow field (with b = e = 0) and the asymptotic behavior of the dynamical system, when c <
1, f + c < 1, with f + c = 0.8 and c = 0.7. The fixed point is at x0 = 150, y0 = 1500. Trajectories starting
from different initial conditions are shown in color. The same initial conditions as in Figure 3.3(a) are
used.

cycles in the first quadrant of the phase space (see relation (3.2)). We then have the sim-
plified dynamical system given by

dx

dt
= axy− (1− c)x, (3.15)

dy

dt
=−axy + g y, (3.16)
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Figure 3.4. (a) Time history of the dynamical system shown in Figure 3.3(b) with a= 0.002. (b) Time
history of the dynamical system shown in Figure 3.3(b) with a= 0.02.

which has the invariant

ea(x+y) = c0x
g y(1−c), (3.17)

where c0 is a constant, determined from the initial conditions, x(0) and y(0). Relation
(3.17) results in closed orbits for g > 0, c < 1. The fixed point given by (3.3) is now no
longer hyperbolic, and because of the closed orbits around it, it is a nonlinear center.
Figure 3.5 shows the periodic orbits for this situation, the periods being functions of c0.

However, when c > 1, the orbits are no longer closed as seen from the vector field,
since the x-component (see (2.4)) of the phase particle’s velocity is now always positive.
The y-component of the field is negative for x > g/a and positive for x < g/a, pointing
to the fact that y→ 0 as t→∞. We note from (3.16) that y may not vary monotonically
with time if x(0) < g/a. As the limiting case of the situation shown in Figure 3.1(a), when
f → 0, y(t→∞)= 0.

The phase portrait undergoes a dramatic change when c moves from less than unity
to greater than unity, and we have a bifurcation when c = 1. Thus when the rate of
death/self-destruction of terrorists equals the rate at which new terrorists are imported
into the area from its neighborhood, the behavior of the differential equations shows
that the fixed point y0 moves from 1/a when c = 0, to y0 = 0 when c = 1. When c = 1,
this fixed point thus moves to the x-axis. Also, the fixed points now lie along the x-axis,
x ≥ 0. The nullcline is given by x = g/a, and for initial values of the terrorist population,
x(0) < g/a, the population of susceptibles (S) initially increases before going to zero (see
Figure 3.6). The phase trajectories all end on the x-axis, the final (steady state) population
of terrorists, x f , being given by the implicit relation (see (3.17))

a
(

x f − x(0)
)= g ln

(

x f

x(0)

)

+ ay(0). (3.18)
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Figure 3.5. Phase portrait showing the vector field for b = e = f = 0, c < 1 and the periodic orbits
around the nonlinear center at x0 = 100, y0 = 1000, as given by (3.3). The orbits are described by the
closed form relation (3.17).
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Figure 3.6. The x-axis becomes a line of fixed points when c = 1, and all trajectories end up on the
x-axis. The black solid line shows the nullcline at x0 = g/a= 200. Initial conditions that fall to the left
of the nullcline show an increase in the S population before it eventually fades away to zero.

To appreciate the difference caused by the parameter c in the dynamics, we show the time
trajectories below for the two regimes of behavior when 0≤ c < 1, when c > 1, as well as
at the bifurcation point c = 1 (see Figure 3.7).
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Figure 3.7. (a) Stable limit cycle behavior when c = 0.2 < 1. Note the soliton-like behavior in the dy-
namics of the terrorist population (T) when the initial population of susceptibles (S) far exceeds that
of T. The parameter values (except for the value of c) are the same as those shown on the phase plot
in Figure 3.6. (b) Time histories of the dynamics when c =1 starting from different initial conditions.
The parameters (except for the value of c) are the same as those for Figure 3.7(a). The initial con-
ditions (same as in Figure 3.7(a)) can be more clearly seen here. (c) Unstable behavior showing an
explosion in the terrorist population for c = 1.2 > 1; the population of susceptibles declines to zero
eventually.
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Figure 3.8. The presence of nonviolent intervention causes the dynamical system to exhibit a fixed
point. Unlike the explosion in the terrorist population that occurs when b = e = 0 and c + f > 1,
with c < 1, the terrorist population in the presence of nonviolent intervention is bounded and the
dynamical trajectories here are spirals in phase space. The fixed point is at x0 ≈ 16, y0 = 350. The
parameters are the same as those used in Figure 3.2 except that e > 0.

