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Abstract

In order to be deployed in real-world applications, autonomous multi-robot systems need to be

able to handle contingency events. Many multi-robot missions are time-critical, so using overly

conservative methods to handle contingencies will not be acceptable in such applications. Robots

themselves may be prone to unreliable task execution and may require human assistance for

handling such contingencies, which must be properly planned and coordinated. This dissertation

models the handling of contingency events in the form of execution of contingency tasks. When

an unexpected event occurs that adversely impacts the mission workflow, then the multi-robot

system, with or without the guidance of human operators, must perform contingency tasks to

ensure the safety and completion of the mission. Contingency tasks can arise due to robot failure

occurring due to battery failure or communication lapse. Contingency tasks may also occur

explicitly as an additional task that becomes a bottleneck for nominal mission execution. For

example, if an autonomous vehicle were to run out of fuel, the vehicle must be taken to a filling

center to refuel it. Additional tasks that may be required for mission completion are referred to

as contingency tasks. Contingency tasks may also arise due to uncertain operating conditions or

bad information about operating conditions. The general approach to handling contingencies in

robotics has been to design failure recovery protocols which kick in when a specific contingency

occurs. However, such a reactive approach does not work well in time-critical missions.

This dissertation presents the computational foundations for proactively handling contingen-

cies encountered during multi-robot missions. A formal model checking framework is developed

to evaluate the adequacy of contingency resolution strategies that may be encountered during

xii



multi-robot missions. In this dissertation, the developed framework was successfully applied to

an assembly line setup and a ship escorting mission which used unmanned surface vehicles, and

the performance of the strategies designed to handle different contingencies was evaluated. This

dissertation also presents a proactive approach for incorporating contingency tasks in nominal

mission planning. It was found through simulation experiments that the proactive approach out-

performed the reactive and conservative approaches. Finally, the dissertation proposes a method

for task decomposition required for completing collaborative surveillance tasks assigned to mul-

tiple robots under the conditions of uncertain information and varying robot availability. It was

found that the developed methods for task decomposition were robust against these uncertainties

and were able to successfully guide the robots to successful task completion while minimizing the

time taken.
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Chapter 1

Introduction

1.1 Motivation

In recent years, unmanned robots have been increasingly used for a variety of operations, such as

inspection of agricultural fields, search and rescue, surveillance, and defense applications [2–5]. In

many of the applications, deploying a team of robots instead of a single robot leads to automation

of mundane and critical activities which leads to higher efficiency, increased productivity, safer

working conditions, robust operations and reduced costs in the long-term. Multi-robot teams are

also increasingly being used to provide support in complex industrial operations [6–12]. Most

of these applications require the execution of spatially separated tasks. Multi-robot teams are

well-suited to such applications because they can execute multiple such tasks in parallel. Multiple

robots can divide each task into sub-tasks, which can then be independently accomplished by each

robot or the robots can work as a team and assist each other with different sub-tasks. Researchers

have extensively examined the area of collaborative robotics [13–19]. Even in manufacturing

applications, active research is going on to incorporate multi-robot setups in factory floors to

boost operational efficiency and bring down costs [20–28].

The motivation for modeling such multi-robot missions is due to the missions involving com-

plex sequences of survey-like tasks involving unmanned surface and ground vehicles. Teams (or

1



coalitions) of multiple robots are being extensively employed for automation projects and complex

missions in domains such as factory cells, outdoor survey/inspection missions, and search-and-

rescue missions.

Multi-robot missions require a set of objectives to be fulfilled. This in turn translates into

a sequence of tasks that must be executed by each robot. Each robot plans its trajectories to

execute these tasks. Such nominal mission planning techniques have been investigated in detail

and generally yield good results. However, in more realistic scenarios where nominal mission plans

have to be modified due to changes in the work environment, traditional methods of nominal

mission planning do not perform very well. Some unexpected event may occur causing bottleneck

which requires an additional task to be executed to safely resume the mission. It may also happen

that robots may fail to perform a task that they were assigned to finish and hence must again

attempt to execute the task. Sudden changes in the environmental information associated with

the mission scenario may require improving the current mission execution plan to ensure better

performance. Mission execution must also be robust to varying availability of robots assigned to

a mission. Such bad and unexpected events are referred to as contingencies. This dissertation

is focused mainly on handling contingency situations for multi-robot systems effectively. The

developed methods should be able to handle contingencies in real-time so that multi-robot teams

can be deployed for challenging missions. The developed methods should proactively account for

potential contingencies to ensure that plans can efficiently deal with contingencies.

