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THE IDENTIFICATION OF BUILDING STRUCTURAL SYSTEMS 

II. THE NONLINEAR CASE 

B7 P. Z. MARMARBLIS AND F. E. UDWADIA 

ABSTRACT 

This paper models a building structure as a nonlinear feedback system and 
studies the effects of such a system model on the structural response to strong 
ground shaking. Nonlinear kernels arising in the identification procedure have 
been investigated and an error analysis presented. 

Applications of the Weiner method in studying the response of a reinforced 
concrete structure to strong ground shaking have been illustrated. The nature of 
the second order kernels has been displayed and the nonlinear contribution to the 
response at the roof level, during strong ground shaking, has been determined. 

INTRODUCTION 

One has to contend with two main features in the analysis of structural systems 
subjected to strong ground shaking. First, as the earthquake motions progress, various 
parts of the structure may either be brought into action, or rendered out of action, so that 
the effective structural properties of the system (which provide the resistive forces to 
seismic loads) may change during the time history of ground motions. For example, 
many nonstructural elements, which, for sufficiently small ground motions may be 
capable of providing structural strength, may fail under larger, more severe, shaking. 
The system would then be described as being nonstationary in nature. Second, we have 
the added complexity that for these larger ground motions the system could behave in a 
nonlinear manner (even without undergoing structural deterioration). This nonlinear 
behavior could als0, in part, be brought about by the deterioration that the structure 
undergoes during the ground shaking. For instance, one can conceive of a structure 
wherein the number of nonstructural elements which could perhaps be rendered out of 
action increases with the strain levels, so that the structure could exhibit a "soft spring" 
type nonlinearity. 

The problem of system nonstationarity has been explored in part I of this study 
(Udwadia and Marmarelis, 1975) where a moving-window analysis was used to isolate 
segments during which the structural system remained almost time-invariant. As explained 
earlier (cf., part I), the general nonlinear technique which will be followed for the system 
identification requires this condition to be satisfied. Otherwise, the resulting characteriza- 
tion would be a "time-average" functional characterization of the system. 

Although there is no a priori reason for representing building systems subjected to 
strong ground shaking by linear models, the linearity assumption is a widely accepted 
one (Nielsen, 1966). There are basically two reasons for this: first, the simplicity of the 
techniques involved and second, the near absence of powerful and general nonlinear 
system theories. Certain specialized methods for nonlinear system analysis exist such 
as the phase-plane and describing function techniques. However, all of these methods 
have serious limitations and are applicable to rather narrow classes of nonlinear systems. 
Starting with Wiener's original work in 1942 a general theory of nonlinear system analysis 
and synthesis has been in development (Wiener, 1958; Bose, 1956; Brilliant, 1958; 
George, 1958). 
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The theory is applicable to all systems that are time-invariant and have a finite memory 
and therefore covers a very wide range of physical systems. 

In part I of this study we outlined Wiener's method and discussed its applicability to 
structural systems. It was pointed out that Wiener's technique of breaking the system 
down into a linear system followed by a memoryless nonlinear system resulted in the 
computation of a large number of coefficients and suffered from several disadvantages. 
The cross-correlation technique proposed by Lee and Sehetzen (1965) has been used in 
this study. Besides being easily extensible to multi-input systems, the cross-correlation 
method has several advantages over the Wiener formulation and simplifies the identifica- 
tion problem in the following ways: (a) It directly estimates the kernels which, as it was 
described earlier, have a definite functional meaning; they can reveal interesting properties 
and provide an insight to the structure of the system under study. (b) The cross-correla- 
tion method is much simpler computationally because it does not involve the cumbersome 
Laguerre and Hermite transformations. (c) A linear system is easily recognized by the 
cross-corrleation method; the derived model takes a simple form and therefore the 
computational burden is reduced while the insight into the nature of the system is 
increased. (d) The synthesis problem is very simple. Estimating the response to a particular 
input involves only a few integrations. (e) It is very easy to construct alternative models 
once the kernels are known, such as structures consisting of linear filters (for which 
powerful theories exist) and multipliers. (f) In the Wiener formulation it can be considered 
that the kernels are expanded in terms of the orthogonal family of Laguerre functions, 
and since this expansion, for any practical application, has to be truncated, there is an 
inherent approximation error in the Wiener formulation. This truncation error does not 
occur in the cross-correlation method. (g) a priori informationabout the system can be 
utilized to reduce the identification effort by reducing the computational burden. 

These cross-correlation techniques have so far been applied to determine the linear 
kernels characterizing the EW and NS response of a reinforced concrete structure. The 
performance of the linear model was evaluated (cf., part I) and it was noticed that the 
model performance was different in certain features from the measured response. 
Although some of these discrepancies are no doubt due to the fact that various assump- 
tions underlying the method are not fully satisfied, it will be shown in this part that a good 
part of the discrepancies can be attributed to system nonlinearities. 