Having now understood the dynamics of the baseline situation we are ready to study
the effect caused by nonzero values of the parameters b and e, which represent interven-
tion by different means.

3.5. Effects of nonviolent intervention (b = 0, e > 0). We begin by considering the loca-
tions of the fixed points when b = 0 and e > 0, and comparing it with the baseline situa-
tion. We note that the existence of fixed points in the baseline situation requires (see (3.3))
that c < 1 and c+ f < 1. Relations (3.3) and (3.4) point out that the presence of nonvio-
lent intervention will have no effect on the steady state value of the S population, which
will remain (1− c)/a. Denoting the steady state terrorist populations x̃0 = x0|b=0,e>0 and
x0 = x0|b=0,e=0, we can show, after some algebra, that

x0− x̃0

x0
= e(1− c)x0

e(1− c)
(

x0 + x̃0
)

+ a(1− c− f )
. (3.19)

From (3.19) we see that if g > 0, c < 1, and c+ f < 1, we find that x0 > x̃0. Thus nonviolent
intervention causes the steady state value of the terrorist population to decrease when
compared to the situation with no intervention of any kind.

Furthermore, unlike what happens when e = 0, in the presence of nonviolent inter-
vention, when c < 1 and c + f > 1, the dynamical behavior generates an attracting fixed
point. Figure 3.8 when contrasted with Figure 3.2 shows that the presence of intervention
causes the terrorist population (and the S population) to be bounded.

The reason for this is that the asymptote to the nullcline axy + ex2y− f x− g y = 0 as
x→∞ is now the x-axis, and hence the horizontal nullcline y = (1− c)/a will intersect it
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Figure 3.9. Using the same parameters as for Figure 3.3(a) except that e = 0.0001, we see a dra-
matic drop in the equilibrium population of terrorists through nonviolent intervention (compare
with Figure 3.3(a)). The fixed point is now at x0 ≈ 14, y0 = 4500.

as long as c < 1, irrespective of the value of f + c, and a stable fixed point results in the
first quadrant x, y > 0. When c = 1, the horizontal nullcline lies along the x-axis, and the
two nullclines intersect at x→∞, and the system is unstable.

For c < 1 and c + f < 1, we see a drastically lower steady state population of terror-
ists when nonviolent intervention is provided, as shown in Figure 3.9. For comparison
between the situation with and without nonviolent intervention we show the dynamics
using the same parameters as in Figure 3.3(a) except that we now have e > 0.

Lastly, we observe from relation (3.4) that for large values of the parameter e, and
c < 1, x0 ∝ 1/

√
e, and so the T population can be, theoretically speaking, driven down

to zero; note, however, that the S population is unaffected by the presence of nonviolent
intervention.

When c > 1, the effect of nonviolent intervention cannot stop the explosion in the ter-
rorist population (see Figure 3.10), though it asymptotically brings the population of sus-
ceptibles under control. The reason is the same as for the situation with no intervention—
the x-component of the velocity of the phase flow as seen in (2.4) is always positive in the
positive quadrant and hence there can be no fixed point with x0 > 0.

3.6. Effects of military/police intervention (b > 0, e = 0). The equations that determine
the fixed points of the dynamical system are

y0 = 1− c+ bx0

a
, (3.20)

r(x)= abx2 +
[

a(1− c− f )− gb
]

x− g(1− c)= 0. (3.21)
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Figure 3.10. Phase plot showing the ineffectiveness of nonviolent intervention in curbing the terrorist
population. Parameter values are same as those for Figure 3.1 except that e = 0.0001. The vector field
has a positive x-component of velocity and hence the terrorist population continually increases.

The roots of (3.21) are given by

x0 = A±√B
2ab

, (3.22)

where

A= gb− a(1− c) + a f , B = [gb+ a(1− f − c)
]2

+ 4ab f g. (3.23)

We begin by noting that for b, f ,g > 0, c < 1, f + c < 1, we have, after some algebra,
x0|b=0,e=0 > x0|b>0,e=0. We next consider 2 cases.