There are several civilian applications where proactive handling of contingencies for multi-

robot autonomous systems can significantly bring down mission costs while boosting the guarantee

of safety for mission infrastructure as well as humans involved, thereby leading to the more

rapid deployment of autonomous systems in diverse areas. Active research is taking place in

making the robots better prepared to handle unfavourable conditions that arise during mission

execution [29–33]. There are several multi-robot applications [34] which may potentially benefit
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from better and proactive handling of contingencies. A few representative applications are enlisted

below:

1. Infrastructure security: Many critical facilities require protection and constant pa-

trolling. However, hiring enough human guards is just not economically viable in the

long-term [35]. Neither are robotic technologies advanced enough to completely hand over

the guarding and patrolling jobs to autonomous systems. Human operators embedded in

multi-robot systems provide the best solution. However, there are possibilities for several

unexpected adverse conditions that may interrupt the security missions of the robots [36].

Improved methods of handling contingencies prove to be very beneficial.

2. Hazardous Waste Cleanup: Sending humans for nuclear waste cleanup puts the lives of

the workers at risk due to radioactive exposure and is highly unethical, if not inhumane. In

the Fukushima Daiichi nuclear disaster, elderly pensioners volunteered to participate in the

cleanup of the power station, thus saving young men from receiving a fatal dose of radiation.

Given the prevalence of nuclear plants throughout the world and the trend getting stronger

and stronger with more countries enthusiastically signing up for the program, a concerted

and serious effort must be directed to automating nuclear plant operations. This may require

handling situations such as unexpected communication failures and unexpected failure of

robot’s batteries [37].

3. Urban search and rescue: In dangerous disaster scenarios, there is extreme time pressure

on the rescue workers and dogs to locate injured civilians and rescue them. If robots can

replace humans and dogs, it will reduce the risk to workers’ lives. But there is a risk of gas

leaks and explosions happening unexpectedly or debris falling from a construction. There

is significant research effort underway to achieve robotic search and rescue [38].

4. Management and transportation of large containers: In ports, airports, and railway

yards, there is a frequent requirement of transporting heavy containers from one location to
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another. Since these places are unstructured environments, there is a lot of potential for un-

expected events to interrupt or disrupt the mission. If a team of robots is to be employed to

conduct all container-related tasks, then safety features in the form of contingency handling

is a must [39,40].

5. Space exploration: NASA has laid down exciting visions for space exploration in the near

future. One of its objectives is to increase the use of robots for construction, repair, and

maintenance purposes in space stations and spaceships. Robots may be used additionally to

provide assistance or companionship to the space crew. However, this is quite challenging

because these robots have to operate in a sensitive environment. Any chemical leak, elec-

tronics failure, computer failure, or collision with big space debris could be fatal for the space

crew and cause a loss of several billion dollars. However, research progress is continually

being made in this sphere [41].

However, incorporating contingencies in multi-robot mission planning suffers from several chal-

lenges:

1. There is the modeling challenge to decide what information to abstract out or hide from ex-

plicitly considering in the mission model so that the effects of contingencies can be analyzed

without making the model computationally very expensive.

2. If failures occur during multi-robot missions, then they may result in human injury or

damage to expensive equipment. Thus, the contingency planning methods must also seek

to guarantee safe mission completion.

3. It is challenging to use a model checking framework to assess the adequacy of contingency

resolution strategies for multi-robot mission because it is computationally more time-taking

than simulation testing. However, to seek robust guarantees in a rigorously proved mathe-

matical framework, one should make effective use of the model checking toolkits developed

by the formal methods community.
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4. It is difficult to allocate tasks to robots under uncertainty when disrupting events such

as contingencies are expected. On top of that, wishing to minimize the expected mission

completion time in a computationally efficient manner requires developing heuristics that

guide the solution search properly.

5. It must be taken into account how robots distribute a task assigned to them in an efficient

manner. Use of computationally heavy methods may provide the optimal decomposition of

a task among multiple robots but would be so time-taking that they cannot be deployed

online. So a planning approach must be able to handle adverse effects like the uncertainty

of task execution and completion, or varying robot availability, in a faster way even if it

implies that only a near-optimal distribution of tasks among robots can be obtained.

1.2 Goal and Scope

The research presented in this dissertation is concerned with developing proactive approaches to

handling contingencies for multi-robot teams that have been assigned to a complex mission. The

research work presented in this dissertation focuses on contingencies that can be anticipated but

their occurrence cannot be predicted in advance. The methods described in the rest of the work

are designed for robot team sizes ranging from two to twenty robots.

The main research issues this work addresses are as follows:

1. Modelling and verification of contingency resolution strategies for multi-robot missions:

An approach for evaluating contingency resolution strategies using temporal logic is pre-

sented. A framework is presented for nominal mission modeling, designing contingency

resolution strategies and evaluating their effectiveness for the mission. The approach in this

dissertation focuses on leveraging the use of model checkers to the domain of multi-robot

missions to assess the adequacy of contingency resolution strategies to minimize the adverse
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effects of contingencies on the mission execution. The missions are allowed to have deter-

ministic as well as probabilistic transitions.