The second-order nonlinear kernels of the system will be estimated and an examination 
of their contribution to the total system response carried out. The feedback model 
briefly outlined in part I has been extended to cover the nonlinear feedback case. Error 
analyses of the second-order kernels are presented and model responses synthesized. 
Mean-square error calculations have been done and the effect of the nonlinearity 
indicated. The resulting models, in terms of the linear kernel, {ha(r), kx(z)} , and the 
nonlinear kernel, {h2(rl, T2), k2(r~, z2)), represent more accurate models as inferred 
from the computed and measured system responses during strong earthquake ground 
shaking. 

DESCRIPTION OF NONLINEARITY IN TERMS OF WIENER KERNELS 

It has been shown that, under large dynamic loads, structural systems exhibit marked 
nonlinear responses, often accompanied by a deteriorating behavior (Udwadia and 
Trifunac, 1973). Therefore, during the input-output measurement interval the system 
characteristics may not be time-invariant. However, the problem of time-variant non- 
linear systems is generally unsolved. Here, we assume that the system is nonlinear but 
time-invariant over the time period during which the identification is carried out. This 
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assumption is usually well justified. If  not, the resulting characterization of the system is 
the average (in time) characterization (i.e., the nonlinear model exhibits the average 
characteristics). In part I, we described a procedure for determining how time-variant 
a building structural system is, utilizing a moving-window analysis. Based on the results 
of this procedure we choose two segments of record to be used for identification of the 
building structural system. 

As discussed in part I, Wiener showed that the relationship between the input x(t) and 
the output y(t) of system S can be written as 

y(t) = ~ G,[h,, x(t)] (1) 
r l = 0  

where {Gi} is a complete set of orthogonal functionals with respect to Gaussian white 
noise and {h~} is the set of kernels that characterize S. 

Each h k is a symmetric function with respect to its arguments. The first four Wiener 
functionals were represented in part I, and their functional relationships will not be 
repeated here. 

The set of kernels {h/} can be considered to be the generalized "impulse responses 'of  
system S. By considering the system response to inputs of single impulses applied at 
different times as well as the response to finite trains of impulses, it can easily be shown 
that the nonlinear kernels give a quantitative measure of the nonlinear "cross-talk" 
between different portions of the past input as it affects the present system response. 

For example, for a system which has only a second-order nonlinearity, the character- 
izing kernel he(t, t-t~) indicates the nonlinear interaction (for t > t~) between the input 
at t = 0 and the input at t = t~ as it affects the system output at time t. 

This can be shown as follows: Let S be a nonlinear system characterized by the input- 
output relationship 

y(t) = ~o hl(~)x(t-z)d~+~Soh2(~l, r2)x(t-q)x(t-z2)dr~d~2" (2) 

The response at time t due to an impulse at t = 0, i.e., for x~(t) = cS(t) is 

Yl( t )  ---- hl(t)+hz(t, t). 

Similarly, the response due to an impulse at t = t,, i.e., for x2(t ) = ~(t-  t,), is 

ye(t) = hl(t-t~)+h2(t-t~, t - t , ) .  (3) 

The response of the system S to a stimulus consisting of an impulse at time t = 0 and an 
impulse at time t = t~, i.e., for x3 = xj +x2 ,  is 

y3(t) = h~(t)+h~(t-t~)+h2(t, t)+ 2hz(t, t - t~)+hz(t-t~,  t-t~). 

The difference in this response from that obtained by linear superposition, i.e., 

y3(t)-- [yl(t) +y2(t)] = 2hz(t, t -  t~), (,4) 

represents the deviation of the second order, nonlinear system response from the linear, 
first-order representation. 

The nonlinear kernels are found by use of cross-correlation techniques (Lee and 
Schetzen, 1965). For example, to estimate hz(a~, ire) we form the cross-correlation 
(E{. } means "expected value") 

1 

Q(aa , a2) = E{[y(t)- ~ a,[h,, x(t)]]x(t- a,)x(t-  az) } 
o 

which, utilizing the orthogonality properties of the Wiener series and the fact that x(t) 
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is Gaussian white noise with zero mean [therefore E{x} = O, E{x( t )x( t -z )}  = ~x(Z) = 
P6(z), ~bx~(h, z2) = 0, etc.] gives 

a = E{S S h2(z 1 , r2)x( t -  r , ) x ( t -  z2)dhdz 2 • x ( t -  0-a)x(t- ~r2) ) 

- E{P ~ h2(z , , z , )d h • x ( t -  0-1)x(t- 02)}. 

Next, considering that x(t) is a Gaussian variable 

E{x(t  - ~Ox(t - ~ g x ( t -  0-Ox(t - 0-9} = e{x ( t  - ~Ox(t - ~ 9 } '  E { ~ ( t  - 0-Ox(t -  0-2)} 

-}- E { x ( t  - -  T,)X(t -- 0-,)}'  E { X ( t  - -  ~ 2 ) X ( t -  0"2) } 

+ e { x ( t -  ~Ox(t -0-  9 } .  E { x ( t -  ~ g x ( t - o l ) }  

= ~(~,  - ~2)6(0-1 - 0-~) + 6(~ ,  - 0-,)~(~ : -  0-9 

+ 4 ( z ,  - 0 - : ) ~ ( z :  - 0-,) 

where ~b(u) is the autocorrelation function of white noise x(t), i.e., (b(u) = P6(u). Thus, 