(A) When f ,g > 0. We begin by noting that in the presence of military intervention (b >
0) a fixed point exists when f ,g > 0. This is because B is always positive. Three regimes of
behavior now surface, as far as the fixed points are concerned. (i) When c < 1 and A < 0,
then

√
B > A, and we get one positive root x0 > 0. (ii) c < 1 and A ≥ 0, we again get one

positive root x0 > 0. (iii) When c > 1, we find that A > 0 and 0 <
√
B < A, and we get two

real positive roots of the equation r(x)= 0 with the two roots x(2)
0 > x(1)

0 > 0. When c < 1
and x0 > 0, we always have, by relation (3.20), y0 > 0. However, when c > 1, for y0 > 0,
we require by (3.20) that x0 > (c− 1)/b. Furthermore, when x0 = (c− 1)/b, we find that

r(x0) < 0 (see the appendix, part (a)), so only the larger of the two roots, x(2)
0 , of the

equation r(x) = 0 will yield a corresponding value of y0 > 0. Thus military intervention
causes the dynamics to always have a fixed point in the first quadrant, which is stable.

We observe from (3.5) that when c < 1, the steady state value of the S population is
always larger than when nonviolent intervention is solely used and also when no inter-
vention of any kind is used. For values of b that are large, the fixed point x0 ∝ g/a, and
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Figure 3.11. A stable spiral is seen when c < 1, A < 0. Note the long time that the trajectory stays in
the vicinity of the y-axis and the same parameters used as in Figure 3.3(b) (except for the value of b).
The fixed point occurs at x0 = 146, y0 = 1573.
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Figure 3.12. A stable node is seen when c < 1, A > 0. Compare with Figure 3.3(b). The fixed point
occurs at x0 = 120, y0 = 3000.

as b increases the steady state value of the S population, is larger by b/(ga2) when com-
pared to that obtained in the presence of no military intervention (or with nonviolent
intervention).

Figures 3.11 and 3.12 show the dynamical behavior when c < 1. When A < 0, we see a
stable spiral. As the value of b increases, A becomes positive and the dynamical behavior
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Figure 3.13. The effect of the parameter c in its influence on the steady state values and the dynamical
behavior of the system. (a) c = 0.7. The fixed point is at x0 ≈ 361, y0 ≈ 3361. (b) c = 1.2. The fixed
point is at x0 ≈ 3588, y0 ≈ 1588.

switches to a stable node. For comparison, we have used the same parameter values we
used in Figure 3.3(b), except for the value of b.

The influence of the parameter c can be substantial in determining the steady state val-
ues of the T and S populations. For example, with a= b = 0.0001, f = 0.15, and g = 0.02,
the steady state T populations for c = 0.7 and for c = 1.2 are about 361 and 3588, respec-
tively; the steady state S populations are about 3361 and 1588, respectively. Figure 3.13
shows the phase portraits for the two cases. Both cases lead to stable spirals. However, the
time taken to reach these steady states also differs substantially, the system with the larger
c value reaching a steady state much more rapidly (see Figures 3.14 and 3.15 that show
the time histories). We have used the same parameters in Figure 3.13(b) as were used in
Figure 3.10 except for the values of b and e. This comparison illustrates that the presence
of military action will cause a stable fixed point to appear even when c > 1, something
that does not happen when only nonviolent intervention is undertaken.

(B) When g > 0, f = 0. The situation when f = 0 is interesting in that we can have two
fixed points in the first quadrant. We find that

x(1)
0 = g

a
, y(1)

0 = 1− c

a
+
bg

a2
, x(2)

0 = c− 1
b

, y(2)
0 = 0 when

gb

a
+ 1 > c, (3.24)

x̃(1)
0 = c− 1

b
, ỹ(1)

0 = 0 when
gb

a
+ 1 < c. (3.25)

It can be shown (see the appendix, part (b)) that the fixed point (x(1)
0 , y(1)

0 ) is either a stable

node or a spiral. For x̃(1)
0 ,x(2)

0 > 0, we require c > 1. Thus when c > 1 and gb/a+ 1 > c, we

have two fixed points, as shown in relations (3.24). The fixed point (x(2)
0 , y(2)