The use of formal methods and model checking software packages allows the development

of autonomous systems with guarantees against faulty behaviors and inconsistencies. Such

autonomous systems may be deployed on industrial scales and would make processes more

efficient and streamlined. For this purpose, two completely different case studies are chosen

and the application of model checking software is shown to provide guarantees of safety

and success for complex multi-agent missions. A nominal mission model is proposed and

contingency resolution strategies are developed in both scenarios. Then the results obtained

via model checkers are analyzed. It is not possible to generate such logical results as well

as expected values of critical mission variables so easily in any other way than modeling a

mission as a formal transition system and encoding it in a model checker. This is because

nominal mission specifications, contingency models, and contingency resolution strategies

may need to be changed repeatedly to decide what works best. A methodology that al-

lows flexibility in efficiently evaluating these possibilities in a mathematically rigorous way

is bound to outperform conventional methods like running heavy simulations in memory-

intensive software tools. These methods can be exploited to quickly evaluate contingency

resolution strategies and screen them for their performance. Once some good ways have

been identified to handle contingencies for a mission, then one can resort to simulation tech-

niques to study the strategies in finer details. Thus, there will be no need for eliminating

simulation testing paradigm.

The two case studies are as follows. The first one considers the escorting of a ship in a port

where multiple contingencies may occur concurrently and analyze the proposed contingency

resolution strategies. The second one considers a manufacturing scenario where multiple

assembly stations collaborate to create a product. In this case, assembly operations may

fail, and human intervention is needed to complete the product. Several different strategies
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are investigated and their effectiveness is assessed based on mission characteristics. This

modeling framework is extended to a production line set up across multiple robotic assem-

bly cells by integrating probabilistic modeling and temporal logic verification techniques.

A production line is a complex system comprising of multiple assembly cells which in turn

is composed of multiple assembly stations. The performance of the proposed operations

plan is evaluated by decomposing the whole system into smaller subsystems which are ana-

lyzed separately. This may help in designing more optimized systems. An assembly cell is

modeled in PRISM software, which is a commonly used probabilistic model checking tool.

Contingencies may arise in each cell during the production operations and are resolved by

humans or the assembly robots themselves. Multiple cells operating cooperatively to fin-

ish the production of parts are then simulated. Formal analysis is performed for each cell,

which is a subsystem of the production line and then the aggregate behavior of the resulting

production line is studied. Based on the feedback from PRISM analysis of individual cell

behavior, it can be determined how to change cell settings to achieve the best production

performance.

2. Incorporation of Contingency Tasks in Nominal Task Allocation:

Complex logistics support missions require execution of spatially separated information gath-

ering and situational awareness tasks. Mobile robot teams can play an important role in the

automated execution of these tasks to reduce mission completion time. Planning strategies

for such missions must take into account the formation of effective coalitions among avail-

able robots and assignment of tasks to robots to minimize the expected mission completion

time. The occurrence of unexpected situations that adversely interfere with the execution

of the mission may require the execution of contingency tasks so that the originally planned

tasks may proceed with minimal disruption.
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The work reported in this dissertation will be useful for deploying multi-robot teams to sup-

port complex logistics missions spread over a large area where the robots must be prepared

to handle contingencies that can adversely impact the mission. The proposed proactive

approach can be used to handle contingencies in information gathering, surveillance, guard-

ing, and situational awareness tasks to support safe and secure transportation of important

assets through sensitive areas. A port operation is used as an illustrative example where

unmanned surface and aerial vehicles can be useful in ensuring the safety and security of

the ports. This is a computationally challenging problem. This work proposes heuristics

algorithms to solve the task allocation problem among many different agents efficiently. The

approach presented in this work integrates the available information regarding mission and

contingencies along with the resource constraints to plan the mission execution.

Initially reported potential contingency tasks may not always affect mission tasks owing

to the uncertainty in the mission environment. When potential contingency tasks are re-

ported, the planner updates its existing plan to minimize the expected mission completion

time based on the probability of these contingency tasks impacting the mission, their im-

pact on the mission and other task characteristics. Various heuristic-based strategies are

described to compute task-allocations for robots for mission execution. Simulation exper-

iments are performed to compare them and the computational performance of the best

performing strategy is analyzed. It is shown that the proactive approach to contingency

task management outperforms both the conservative and reactive approaches.