Q = 3 ( 0 1 - 0 - 2 ) I S o  h2( ' r l ,  " c2 )3 ( ' c l - z2 )dz ldZ2  

+ e2[h2(0-,, a2) +h2(0-2, 0-0] 

- P  I 2  h2(T'  ' T1)q~(0-1 -- 0-2)dT1 

= 2P2h2(0-1,0-2) 

and therefore 

Q 1 
h2(0-, , 0-2) = 2p 2 - 2p 2 E{[y ( t ) -  Z G,[h,, x( t )]]x( t -  0-1)x(t- 0-2)}" 

0 

Similarly, we have in general 
h.(0-1,0-2,  • • . ,  0-.) 

l n--1 
!p .  E{  [y(t)  - Z 6 ~  Ibm, x(t)]]  x ( t -  0-,)x(t- 0- 2) . . . . .  x ( t -  0-.)}. 

0 

(5) 

(6) 

NONLINEAR DESCRIPTION OF THE FEEDBACK MODEL 

In part I we described briefly the feedback model of a building structural system. The 
transfer function of the system was derived assuming that each component is a linear 
subsystem. A similar analysis can be made even if each subsystem is nonlinear and 
described by a set of Wiener kernels. 

Figure 1 shows the block diagram of a building whose component subsystems are 
B, R, and A. As discussed in part I, these components represent, respectively, the building 
element, the element which takes care of the reflection of signal when it reaches the 
boundary, and the feedback element (which is a composite of the elements B*, L, T, and 
G). We shall assume for the sake of this discussion that the reflective element is linear 
while both B and A are nonlinear in nature. We assume that each subsystem can be 
described by the linear kernel gl(z) and the second-order nonlinear kernel g2(z~, z2), while 
the contribution of the higher-order kernels (g3, g4, etc.) is small. As discussed previously, 
the characterization of the system in terms of only g~(z) and ga(zl, zz) is the best second- 
order-nonlinear model of the system in the mean-square-error sense. 
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Brilliant (1958) has shown that any continuous, physically realizable system can be 
approximated arbitrarily closely in the form 

y( t )  = h o +  ~o k x ( ~ ) x ( t - z ) d ~ +  ~ o  hz(zl, z 2 ) x ( t - z O x ( t - ~ z ) d z l d z 2  

+ ' "  "+ ~ 0  " " ~ hn('q'  z2 . . . . .  " c n ) x ( t - z l ) x ( t - ' c 2 )  . . . x ( t -  en)d'Qd~2 . . . de, 

(7) 

xl(t)___~.~ xz(t} 

O xs(t) 

/ B 
- -  bl(r 2) x3(t), -- 1, b2('r 1, "r 

x4(t) 

A] 
al('r t, a2('r 1, 'r 2) 

) =- Ym(t) 

x l ( t ) - ~  xz(t) 
= GI(S),GG2(sl , s 2) x4(t) 

A I_ 
AI(S),A2(s I, s2) ] Figure lb. 

_ ~ [bl(~) ,b2(~,T2) 

I ] x4(t) 
C al ('r)' a2('r I' "r 2) = 

x2(t) ] B 

Figure Ic. 

- - [  FI(T), K2(TI,~2) ] x4(t)--- ~ 
-l Ym (t) 

~I(T), ~2(~i,v2)]__! x3(t) ___/ Figure id. 
d l 

FIG. 1. Schematic black-box representation of the building-soil system, component B representing the 
building structure, and component A representing the feedback loop as described by nonlinear elements. 
Element R is the linear reflective element. 

where x(t) is the input and y(t) is the output o f  the system. Without loss of  generality, 
in the practical case, we can take h 0 to be zero (i.e., by measuring all variables from their 
values when the input is zero). 

We should also note that 

~o ~ h ~ ( z ) x ( t - ~ ) d ~  = J'~- ~ hi ( ~ ) x ( t  - e)  & = ~ ~- ® hi  ( t  - ~ ) x ( O  & = St- ~ hi  ( t  - ~ )x (e )  de  

(8) 
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since for physical systems hl(v ) = 0 for v < 0. A similar argument is valid for higher 
order kernels. 

Let us consider now the cascade combination of systems B and R in Figure 1. We have 

x4(t ) ----- ~ ~ r l ( t -  z)x3(z)dT- 

= ~ r l ( t - z ) [~o~  b,(7--p)x2(p)dp 

+ ~-~ o0 b 2 ( z -  Pl,  7- - p2)x2(Pl)x2(p 2) duldP 2] dT- 

= ~-o~ [~-oo rl(t-7-)bl(t-p)dzlx2(p)dP 

+ ~_o£, [~_~ ® rl (t - 7-)b 2 (z - Pl,  z - p 2) dz]x(pl)x(P 2) dPl dp 2. (9) 

Let us define the Laplace transforms of the system kernels by 

Hi(s) = ~-o~ hi(z) exp (-sT-)dT- 

H2($1, $2) ~--- I~_moo h2(7-1, "Ca) exp (--S1271 -s2"C2)d7-1dT- 2 . (10) 

Then, it is easily shown that the overall system kernels g~(z), g2(7-1, 7"2) for the cascade 
combination of systems B and R have transforms 

GI(S ) = BI(s)Rt(s ) 

G2(sa, $2) = RI(S 1 +$2)B2( s1 ,  $2) (11) 

where Bl(s ), Rl(s ), B2(s~, s2) are the transforms of kernels b1(7-), rl(z) and b2(7-1,7-2), 
respectively. 