0 ) is, however,
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Figure 3.14. Time histories of response of the dynamical system with c = 0.7, and the parameters
shown in Figure 3.13(a). (a) Terrorist population versus time. (b) Susceptible populations versus time.
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Figure 3.15. Time histories of response of the dynamical system with c = 1.2, and the parameters
shown in Figure 3.13(b). (a) Terrorist population versus time. (b) Susceptible populations versus
time. Note the much larger steady state terrorist population as compared to Figure 3.14.

unstable. The fixed point (x̃(1)
0 , ỹ(1)

0 ) which occurs when 1 < gb/a+ 1 < c is a stable node,
as shown in the appendix, part (b).

We next address the question of comparing the steady state population of terrorists
when we only have nonviolent intervention as compared to when we only have military
intervention, keeping the parameters c, f , and g the same. We note that when b = 0,
e > 0, we have a stable fixed point x0, y0 > 0 as long as c < 1. On the other hand, when
b > 0, e = 0, we always have a fixed point in the first quadrant with x̃0, ỹ0 > 0 for all values
of c > 0. In order to compare the steady state values of the T and S populations in the two
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situations, we therefore restrict our attention to the situation when c < 1. We then have
the following result.

Result 3.3. When c < 1, and e(1− c)− ab > 0, then x̃0 > x0 when the parameters c, f ,
and g are kept unchanged. This means that under these circumstances, the steady state
population of terrorists is larger when only military/police intervention is utilized, as
compared to when only nonviolent intervention is used.

Proof. From (3.7) we see that x0 > 0 satisfies the relation

e(1− c)x2
0 + a(1− c− f )x0 = g(1− c) (3.26)

and x̃0 > 0 satisfies the relation

abx̃2
0 +
[

a(1− c− f )− gb
]

x̃0 = g(1− c). (3.27)

Substituting for g(1− c) from (3.26) in (3.27) gives

ab
(

x̃0− x0
)(

x̃0 + x0
)

+
[

ab− e(1− c)
]

x2
0 + a(1− c− f )

(

x̃0− x0
)− gbx̃0 = 0, (3.28)

where we have added and subtracted the quantity abx2
0. This results in

(

x̃0− x0
)= gbx̃0 +

[

e(1− c)− ab
]

x2
0

ab
(

x̃0 + x0
)

+ a(1− c− f )
. (3.29)

Since from (3.26) we have abx̃2
0 + [a(1− c− f )]x̃0 = g(1− c) + gbx̃0, (3.29) becomes upon

multiplying the numerator and denominator on both sides by x̃0,

(

x̃0− x0
)= gbx̃2

0 +
[

e(1− c)− ab
]

x̃0x
2
0

ab
(

x̃0x0
)

+ g(1− c) + gbx̃0
. (3.30)

The denominator is always positive, and to ensure that x̃0 > x0, the result now follows.
From the proof we note that the condition stated in Result 3.3 when c < 1 is a sufficient
condition for x̃0 > x0, but not a necessary condition. �

Figure 3.16 illustrates Result 3.3, where we compare the effect of military interven-
tion with that produced by nonviolent intervention. We use the parameter values as in
Figure 3.13(a), and here e(1− c)− ab > 0. We find that the fixed point has moved from
x̃0 ≈ 361, ỹ0 ≈ 3361 when using military intervention to x0 ≈ 14, y0 = 3000 when us-
ing nonviolent intervention, though the time needed to achieve the steady state value is
much greater in the latter case. While the change in the population of susceptibles is not
appreciable, that in the terrorist population is substantial, as seen from the two figures.

3.7. Effects of combined military/police and nonviolent intervention (e,b > 0). When
both military/police intervention and nonviolent intervention are present, the fixed point
x0 satisfies relation (3.7). When c < 1, as pointed out in Section 3.2, we have a fixed point
(x0, y0), where x0 is positive real root of

r(x)= ebx3 +
[

e(1− c) + ab
]

x2 +
[

a(1− c− f )− gb
]

x− g(1− c)= 0. (3.31)
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Figure 3.16. A comparison with Figures 3.13(a) and 3.14 showing that nonviolent intervention brings
about lower steady state terrorist populations than those brought about by military/police interven-
tion, when e(1− c)− ab > 0. The fixed point occurs at x0 ≈ 14, y0 = 3000.