3. Decomposition of Collaborative Surveillance Tasks:

This dissertation introduces an approach for decomposing exploration tasks among multiple

Unmanned Surface Vehicles (USVs) in congested regions. To ensure the effective distribution

of the workload, the algorithm has to consider the effects of the environmental constraints

on the USVs. The performance of a USV is influenced by the surface currents, the risk of
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collision with the civilian traffic, and varying depths due to tides, and weather. The team of

USVs needs to explore a certain region of the harbor, and an algorithm must be developed

to decompose the region of interest into multiple sub-regions. The algorithm overlays a 2D

grid upon a given map to convert it to an occupancy grid and then proceeds to partition

the region of interest among the multiple USVs assigned to explore the region. During

partitioning, the rate at which each USV can travel varies with the applicable speed limits

at the location. The objective is to minimize the time taken for the last USV to finish

exploring the assigned area. The particle swarm optimization method is used to compute

the optimal region partitions. The method is verified by running simulations in different test

environments. The performance of the developed method is also analyzed in environments

where speed restrictions are not known in advance.

1.3 Overview

The outline of this dissertation can be briefly summed up using the block diagram in Figure 1.1.

To incorporate contingencies in nominal mission planning, three stages are considered:

1. The given mission model, usually provided in English, must be translated into a formal

model. The modeling must also include the contingency model describing the contingencies

that may occur and the nature of their occurrence. Using this information, contingency

resolution strategies are designed manually. The objective is to select the most effective

contingency resolution strategies by verifying their desired properties. For this purpose,

model checking software packages are used. The results of model checking may also be used

to modify the strategies to improve their expected performance.

2. A nominal mission planner is also developed in parallel that takes in the nominal mission

model and generates a task precedence graph comprising of the order in which different tasks

must be performed by the available robots. But the execution of different tasks must be
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Figure 1.1: This is an outline of the research work investigated in the dissertation.

allocated to the agents and scheduled in such a way so that the expected mission completion

time is minimized. Concurrently, the contingency information must be taken into account

and proactively integrated into the task network. The resulting task allocation then specifies

which task must be executed in what order by which robots.

3. When multi-robot tasks are scheduled for execution, then multiple robots are also assigned

to the task. These robots must coordinate to finish the task optimally and efficiently. Con-

tingencies may arise due to imperfect information, or bad information about the operating

conditions of the task, or robots becoming suddenly unavailable for task execution due to

being diverted to another task of higher priority. This entire information must be incorpo-

rated to decompose the task among several robots for efficient execution without interference

and bottlenecks. Such a task decomposition results in task schedules for individual robots.

These individual robot task allocations are easier to implement and can be monitored by

onboard computers.
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Chapter 2

Literature Review

This chapter provides a literature review of methods used for multi-robot mission planning that

is used in this dissertation for incorporating contingencies. The methods discussed here are those

from the domains of task allocation, scheduling, temporal logic based model verification, and task

decomposition.

2.1 Mission Planning Using Model Checking

2.1.1 Multi-robot Mission Modeling for Model Checking

Model checking essentially helps in verifying the robustness of missions against contingency scenar-

ios. Other researchers have investigated model checking for formulating constraints for automated

multi-agent systems and then checking for any inconsistency [42, 43]. Most model checking work

in robotics generally focuses on properties involving temporal logic because these are the most

commonly queried and desirable properties for ascertaining the robustness and correctness of the

system in the robotics community. Temporal logic properties are widely expressed using compu-

tation tree logic (CTL), linear temporal logic (LTL), or a combination of both. For stochastic

processes, system specifications make use of probabilistic temporal logic like Probabilistic Com-

putation Tree Logic (PCTL).
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Bolton et al. [44] survey the usage of formal model verification methods in improving human-

automation interaction (HAI). Such autonomous systems may suffer failures due to being brittle,

and hence, unexpected scenarios may overwhelm the human operator. The cause of such failures

lies mostly in the design of the automation software. Identifying shortcomings in the design of

such automation systems and their interfaces for human operators allows automation to become

more robust. A major problem is associated with mode confusion where human fails to keep track

of the mode in which the device or the automation system is performing. Over more extended

periods of times, it leads to human getting confused and adopting random guessing strategy

or some other incoherent strategy to keep guiding/controlling the system. This may lead to the

surprise of the human operator eventually and cause disruption in the work output. It is therefore

essential to take into account the human mental model by explicitly or implicitly including it in

the transition system representation of the human-automation interface. The paper lays out the

different kinds of formal properties generally verified by other researchers.

Temporal logic-based model verification methods offer several benefits when deployed for plan-

ning at a higher level of abstraction, viz. the task and mission planning layer of autonomous

multi-robot systems. Pant et al. [45] use Signal Temporal Logic (STL) for specifying missions

involving multiple drones that must take off and land from designated spots, must monitor the

environment, reach a location while avoiding obstacles, perform periodic surveillance and data

collection, collect sensor data from equipment fitted across a smart city. A simulation was carried

out using up to 16 drones and actual experiments using two drones to check out the applicabil-

ity of their method. They use unconstrained optimal control techniques to compute trajectories

that are dynamically feasible and can be tracked efficiently using low-level off-the-shelf position

and attitude controllers. They formulated their optimization problem using CasADi symbolic

framework designed for automatic differentiation and optimal control and used the HSL MA27

FORTRAN routine with IPOPT for solving the nonlinear program. They compared their method
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with another STL-based trajectory generator called BluSTL, which took more time to solve the

problem.