Thus, now we have the situation shown in Figure lb and we wish to find the kernels 
of  the overall system which we call K. Let us denote by y = S(x) the transformation of 
input x by system S to obtain the output y. Then we have 

K(x,) = a(x2) 

= G[x~ + A ( x 4 )  ] 

= G{x x +A[K(xl)] }. (12) 

Note that since A, K, G are nonlinear systems, these operators do not necessarily 
commute. Let us call 

Q(x1) = X 1 + A [ K ( X l ) ]  

= I(xl) + A [K(x1) ] 

where I is the identity system [x = l(x)]. We note that A[K(xl) ] denotes the cascade 
combination of system K followed by system A. Such a cascade combination was 
described above. It  can then be shown easily that (Brilliant, 1958; Barrett, 1963) 

Qx(s) = 1 + Al(s)Kl(s ) 

Q2(sl, s2) = Al(sl + s2)K2(sl, s2)+ A2(sl, s2)Kl(sl)Kl(s2). (13) 

A similar expression can be derived for Q3(sl, s2, s3), etc. But then, K(xl) = G[Q(xO] 
which is again a cascade of system Q followed by system G. Thus, we finally get 

Gl(s) Bx(s)RI(S) 
K l ( s )  - 

1 - G1 (s)A 1 (s) 1 - a l(s)R x (s)A a (s) 

G1 (sl)GI(s2)G1 ($1 + s2 )A  2(s1, $2) + G2($1, $2) 
K2(Sl , $2) = 

[1 - GI(Sl)AI(Sl)][1 - Gt (s2)AI(S2)][ I  - GI(S 1 + s z ) A I ( S  1 + s2 )  ] 
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Bl(S1)Rl(S1)Bl(S2)Bl(S1 + s2)Rl(S1 + s2)Az(s l ,  s2)+ Rl(S1 +$2)B2(s1, $2) 

[2 - BI(s1)RI(s1)AI(s1)][1 - BI (Se)RI(sz)AI(S2)][1 - B l ( S  1 + s2)e l ( s  1 + s2)Al(S 1 +$2)  1" 

(14)  

A similar expression can be derived for K3($1, Sz, S3) , etc. 
In order to find the transfer functional of signal Xl(t ) to ym(t), we need to find the 

transfer functional of x~(t) to x3(t), in addition to that of Xx(t) to x,(t) which was found 
in the previous paragraph. Now we have the situation shown in Figure lc. 

Proceeding similarly, as above, we find that the kernels of this system are given by 

Ll(s ) = 

L2(s1, s2) = 

Bds) 

1 - -  B I(S)R I(S)A 1 (s) 

B1 (sl)B1 (s 2)Bt (sl + $2)R1 (s1)R1 (s2)A 2 (sl, s2) + B2 (s 1 , $2) 

[1 - BI(S1)RI(s1)AI(S1)][1 - BI(S2)RI(S2)AI(s2)][1 - BI(s 1 -}-s2)AI(s 1 + s2)RI(S+ S2) ] " 

(15) 

Since ym(t) is the sum of X3(/) and x4(t), it can be represented as shown in Figure ld. It 
then follows now that the kernels of the overall transfer functional xl(t ) to the measured 
response ym(t) are given by 

Bl(s)[~ + Rx(S)] 
H I (s) = K 1 (s) + L 1 (s) = 

1 - & ( S ) R x ( s ) A ~ ( s )  

H2(S 1 , $2) = K2(s 1 , $ 2 ) + L 2 ( s l ,  s2) 

[BI(sl)RI(Sl)BI(s2)RI(sz)BI(Sl + s2)A2(sl , s2)+ B2(sl , s2)][1 + RI(sl +s2) ]  

[1 -BI(s1)AI(S1)RI(S1)][1 -BI(s2)AI(S2)RI(s2)][1 - BI(S1 + s2)AI(S 1 + s2)RI(S 1 +$2)  ] 

(16) 

Similar expressions, but algebraically more complex, can be derived for H3(s~, s2, s3), etc. 
It is noted that the kernel transforms of a system which is a combination of subsystems 

are given in terms of algebraic equations which involve linearly the transforms of the 
kernels of the subsystems, as would be expcted. However, the expressions tend to increase 
rapidly in complication as the order of the kernel is increased. In principle, these equations 
can be solved in the frequency domain for any of the kernel transforms and then inverted 
back to the time domain, resulting in the system kernels hi(z), ]12(2" 1 , 272), etc. 

From equation (16) it is noted that the poles of Hi(s) and H2(s~, s2) both are given 
by the zeros,fo, of the expression 

1 -&(u)&(u)Rdu) = 0. (17) 

This signifies that kernels hi(r) and h2(h,  %) have "resonance" peaks at the same 
frequencies fo.  However, kernel h2(Zl, r2) has, in addition, resonance peaks for 
frequencies (sl, s2) whose sum equalsfo, as indicated by the factor 

1 -Bl(s l  +$2)A1($1 +s2)RI(S1 +$2)  = 0 (1 8) 

in equation (16). 