This fixed point could be a stable spiral or a stable node depending on whether relation
(3.12) or (3.13) is satisfied.

However, when c > 1, the coefficient of the x2 term in (3.31) is sign indefinite while the
coefficient of the x term is negative. Also,

r
(

c− 1
b

)

=−a f (c− 1)
b

(3.32)

is negative when f > 0 and c > 1. Hence Descarte’s rule points out that we would have

2 positive roots, x(2)
0 > x(1)

0 , of the equation r(x) = 0, and one negative root. Since we

require x0 > (c− 1)/b, only the root x(2)
0 will then yield a corresponding y0 that is positive.
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Figure 3.17. The effects of both military and nonviolent actions are illustrated here for c < 1. The fixed
point is at x0 ≈ 14, y0 ≈ 3013, and the trajectories appear to reach the equilibrium point marginally
faster than with only nonviolent intervention. All the parameters are the same for Figures 3.13(a),
3.14, 3.16, and 3.17, except for the values of b and e. A soliton-like behavior is observed from the
phase plot.

Hence we will have only one fixed point (x0, y0) for which x0, y0 > 0. As pointed out in
Section 3.3, the fixed point will again be either a stable spiral or a stable node depending
on whether relation (3.12) or (3.13) is satisfied.

Figure 3.17 shows the effect of combined military/police and nonviolent interventions
when c < 1. For c > 1, we see that as in the case of only military intervention, we have
a stable node, that is reached relatively rapidly when compared with c < 1, as seen in
Figure 3.18.

A comparison of Figures 3.13(b) and 3.15 with Figure 3.18 indicates the difference
that nonviolent intervention makes when added to military/police intervention. We note
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Figure 3.18. The parameters used here are the same as those for Figure 3.17, except that c = 1.2. The
fixed point is a stable node with x0 ≈ 2000, y0 ≈ 1.

that the steady state value of the terrorist population is reduced substantially, as is the
population of susceptibles, while the time required to reach steady state is increased con-
siderably.

From our previous understanding of the various cases, we can heuristically say that
the presence of military intervention causes the terrorist population to be asymptotically
bounded, something that cannot occur with only nonviolent intervention; it also reduced
the steady state value of the susceptible population. The addition of nonviolent interven-
tion reduces the steady state value of the terrorist population as compared with what it
might have been only with military/police intervention, but also increases the time re-
quired to reach the steady state.

Result 3.4. The addition of military/police intervention to nonviolent intervention al-
ways reduces the steady state population of terrorists from what it would be with only
nonviolent intervention. Hence,

x0
∣

∣e>0
b>0

< x0
∣

∣e>0
b=0

. (3.33)

Proof. We note that a steady state is reached with only nonviolent intervention when c <
1. Let x0 > 0 be the steady state terrorist population when only nonviolent intervention
is used, and let x̃0 > 0 be the steady state terrorist population when both military/police
and nonviolent interventions are employed. Thus we have, with c < 1,

e(1− c)x2
0 + a(1− c− f )x0− g(1− c)= 0, (3.34)

ebx̃3
0 +
[

e(1− c) + ab
]

x̃2
0 +
[

a(1− c− f )− gb
]

x̃0− g(1− c)= 0. (3.35)
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Substituting for g(1− c) from (3.34) into (3.35) we get

x̃0− x0 =− ab f x2
0 x̃0/(1− c)

ebx̃0
(

x0x̃0 + x2
0

)

+
[

e(1− c) + ab
]

x0x̃0 + g(1− c)
(3.36)

from which the result follows. �

Result 3.5. The addition of nonviolent intervention to military/police intervention al-
ways reduces the steady state population of terrorists from what it would be with only
nonviolent intervention. Hence, with f ,g > 0, we have

x0
∣

∣e>0
b>0

< x0
∣

∣e=0
b>0

. (3.37)