Liu et al. [46] encode mission specification for multi-agent systems with wireless communica-

tion constraints using Signal Temporal Logic (STL) and spatial-temporal logic (SpaTeL) formulas.

Spatial-Temporal Logic (SpaTeL) is a unification of Signal Temporal Logic (STL) and Tree Spa-

tial Superposition Logic (TSSL). SpaTeL is capable of describing high-level spatial patterns that

change over time. The robot environment is a 2D grid area which is represented using a quad-

tree structure. A MILP optimization program is used to develop a distributed model predictive

control (MPC) based strategy to satisfy the mission constraints. In their second work [47], they

require multi-agent systems with inter-agent communication to satisfy motion specification in the

form of signal temporal logic formulas. It is the task of a local motion controller to ensure that

its associated agent satisfies certain user-defined local specifications while avoiding collisions with

other agents and obstacles. It is also important to maintain high communication quality among

the agents. A Gaussian fading model is used to model wireless communication signals. The sig-

nal temporal logic specifications and wireless communication conditions are expressed as mixed

integer-linear (MIL) constraints in terms of agents’ state variables and communication signal sta-

tus. Many simulations carried out using MATLAB, and AMPL/Gurobi show that their strategy

improves the communication quality without obstacle collision.

Nikou et al. [48] perform controller synthesis for multi-agent path planning where Metric

Interval Temporal Logic specifications are given. Each agent has a dynamic model capturing the

coupling effects as well as control inputs. A five-step controller synthesis algorithm is presented,

which is tested out in simulation for time-bounded constraints of traveling to a region. Zhou et al.

[49] present an optimization-based method for planning paths of a mobile robot for which bounded

temporal constraints are specified using metric temporal logic (MTL). The metric temporal logic

formulas are translated into mixed integer linear constraints and then solved using YALMIP-

CPLEX software. They provided simulation examples that included static as well as moving
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obstacles based on quadrotors and cars. High-level strategies provided by non-experts are encoded

as preferences using the Planning Domain Definition Language (PDDL) 3.0 language by Kim et

al. [50] and used by automated planners.

MacKenzie et al. [51] use behavior-based modeling of multi-agent intelligent systems using

societal agent theory. Firstly, the primitive robot behaviors are abstracted into individual agents,

and then assemblages are created out of them. Assemblages are groups of fundamental behaviors

and coordination mechanisms among these agents to ensure coherent behavior. The Configuration

Description Language (CDL) is developed to encode these agent behaviors and makes use of their

recursive nature. It also allows the same agents to be used in different missions using different

robots. The transition from one state to another is modeled using a finite state automaton to

select valid and feasible states that may be accessed by robots.

Lomuscio and Raimondi [52] consider deterministic, non-deterministic, and other classes of

interpreted systems which are formal models to define multi-agent systems and interpret the

semantics of Alternating-time Temporal Logic (ATL) operators in their context. The first class

of agents may guess moves, the second class consists of deterministic agents, and the third class

of agents chooses to perform specific actions consistently. Finally, they present a model checking

algorithm based on Ordered Binary Decision Diagrams (OBDDs) which users can apply to their

problems using the MCMAS (Model Checker for Multi-Agent Systems) software. They used

MCMAS to solve games such as Nim, a simple card game, and a scenario involving the failure of

the coyote to catch the roadrunner inspired from the popular cartoon, The Road Runner Show.

Sahin et al. [53] developed a temporal logic called counting linear temporal logic plus (cLTL+)

to model the collective behavior of multi-agent systems when heterogeneous dynamics is allowed.

They formulate an optimization problem and use Gurobi to compute the trajectories for different

robots. Then they studied asynchronous trajectories and found their method to work for bounded

asynchrony with appropriate modifications.
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DeCastro et al. [54] combine Reactive Mission Planning using Linear Temporal Logic, and

Local Motion Planning using convex optimization while enforcing the dynamic constraints of

the robot and guaranteeing collision avoidance in 2D and 3D workspaces. The reactive mission

planner synthesizes a correct-by-construction controller based on the high-level linear temporal

logic specifications of motion sequencing. Then physical experiments with two centrally-controlled

Nao robots and a dynamic obstacle (KUKA’s youBot) were carried out to demonstrate deadlock

resolution. Specifically, one of the Nao robots reversed its direction due to an impending deadlock

with youBot.