ERROR ANALYSIS FOR NONLINEAR KERNELS 

As discussed in part I, nonlinearities in structural responses depend closely on the 
amplitude range and frequency content of the exciting source. Since we are interested in 
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the earthquake response of structures, we wish to conduct tests with input amplitudes 
comparable to those caused by earthquakes. However, the generation of white inputs 
at such large dynamic loads is extremely difficult. Therefore, we are forced to revert to 
naturally occurring loads such as those caused by an earthquake. However, we cannot 
expect these loads to be generally white in frequency content and therefore we need to 
analyze the effect of the nonwhiteness of the inputs on the estimation of the kernels. To 
this end, let us assume that the nonwhite input ~(t) is produced after a white input x(t) 
passes through a linear filter with impulse response I(72). Then, 

Yc(t) = ~ l (v )x ( t -  v)dv 

and the second order (nonlinear) kernel is estimated by taking 

2(72a, z2) = C2 q~y~(721, z2) = C2E[y(t)Y~(t- h)Y~( t -  722)] 

where C2 = 1/2P 2 if the noise is white, i.e., q~,e(u) = Pa(u). We have, 

q~,~(721, %) = Ely(t) ~0 l(~a)x(t- 721 - %)dcq . ~0 1(~ 2) x ( t -  722 - c~2) d~2] 

which becomes 

(~y.~-~(~l, 122) = I IO  l(~l)l(cx2)¢yxx(Tq-1-0~1' 722 +¢t2)d%dct2" 

Taking transforms on either side we have 

~(~0~,  m2) 
H2((.Ol, (.02) - E((.Ol)E((.02) (19) 

where L(co) is the Fourier transform of l(z) [L(o)) is its complex conjugate] and 
H2(03a,o)2) and /42(%,~02) are the two-dimensional transforms of h2(l:1, z2) and 
i 2 ( h ,  %). From equation (12) it is observed that for i2(721, %) to be a good estimate of 
h2(721,722), all that is required is that the system bandwidth be completely covered by the 
input signal bandwidth. For large co's the gain of the low-pass filter l(72) will be sub- 
stantially different from 1 and large errors may arise in computing h2(72~, 722) there. 
We conclude that the bandwidth of the input noise should be greater than the system 
bandwidth. This provides the lower bound for the test noise bandwidth. However, if this 
bandwidth extends too much beyond the system bandwidth, the statistical variance of the 
kernel estimates increases considerably. This can be shown by an analysis similar to that of 
part I for the first-order kernel. This analysis determines the upper bound of the input 
signal bandwidth. 

For example, if the system is nonlinear with h0 ~ 0, hi(z) ~ 0, h2(721, %) ¢ 0 and 
h , (h ,  % . . . . .  72,) = 0 for n > 3, it can be shown (Marmarelis and Naka, 1974) that the 
nonlinearity (i.e., h2) contributes an additional term to the variance of the h1(72 ) estimate 
which is given by equation (19) (part I). This term is 

f.lf.So h2(Vx, v2)h2(~q, ~2)[Z nE{x,xj}ldv~ch,2d~Id~2 

where £H means the sum of all distinct ways of partitioning x ( t - z ) x ( t - 7 2 ) x ( t -  vl) 
x ( t -  v 2 ) . . ,  into pairs. There will be 6!/3!2 3 = 15 terms, such as 

qLx(0)q~xx(V, - v2)~=(~1 - ~2) + ¢~x(*-  v,)qLx(r- v 2)q%(~, - ~2) + . . .  

where Qx~ is the autocorrelation function of x(t). These terms can, similarly, as in part I, 
be expressed in terms of their (multidimensional) Fourier transforms. 

The effect of random (contaminating noise) distributed loads on the nonlinear kernel 
estimation can be analyzed similarly as in part I for the linear case. Assuming that these 
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unwanted "noise" inputs 7i follow a different path through the system than the "input" 
noise signal x, we have 

y(t) = Z a,[h,, x(t)]+Z Z {Hm[Kml, ~,(t)]}. 
n i m 

It can be shown then that i fm = 1 

hn(Zl, z2 . . . .  , %) --- hn(Zl,  Z2 . . . .  , Z n ) + ~  ~ Kl,(V)q~ . . . . .  r , ( v - z l  . . . . .  v-z,)dv. 

It should be noted that the contributions to the error of nonlinearities other than of the 
nth order is zero because their corresponding functionals would be orthogonal with 
respect to a Gaussian white x(t). In fact, if x(t) and ~,~(t) are independent, then the error 
term becomes zero at least for odd-order kernels and, in addition, for even-order ones 
ifE{7i} = 0. Thus, a great advantage is gained in the determination of the system transfer 
characteristic by this approach as compared to the more traditional methods of testing 
the system with pulses and sinewaves. Provided that the contaminating noise is indepen- 
dent of the stimulating white-noise signal, the presence of such noise does not affect the 
estimation of the characterizing kernels. 