Proof. We note that a steady state is reached with only military/police intervention for
any c > 0. Let x0 > 0 be the steady state terrorist population when only military/police
intervention is used, and let x̃0 > 0 be the steady state terrorist population when both
military/police and nonviolent interventions are employed. Thus we have

r
(

x0
)≡ abx2

0 +
[

a(1− c− f )− gb
]

x0 + g(c− 1)= 0, (3.38)

ebx̃3
0 +
[

e(1− c) + ab
]

x̃2
0 +
[

a(1− c− f )− gb
]

x̃0 + g(c− 1)= 0. (3.39)

Substituting for g(1− c) from (3.39) into (3.38) we get

x0− x̃0 = ex0x̃
2
0

[

bx̃0 + (1− c)
]

abx0x̃0 + g(1− c)
, (3.40)

which is clearly positive when 0≤ c ≤ 1, since both x0 and x̃0 are positive.
As pointed out in Section 3.6, when c > 1 and f ,g > 0, (3.38) has two positive roots

of which the larger yields ỹ0 > 0, and for this to happen, from relation (3.6) we see that
x̃0 > (c− 1)/b, so that the numerator in relation (3.40) is positive. To prove that the de-
nominator in (3.40) is positive when c > 1, we note that since r(g/a)=−g f < 0, x0 > g/a,
and hence

abx0x̃0 > ab
(

g

a

)(

c− 1
b

)

= g(c− 1). (3.41)

Thus we have shown that x0− x̃0 > 0 when c ≥ 0. �

We have thus shown that a combination of military/police action and nonviolent in-
tervention yields a fixed point with a lower terrorist population that with any one of these
interventions excluded.

4. Conclusions

In this paper we have developed a preliminary dynamical systems approach to under-
standing the dynamics of terrorism. We have conceptualized the population in a given
region in terms of terrorists, susceptibles, and nonsusceptibles. We consider terrorists to
be individuals who are firmly committed to terrorism, who will not yield to nonviolent
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actions such as persuasion through economic, political, social, or other means. They are
what might be called, for example, the “insurgent” population in areas like Mosul and
Baghdad. The segment we term as susceptibles constitutes those that can be influenced,
either into becoming terrorists through terrorist propaganda or into becoming pacifists
that constitute what we call the nonsusceptible population. The population segment of
susceptibles would, for example, include individuals who have been educated in madras-
sas, and/or those who might be influenced from a young age by Wahabi thinking, and/or
those who may have grown up in conditions of depravity brought about by geopolitical
forces outside their control (e.g., some people in the West Bank and Gaza Strip). We as-
sume that military/police intervention is used for reducing the rate of expansion of the
terrorist population, while nonviolent action is used to target susceptibles into becoming
nonterrorists. The flow between these three populations and the effect of military/police
action as well as nonviolent action are illustrated in Figure 2.1. We assume that mili-
tary/police action increases as the square of the terrorist population, and that nonviolent
action is proportional to the product of the size of the susceptible population and the
square of the terrorist population.

The model we have used here is normative, and the usefulness of the results adduced
herein would naturally depend on the extent to which our model approximates reality. In
this respect, our model is somewhat different from other socio-politico-economic mod-
els, such as those that may use game theory or optimal control where matters like game
set-ups and problem frameworks, player payoffs, and cost (utility) functions are difficult
to assess, along with the basic assumptions underlying these approaches. The determina-
tion of the model parameters/functions in these situations is, at best, also difficult. The
model we have proposed contains parameters, which could be estimated with greater
ease, and from data that may be more widely available. We intend to take the estimation
of these parameters from field data in a follow-on study so that further improvements in
the description of the dynamical characterization of the system can be incorporated.