Lindemann et al. [55] allow users to define a performance function in terms of a desired tem-

poral behavior which the multi-robot system should satisfy based on a continuous state feedback

control law. The Signal Temporal Logic (STL) based formalism is used to prescribe constraints for

the multi-robot system. The developed control law is robust to disturbances and satisfies the sig-

nal temporal logic specifications within user-defined robustness. They tackle specifications which

require certain conditions to be met within certain time intervals or sequential specifications,

meaning that a sequence of conditions will be satisfied in prescribed time intervals. A non-linear

multi-robot system exhibiting single integrator dynamics while using a consensus protocol to stay

close to each other is used to demonstrate tasks like formation control, sequencing, and dispersion.

Ke et al. [56] model the behaviors of a ground control station, unmanned ground vehicles,

micro aerial vehicles, and high-level unmanned aerial vehicles using Kripke structures. Then

they verify the mission model’s validity using model checkers like SPIN. They also integrate the

SPIN model checker to assist in motion planning by generating counterexamples. Model checking

techniques are very well-suited for state space search problems and by modeling path planning

problems as state space search problems, they are effectively able to utilize linear temporal logic

based model checking software packages to not only verify missions but also generate motion

plans.
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2.1.2 Model Checking Tools for Verification and Evaluation

There are several model checking software available online, e.g., NuSMV, SPIN, PRISM that

automatically verify user properties for a given system model. Generally, system models have

to be coded in a programming language specific to the model checking being used. For SPIN

model checker, one would have to code the model in Promela language. For NuSMV model

checker, one would code in the SMV specification language. PRISM model checker also has its

programming language. Many such software frameworks have been used for robotic planning.

Fraser et al. [57] provide an extensive survey of model checkers, their comparisons and reasons

for their effectiveness.

Fainekos et al. [58] used NuSMV for path generation and MATLAB for controller synthesis

to plan robot motion based on LTL constraints. Lahijanian et al. [59] designed the Robotic

InDoor Environment (RIDE) simulator to move an iRobot Create mobile platform autonomously

through corridors and reconfigurable intersections using PCTL-based MDP framework. Finucane

et al. [60] designed the LTLMoP (Linear Temporal Logic MissiOn Planning) toolkit for designing,

testing, and implementing hybrid controllers generated automatically from task specifications

written in Structured English or Temporal Logic. Konur et al. [61] used PRISM model-checker

for verification of global robotic swarm behavior. UPPAAL model checker is an integrated tool

environment for modeling, simulation, and verification of real-time systems modeled as a collection

of non-deterministic processes and has been used for various robotic applications also [62–64].

Karaman and Frazzoli et al. [65] solved the LTL based multi-vehicle routing problem by

converting the LTL constraints into Mixed-Integer Linear Programming (MILP) problems. LTL

formulas may also be converted to an automaton whose product is then taken with robot automa-

ton and then automata graph search methods are constructed to plan robot motion [66,67].

Shoukry et al. [68] solve a multi-robot path planning problem by computing collision-free

trajectory controllers. They use a satisfiability modulo convex (SMC) programming approach
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to decompose the problem into smaller sub-problems via Boolean constraints. They compared

their method with sampling-based motion planners and outperformed them significantly for single

robot reach-and-avoid specifications. They even simulated multi-robot scenarios where multiple

targets had to be visited infinitely often. Kamali et al. [69] perform formal verification of safety

properties for automotive platooning using the Agent Java Pathfinder (AJPF) model-checker.

Machin et al. [70] developed a safety monitoring framework based on the NuSMV model checker

for autonomous systems.

Liu et al. [71] subject an unmanned ground vehicle to traffic rules in the form of linear tem-

poral logic specifications. Environmental conditions are used to trigger the behavior execution

of the unmanned ground vehicle. The unmanned ground vehicle is modeled as a reactive system

with its behaviors encoded as a transition system, and the linear temporal logic mission specifica-

tions are used to compute the resulting automata. Simulations were carried out in Python-based,

open-source Linear Temporal Logic MissiOn Planning (LTLMoP) to plan the motion of the un-

manned ground vehicle for reaching its goal location while reacting to the environmental factors

appropriately.

Mehta et al. [72] design a robot compiler system which requires a user to input the functional

specification of desired robotic behavior in Structured English. This requires some technical skill

on the part of the user, but this is overall a very low requirement. That is then mapped into a

linear temporal logic formula which is used to perform controller synthesis. They also provide a

library of robot building blocks from which the system filters certain blocks for each proposition.

The system also allows for faulty linear temporal logic specifications, which it corrects based on

behavioral conflicts. Two robots, one line-following, and another wall-following were made by

using this system, and these robots accomplished their tasks while being assisted with sensors.