Measurement noise e(t), which is simply additive at the output, can be similarly treated, 
giving 

1 
~,(r~,..., z,) = h , ( r l , . . . ,  * , ) + ~  ¢ ..... ~(Zl,..., ~,). 

Unwanted noise, which is additive at the input, other than measurement noise tends to 
be more serious in the measurement of the nonlinear kernels and the number of errcr 
terms increases rapidly with the order of the computed kernel and with the order of 
nonlinearity of the system, This should be contrasted with the case of errors at the output 
which, as seen previously, do not increase as either of these orders are increased. 

APPLICATION TO A REINFORCED CONCRETE STRUCTURE 

In part I of this study we described the building structure to which the method was 
applied, the procedure for selecting the record lengths, and the data processing techniques 
utilized. The linear Wiener kernels were also estimated and their performance in studying 
the building response was evaluated. In this part, we present the results of estimating 
the nonlinear second-order kernels and of evaluating their performance (in a quantitative 
manner) in modeling the building response during strong earthquake ground shaking. 

These second-order kernels were computed up to 2 sec (due to limitations of computer 
storage), following the cross-correlation techniques discussed in part I of this study. They 
have been referred to as h2(zl, z2) and k2(z 1, r2) for the [3-43]-sec and [43-83]-sec 
EW time windows and m2(z l ,  z2) and n2(z~, z2) for the [3-43]- and [43-83]-sec NS time 
windows. Figures 2, 3, 4, and 5 show contours of the h2, k2, m2, and n 2 surfaces 
(normalized with respect to each other) on which the kernels have constant "strength." 
The symmetry of the kernels may be observed, as expected. These kernels show clearly 
the nonlinear character of the system insofar as its response differs from linear super- 
position. As discussed previously, these kernel figures and tables can be interpreted to 
signify the following about the system's nonlinear behavior: Assuming that the system 
can be accurately represented by the first two kernels, the value of h2(t, t-to) quantize~ 
the deviation in the system response at time t > to from linear superposition of the 
responses to two impulse inputs, one at time t = 0 and the other at time t = to. In short, 
it is the deviation from superposition due to cross-talk between portions of the past input. 
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Comparing the h2 and k 2 kernels, we observe that the nature of the nonlinearity corre- 
sponding to the two time windows is different. The h2 kernel is more or less concentrated 
in bands which lie along the diagonal line (~ = z2), the contours of h2 showing a 
marked elongated character, the elongation being in the direction of the diagonal. The 
contours of the k 2 kernel do not show such a markedly "directional" character. However, 
the general features of the two kernels are similar as we go down along the z~ = z 2 line 
(compare crests and valleys). The extent of nonlinearity, as indicated by the values of the 
contours of h 2 and k2, indicates that the structure showed a marked second-order 

ro 

t 
ro 

o 

°l 
,-- c 

ELU~- 
Y 

~D 

C3 

o 

0.0 0.200 O.LIO0 0.600 0.800 1.000 1.200 I .L~O0 i .600 t .800 2.000 

T 2 (secs) 

FIG. 2. Contour plot of kernel h2(rl, z2) corresponding to the EW time window [3-43] sec. The contour 
values are: A = -125, B = -75, C = I00, D = 200. 

nonlinearity during the first 40 sec or so of excitation in the EW direction. It may be 
noted that when all the contour values tend to zero (or are very small), the second-order 
nonlinearity would vanish (or be very small). The normalized values of these kernels 
have been indicated in Tables 1 and 2, where the matrices have been normalized and 
displayed at time intervals 3/50 sec along the ra and z2 axes. The h 2 kernel has been 
scaled by a factor of 5 for ease of representation. The actual computations involved the 
determination of these matrices at intervals of 1/50 sec. 

The m2('Cl, z2) and n2(z~, z2) kernels for the NS time window are displayed in Figures 4 
and 5. The mE(zl, "r2) kernel shows features similar to those depicted by the hz(zl, z2) 
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kernel. However, the kernel strengths show that the numerical values of the m2('Cl, 72) 
kernel are (on an average) about one-half as large as those of the h2('~l, 72) kernel, 
indicating that the structure portrayed larger nonlinear effects in the EW than in the 
NS direction. This appears reasonable as the shear walls in the NS direction provide 
a great deal of structural stiffness in resisting lateral loads. In the EW direction, however, 
the horizontal loads are supported solely by the central core wall (Figure 2, part I) and 
the structural framework. The n2(Zx, z2) kernel surface has amplitudes less than those 
of the m2(zl ,  1:2) and shows a more lumpy contour character in contrast with the linear 
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Fro. 5. Con tou r  p lo t  o f  k e r n d  n 2 ( ~ ,  z2) corresponding to the NS t ime w indow [43-83] sec. The con tour  
values are A = - 1 5 ,  B = 0, C = ]0, D = 20. 

elongated contour character of the m2(zl ,  7 2 )  kernel. It is interesting to note that although 
the extent of nonlinearity in the EW and NS directions are different, the nature of  the 
changes in the nonlinear kernels, as computed for the two time windows, in the EW and 
NS directions are rather similar. The normalized m2(zl, r2) and ha(Z1, %) matrices are 
displayed in Tables 3 and 4. The mz(h ,  72) kernel has been scaled by a factor of 5 for 
ease of presentation. 