The differential equations that model the system have 8 (effectively 6) parameters, and
it is somewhat remarkable that, though highly nonlinear, the dynamical regimes of behav-
ior can still be analyzed, in general, in a relatively straightforward manner. The analysis
presented herein, however, does not deal with degenerate cases, such as if g = 0. Such de-
generacies could cause fundamental changes in the behavior of the dynamical system. If
g = 0, for example, we have a line of fixed points “born” along the y-axis. The equilib-
rium points can lose their hyperbolicity and a linearized analysis cannot be resorted to in
order to assess their stability. While it may be unlikely that in real life the parameter g = 0,
the gross changes in the phase portraits and the totally different dynamical behavior gen-
erated by such special parameter values point out the need for further investigation. We
plan to take up these issues in our future work. Furthermore, our study here has basi-
cally concentrated on the fixed points of the dynamical system, their existence, and their
stability. Several issues such as the transient behavior of the system, which may be im-
portant from a policy and strategic planning viewpoint, though touched upon, have not
been emphasized, nor have the possibility of the parameters of the model being functions
of time been entertained. For the sake of brevity, this initial paper has not looked into
several of these aspects; they will be the focus of our attention in the future.
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The dynamical behavior of our model indicates several general features, many of which
point to new strategic ways of planning to quell terrorism. While some of these features
may appear reasonable from an intuitive stance, there are many that do not immediately
suggest themselves purely on intuitive grounds. More importantly, the study points to
the various conditions under which different strategies might be meaningful and effec-
tive, and their possible effects. We remind the reader that when there is military/police
intervention the parameter b > 0; when there is no such intervention, b = 0. Similarly,
when there is nonviolent intervention the parameter e > 0; when there is no such inter-
vention, e = 0. We summarize some of our observations below.

(1) There is no possibility of the populations of the terrorists and susceptibles evolving
chaotically in a manner that precludes prediction because of extreme sensitivity to the
small uncertainties in determining the population numbers of the two populations at
any given time. From a mathematical standpoint, dynamical chaos is precluded in the
model that has been proposed herein to describe the behavior of the system.

(2) In the presence of military/police intervention against terrorists with or without
nonviolent intervention, the dynamical system always reaches a unique equilibrium state
as long as the susceptible population keeps growing; that is, if a,g > 0, and e ≥ 0, a unique
(nonzero) equilibrium population of terrorists and susceptibles will emerge as long as
b > 0 and/or f > 0.

(3) As long as e(1− c)− ab > 0, the equilibrium population of terrorists is less when
solely nonviolent action is used instead of military/police intervention. This result is
somewhat unexpected and points out new directions in strategic planning for curbing
terrorism.

(4) Were no intervention to be made so that b = e = 0, the system would become
unstable if c > 1, or if f + c > 1. The first of these conditions, c > 1, appears intuitive for
it simply states that terrorists are increasing in number faster than they are dying/self-
destructing. The latter condition, however, is less intuitive and points out that it is not
necessary for c > 1 for the terrorist population to explode; for, the increase in susceptibles
caused by terrorist propaganda can also lead to such an explosion, the susceptibles being
seduced into terrorist behavior through their recruitment by terrorists, as per the axy
term in (2.4). On the other hand, were either f + c > 1 and/or c > 1, the terrorist situation
would go out of hand unless some sort of interdiction is made.

(5) Perhaps the most critical parameter which emerges from this dynamical investi-
gation is the value of c, the ratio of the rate of increase of terrorists either through re-
cruitment from among their own population or importation of terrorists from other ge-
ographical areas to the rate at which terrorists die/self-destruct. (a) If this ratio is less than
unity, nonviolent action will cause the populations eventually to reach a steady state. The
time to reach steady state is large and the population of susceptibles may fluctuate consid-
erably, however the orbits are seen to lie in a narrow region around the y-axis, pointing
to the possible advantages of using nonviolent action in curbing terrorist populations.
However, if this ratio exceeds unity (c > 1), nonviolent action will not be able to stop the
upward increase in the terrorist population. Thus the presence of porous boundaries in
an area of terrorist activity can lead to substantially different dynamical behavior, and our
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model points to the fact that sealing the boundaries of a region to prevent the flow of ter-
rorists into it should be a matter of considerable strategic importance in curbing terrorist
activities. (b) Military/police response always results in the two populations reaching an
eventual steady state. This occurs even if c > 1.

(6) The combined action of both military/police and nonviolent initiatives, in general,
brings the equilibrium population of terrorists considerable lower than with only military
intervention, though it appears to increase the duration of time necessary to reach the
steady state.