Choi et al. [73] present Kripke structures for three missions and verify their critical prop-

erties using the model checker called MCMAS (Model Checker for Multi-Agent Systems). An

unmanned ground vehicle is supposed to reach a goal location and is assisted by an unmanned
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aerial vehicle. Such a mission is made more complicated by adding multiple unmanned aerial

vehicles and unmanned ground vehicles. There is also a ground control station that initiates the

mission and guides the robots until the mission ends using images transmitted to it. The ground

control station takes safety precautions like instructing the unmanned aerial vehicles to land once

the communication signal has been lost.

Humphrey [74] model the escorting of a VIP vehicle through a road network using multiple

unmanned aerial vehicles. A human operator lays down the procedure through which the un-

manned aerial vehicles explore the roads for safety and guide the VIP vehicle towards its target.

This model of mission execution is coded up in Promela language. The conditions that should

hold for the given mission execution are specified using the language of linear temporal logic.

SPIN model checker processes the linear temporal logic specifications and the Promela model to

verify whether the properties hold or not. If the properties do not hold, then a counterexample

is produced, which may be used to debug the mission execution plan further.

Rothwell et al. [75] present a model checking software framework called Verifiable Task As-

signment and Scheduling Controller (VTASC) which takes in mission specifications in natural

language as input and converts it to temporal logic formula like linear temporal logic (LTL), com-

putation tree logic (CTL) and CTL’s extension, real-time computation tree logic (RTCTL). Then

a model checking software called NuSMV is used to check whether the user-defined properties are

satisfied during mission execution plans as defined by the operators. A graphical user interface

(GUI) is used where users create the temporal logic specifications in the English language. The

temporal logic translator must process the final English specification and input it to the NuSMV

if and only if it passes grammatical checks. They compared VTSAC against two other such

software tools: Specification Pattern Instantiation and Derivation EnviRonment (SPIDER) and

Linear Temporal Logic for MissiOn Planning (LTLMoP).
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Alonso-Mora et al. [76] propose an integrated mission and motion planning framework where

the mission planning is done offline, and the motion plan is computed at runtime. The mis-

sion planner takes as input the linear temporal logic specifications and generates the automaton

representing the mission. The localized motion planner uses a convex optimization based ap-

proach. They also describe the deadlock resolution strategy to resolve deadlocks by modifying

the specification, if needed, to generate a feasible plan that may then be executed.

Bank et al. [77] proposed an autonomy framework for smart manufacturing systems using

linear temporal logic and its corresponding model checkers like NuSMV. However, NuSMV solvers

may be very time-consuming because they exhaustively search the state space. To solve this

problem, they considered a toy problem where blocks have to be appropriately rearranged on a

2D grid. Then they reduced the exploration space with a divide-and-conquer approach. Rather

than solving for the entire grid area at once, smaller areas were considered one by one and then

solved using NuSMV. This led to very high speed-ups as NuSMV is very fast in solving small

problem sets. Their simulations showed that they were able to achieve linear computational time

performance.

Schillinger et al. [67] present a linear temporal logic based planning approach for on-demand

multi-robot missions called simultaneous task allocation and planning (STAP) which constructs

a team model for multi-robot missions to decompose the mission into more straightforward tasks

and allocates them to different robots. Given a linear temporal logic mission specification for the

mission, they generate an optimal task decomposition for the mission regardless of whether the

explicit tasks are provided as input or not. The resource constraints like limited battery power

are also taken into consideration for each robot. Several missions arising in office scenarios are

then simulated in the Robot Operating System (ROS) to validate and analyze the performance

of their algorithm against the classical approach of planning for task costs first. In their second

work [78], they consider multi-robot mission scenarios in indoor office spaces. They simulated two

robots in an office space which have to carry drinks from one location to another while avoiding
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certain areas when carrying drinks. They also ran physical experiments with two robots. The

mission constraints were encoded into a linear temporal logic formula. FlexBE software is used to

generate complex robot behaviors using GUI facilities. It is also well-integrated with ROS. Spot

is used to translate the linear temporal logic formula to an automaton. Then planning is done to

minimize the maximal team cost incurred to finish the mission by using a label-setting approach

for multi-objective planning problem.

Maly et al. [79] present a multi-layer planning framework for a mobile robot along with

replanning capabilities when obstacles are encountered. The high-level layer takes as input a

linear temporal logic specification for the robot to satisfy. The robot is a second-order car with

hybrid dynamics, and the linear temporal logic specification specifies how a particular office area

must be explored. A product automaton is formed out of the robot dynamics and linear temporal

logic specifications. The high-level layer generates plans for which continuous robot trajectories

are computed using a low-level planner. Graph-based distances to an accepting state in the

automaton are used to satisfy the specification as closely as possible.

Saha et al. [80] study multi-robot mission settings whose specifications are given using linear

temporal logic based safety conditions concerning obstacle avoidance and collision avoidance. The

problem is first converted to a form understood by a Satisfiability Modulo Theories (SMT) based

problem-solver called Z3 which then generates a trajectory for the robot by solving the system of

constraints denoted by the linear temporal logic safety properties. Then simulation experiments

for a group of quadrotors amid static obstacles were carried out successfully.