Thus, having identified the linear and nonlinear kernels of the structural systems, the 
predicted response of the model (linear and nonlinear) was computed. The linear response 
obtained from Gl[hl(t);x(Q ] was determined and then the nonlinear contribution 
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G2[h2(t); x(z)]. A comparison with the actual measured response was made to determine 
the validity of the nonlinear model characterization. 

It is of importance to discuss here how the nonlinear kernels were weighted against the 
linear ones, since the input signal (earthquake) deviates from true bandlimited white 
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noise. For Gaussian white noise, the contributions to the response from the two kernels 
{171, k l ,ml ,n l}  and {h2,k2,m2,n2} are weighted by factors cq(=l/P1) and 
c~2(= 1/2P 12), respectively, where P is the power level of the Gaussian white input signal. 
However, since the earthquake excitation is nonwhite, the spectrum is not flat and it 
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becomes difficult to characterize the entire spectrum through one number. This difficulty 
was circumvented in this analysis by using the following procedure to determine the 
relative weights of the linear and nonlinear kernels. The linear and nonlinear model 
responses over the entire input-output record were computed from the first-order kernels 
and second-order kernels with the weighting factors cq and ~2 as parameters (depending 
on P), and then these were chosen by a variational technique which minimized the mean- 
square error between the total (linear plus nonlinear) model response and the measured 
response. Admittedly, this procedure does not correct completely for the lack of white- 
ness in the input and only serves as a rough and partial compensation. As discussed in 
part l, the non-Gaussian (truncated distribution) nature of the signal does not lead to 
significant errors. However, the complete solution of the problem for such nonwhite, 
non-Gaussian inputs is being currently tackled. 

Representative samples of the EW and NS model responses for the [3-43]-sec time 
windows are shown in Figures 6 and 7. Similar results were obtained for the [43-83]-sec 
time window, but they have not been shown here, for the main points in the discussion 
of the comparison between the model and the observed response are clearly brought out 
in these two figures. 

We observe from these figures that the nonlinear contributions to the responses 
(Figures 6 and 7) are conparable in certain amplitude regions to the linear contributions. 
As we observed in part I, the linear part of the response is smaller than the observed 
response and is lacking in detail in that it does not have the high-frequency ripples that 
the actual response exhibits. These nonlinear contributions when added to the linear 
contribution improve the model responses quite appreciably. We notice that the non- 
linear contribution dies down to a negligible value beyond about 9 sec in the NS direction 
and about 12 sec in the EW response. The effect of the addition of the nonlinear con- 
tribution was computed by using the integral of the square of the difference between the 
model responses and the measured responses as the error criterion. Together with the 
model responses computed for the two time windows obtained from the earthquake 
accelerograms, the model response obtained for an EW ambient vibration test, which was 
conducted in May 1973, was also computed. Normalizing the mean-square error of the 
zeroth order model to 100 units (i.e., the mean-square value of the response), we have the 
following reductions in the mean-square error for the sequence of models subjected to 
these inputs. 

Error 

EW NS 

Model [3-43] [43-83] Ambient [3-43] [43-83] 

ho 100 100 100 100 100 
{ho,hl}linear 31 38 33 39 42 
{ho,hl,h2} nonlinear 19 35 33 32 37 

DISCUSSION 

The mean-square errors indicated above show that sizable reductions are obtained by 
the introduction of the nonlinear contributions to the response. It is noted that for the 
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time windows [43-83] the percentage reduction in error caused by the inclusion of  the 
nonlinear component  is less than for the time windows [3-43], indicating the presence 
of  a larger second-order nonlinearity in the latter time zone, both for the NS and EW 
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directions. Also it is observed that the linear model {ho, hi} for the [43-83] time zone 
leads to larger mean-square errors. This has been attributed to two principal reasons: 
(a) the amplitudes of  ground motion in this time zone are very small and the recovery of  
the data from the accelerograph trace causes the signal-to-noise ratio in the data to be 
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low and (b) the forty-second length of data analyzed was not sufficiently long to eliminate 
statistical variances in the cross-correlations and smooth out the noise. The ambient 
data, although representing even lower amplitude ground motions, do not represent such 
a problem, for the time length of record available there was much longer leading to far 
greater error smoothing. We note that the extent of nonlinearity for the ambient data is 
negligible, there being no reduction in the mean-square error caused by the introduction 
of G2 [h(t); x(z)]. 