(7) The variation of the populations of terrorists and susceptibles may show a soliton-
like behavior in time, even though these populations reach steady states. This is because
the dynamical flow is slow in the vicinity of the y-axis. This means that the terrorist
population can decrease, and can remain decreased, for extended periods of time, before
possibly increasing substantially again. Quiescent periods with low terrorist activity, be-
cause of low terrorist populations, seem to be an inherent feature of the dynamics of the
system. They are unrelated to explanations like the increased effectiveness of military or
nonviolent actions. This points to the fact that curbing terrorism has to be a long-term
strategy which must continually proceed despite periods of time when terrorist activi-
ties may be seen to be of negligible occurrence. This is because the dynamics itself has
this nature, that is, long “quiescent” periods of time could elapse between “explosions” of
terrorist populations.

(8) The equilibrium populations, when they exist, are shown to be stable. Further-
more, from a dynamical standpoint, these equilibrium points are shown to be either sta-
ble spirals or nodes. This would mean that even in the presence of military and/or nonvi-
olent intervention, the population of terrorists, together with their activities, can increase
before the equilibrium population is eventually reached. This is controlled by the initial
population numbers of the terrorists and the susceptibles in relation to the location (and
stability) of the equilibrium populations. Thus, the fact that terrorist activities (especially
over the short haul) may increase in spite of military/police and/or nonviolent interven-
tion does not indicate that such intervention is ineffective.

(9) In addition to Results 3.3–3.5 that are related to the steady state population of
terrorists when it exists, the steady state population of susceptibles, y0, when it exists, has
the following property:

y0
∣

∣

b=0
e=0
= y0

∣

∣

b=0
e>0

< y0
∣

∣

b>0
e>0

< y0
∣

∣

b>0
e=0

. (4.1)

(10) Military/police intervention appears to be necessary for allowing terrorist pop-
ulations to reach stable values in areas where the boundaries are porous and c > 1. The
addition of nonviolent intervention appears to reduce the steady state terrorist popula-
tion substantially. In areas where the relative increase in the terrorist population is such
that c < 1 and f + c < 1, the use of nonviolent action might be preferable to military/police
intervention if the intention is to bring down the eventual value of the terrorist popula-
tion.
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Appendix

(a) When f ,g > 0, and c > 1, for y0 > 0, we require x0 > (c − 1)/b. We know that the
equation r(x)= 0 given in (3.21) has two real positive roots. Since for x = (c− 1)/b, r((c−
1)/b)= a f (1− c)/b < 0, we find that only the larger of the two roots of r(x)= 0 will yield
a y0 > 0. Hence, while there are two values of x0 > 0 for which r(x0) = 0, only the larger
of two values of x0 will result in a y0 > 0.

(b) When g > 0, f = 0, the Jacobian evaluated at the fixed point (x(1)
0 , y(1)

0 ) is given by

J(x01,y01) =
[

ay− 2bx− (1− c) ax
−ay g − ax

]

(x01,y01)

=

⎡

⎢

⎢

⎣

−gb

a
g

c−
(

1 +
bg

a

)

0

⎤

⎥

⎥

⎦

. (A.1)

Its eigenvalues, λ, are given by

λ2−
(

− gb

a

)

λ+ g
(

1 +
bg

a

)

− cg = 0. (A.2)

Since the trace of the Jacobian is negative and its determinant is positive if c < 1 + (bg/a),

the fixed point (x(1)
0 , y(1)

0 ) is either a stable node or a stable spiral.

The Jacobian at (x(2)
0 , y(2)

0 ), when c > 1 and (bg/a+ 1− c) > 0, is given by

J(x02,y02) =
[

ay− 2bx− (1− c) ax
−ay g − ax

]

(x02,y02)

=

⎡

⎢

⎢

⎣

1− c
a(c− 1)

b

0
a

b

(

bg

a
+ 1− c

)

⎤

⎥

⎥

⎦

, (A.3)

which shows that (x(2)
0 , y(2)

0 ) is unstable saddle.

The Jacobian at (x̃(1)
0 , ỹ(1)

0 ) is given by

J(x0,y0) =
[

ay− 2bx− (1− c) ax
−ay g − ax

]

(x0,y0)

=

⎡

⎢

⎢

⎢

⎣

1− c
a(c− 1)

b

0
a

b

(

bg

a
+ 1− c

)

⎤

⎥

⎥

⎥

⎦

, (A.4)

whose eigenvalues are both negative since 1 < gb/a + 1 < c. Hence the fixed point is a
stable node.
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