As observed in part I, the cross-correlation scheme utilized requires a broadband flat 
input spectrum. The fact that the earthquake spectra are not exactly flat and reduce in 
amplitude beyond about 5 Hz (cf., part I) causes the linear model {ho, lh} to be deficient in 
some of the higher-frequency content, thus causing an exclusion of some of them in the 
model response. Since it was argued that the second-order nonlinearity also introduces the 
higher-frequency ripples in the response, a logical question to ask would be, does the 
higher order nonlinearity {h2} put in these higher frequency ripples which in reality 
should have been introduced by the linear model, had its characterization been correctly 
done at the higher frequencies ? As was discussed earlier, the two responses, G 1 [hi(t); x(0] 
and G2 [h2(t); x(0] are orthogonal to each other for white-noise inputs, so that deficiencies 
in the linear model cannot be made good through the inclusion of any higher-order 
nonlinearity. This is indicated in Figure 6 where the ripples in the response around 14 Hz 
cannot be recovered from the model even with the inclusion of the second-order non- 
linearity (although the second-order nonlinearity response clearly possesses such higher- 
frequency ripples). The fact then that the ripples cannot be correctly characterized by the 
model leads us to believe that they may be a consequence of a deficient linear model 
characterization (lacking in higher frequencies) or the consequence of higher order 
(>  2) nonlinearities in operation. 

The major difficulty in computing the high-order nonlinearities of a system is the long 
computation times on a digital computer required for the estimation of the higher-order 
cross-correlations required. The number of points for which each kernel argument is 
computed is m, where m = g/At (p is the system memory and At is the sampling interval). 
The nth order kernel must be estimated at (n+m-1)!/n!(m-1)! points (taking into 
account the symmetry) and the total computation time required is given by 

~.N.n . (m+n-  1)(m+n-2)  . . .  (m) r .  
n! 

where N is the total number of sample points in the record and % is a constant which 
accounts for the integration scheme used and for time spent in addressing, storing, etc. 
Thus, since computing time increases almost exponentially with the order of the kernel 
(if the cross-correlations are computed by conventional means, i.e., multiplication of the 
sampled data records), estimation of kernels of degree higher than the third take prohibi- 
tively long times even with the fastest digital machines currently available. However, 
several alternative avenues of kernel computation are open which could conceivably greatly 
alleviate this problem. Computation of the kernels by the use of the fast Fourier transform 
algorithm and recent hybrid computational methods are being currently investigated. 

The digital machine used in this study had a core memory of 1 megabyte. Due to this 
storage limitation, the second-order kernels were computed for only 2 sec. Undoubtedly 
a better characterization (resulting in a much reduced model error) would have been 
possible had the duration of time for which it was computed been increased. To check 
the sensitivity of the values of hz(z 1, z2) to the duration of time after which it was 
assumed zero, computations for a (1.1 sec times 1.1 sec) second matrix were performed. 
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The values obtained in both cases are very close to each other (within 1 per cent), showing 
that the function h2 is relatively insensitive to the time length chosen. However, it must 
be emphasized that longer durations would lead to a better characterization of the second- 
order functional, thus improving the model responses considerably. 

As noted, the applicability of the methcd is limited by the fact that the higher-order 
kernels are not easily computed. However, if the series is truncated after the nth order 
term, the resulting approximation to the system functional is the best nth order character- 
ization in the mean-square-error sense, This, of course, is a direct result of the orthog- 
onality of the terms of different degree in the Wiener series. 

CONCLUSIONS 

Wiener's general theory of nonlinear identification has been applied to the identifica- 
tion of a structural system from its input-output data obtained during an earthquake and 
during an ambient vibration test. Recorded earthquakes not only provide the large 
amplitude testing of a structure but, being broadband processes, also provide a high 
information rate about its input-output behavior over a given period of time as compared 
to testing with sinewaves. Before the method could be applied, the general zones where 
the system remained time-invariant were determined using a moving-window analysis 
technique. The memory of the system was estimated and the time durations for which the 
kernels needed to be estimated were determined. Here it was found that computer storage 
and time were two important factors to be considered. The first-order kernels were 
computed out to 10 sec for the earthquake data and up to 20 sec for the ambient data. 

The first-order (linear) kernels computed showed that during the acceleration time 
history of ground motions the linear characteristics of the system changed quite 
drastically. The mean-square-error reduction of the linear model was found to be about 
30 to 40 per cent, using the linear model obtained by direct cross-correlation methods. 

The second-order kernels were computed out to only 2 sec due to limitations on 
computer storage. The values computed were found to be quite stable. The linear and 
nonlinear model responses were compared to the measured response. It was found that 
the inclusion of the second-order nonlinearity caused a significant improvement in the 
response prediction in the weaker EW direction. A comparison of the nonlinear kernels 
for each of the two time windows showed that the NS and EW kernels showed similar 
characteristics. 

The effects of many types of contaminating noise sources (at the input, output or 
internally) are eliminated because of the orthogonality of the model series and the cross- 
correlation technique (statistical averages) used in estimating the kernels. This is evident 
from the analysis of the effect of noise on the kernel estimates as described in this study. 

The method used in this paper has several assets. It clearly delineates the linear and 
nonlinear components of the response and provides a physical understanding of the 
amount of cross talk in the input caused by the nonlinearity. The method has a vast 
potential in determining the acceleration levels at which nonlinearities become significant 
and the nature of the various nonlinearities in different structures. 

This paper represents the results of only a preliminary study of structural systems 
using the general technique. Such studies would have to be carried out on several 
structures and comparisons made of the extent and nature of nonlinearities in them. 

An obvious extension of the method would be to colored inputs. Recent develop- 
ments in virtual computer memory will make it possible to determine higher-order kernels, 
although such a study may become costly in computer time with the currently available 
algorithms. 
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