Guo et al. [81] combine motion planning and action planning to tackle tasks involving visiting

regions sequentially and performing actions at various locations. The task specifications are given

in the formalism of linear temporal logic. The robot automaton is constructed using an abstracted

robot mobility model and its action map. A product automaton is then formed with the Büchi

automaton representing the linear temporal logic specifications. Then a graph-search algorithm

is used to compute the optimal task sequence using which the hybrid controllers are synthesized.
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Li et al. [82] have developed a model checking framework called PAT: Process Analysis Toolkit.

They used this and other model checkers like Spin, NuSMV to solve some classical planning prob-

lems like bridge crossing and sliding game problems. They found their model checker even to

outperform state-of-the-art planners designed for these problems. PAT is highly efficient, ready

to be used out of the box and modular. It was demonstrated to automate the municipal trans-

portation management system by simplifying fare collection and notifying users about important

information customized to their history.

2.1.3 Handling Stochastic Events

Contingencies arise in robotic systems because robotic behaviors as well as environment responses

are probabilistic [83] and multi-robot systems may generally be modeled as Markov Decision Pro-

cesses (MDPs) [84–87]. Cizelj et al. [88] present an approach to control a vehicle in a hostile

environment while considering static obstacles as well as moving adversaries against whom the

vehicle must protect itself from collisions. The vehicle mission model, as well as the effect of

adversaries on the vehicle, is modeled as a Markov decision process. The mission objective is to

start from a certain region, reach another region to pick up an item and drop it off at another des-

ignated region. They adopt the Probabilistic Computation Tree Logic (PCTL) control synthesis

approach to plan the mission for the vehicle and use the off-the-shelf PCTL model-checking tool

PRISM for this purpose.

Ding et al. [89] present probabilistically guaranteed optimal control policies over infinite time

horizons for a Markov decision process with linear temporal logic constraints. The policy seeks to

minimize the average cost per cycle (ACPC) starting from the initial state. Rigorous conditions

for policy optimality are theoretically proved, and a dynamic programming algorithm is developed.

This is demonstrated in MATLAB with and without linear temporal logic constraints for a robot

navigating an environment and performing persistent tasks such as environmental monitoring and

data gathering.
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Faruq et al. [90] develop simultaneous task allocation and planning for multi-robot systems

which are operating in uncertain environments and prone to failures. The robotic system is

modeled as a Markov decision process. They propose a sequential model where each robot is

considered independently one by one. Switch transitions are added to combine the individual

robot models into a team Markov decision process. The goal is to find a policy that maximizes

the probability of satisfying prescribed co-safe linear temporal logic based task specifications

without violating safety specifications also. They also develop the feature of allowing a task to be

reallocated to another robot when its assigned robot fails. For this purpose, they synchronize the

robot actions within the range of policies computed by their sequential model. They study the

effect of increasing the number of failure points on computational time and reallocation frequency.

Feng et al. [91] consider a road network surveillance problem involving an unmanned aerial

vehicle and a human operator. Human operator assists the unmanned aerial vehicle to visit newer

way-points based on the drone’s existing state and also instructs the unmanned aerial vehicle

whether to continue loitering over a way-point to improve upon the sensory information that

has already been gathered. The human operator’s performance is modeled in terms of his/her

proficiency, workload, and fatigue. They model this mission as a Markov decision process and

implement it in the PRISM model checker. They study the effect of model parameters on the

minimization of expected mission completion time. Then they model the same mission as a

stochastic two-player game and study the trade-offs between expected mission completion time

and expected number of restricted operating zones visited by the unmanned aerial vehicle.

Kloetzer and Mahulea [92] consider a partitioned environment in which one or more robots

must survey regions of interest which appear and disappear probabilistically. The automaton

building and graph search approaches are used to find robot trajectories that maximize the prob-

ability of satisfying the task of surveying regions of interest. This task is specified as a linear

temporal logic formula. They also seek to minimize the traveled distance. All robot collisions are
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ignored during planning to avoid extra computational costs. Such collisions are resolved during

trajectory following stage.

Chen et al. [93] use automata learning technique in uncertain, dynamic, and partially known

environments to optimize surveillance missions. An indoor environment with doors is considered.

Based on environmental data, the robot must learn how to incorporate the doors in its motion

planning. Based on the learned door models, optimal control strategies are designed for the

surveillance mission, which is modeled as a temporal logic game. The control policy is proven to

be very close to the truly optimal one when unknown environmental information is fully learned.

2.1.4 Contingency Management

Failure recovery through contingency management [94–96] is a crucial component of multi-robot

systems that lead to their autonomy in real-sense because unexpected and uncertain contingencies

are bound to arise and may result in failure of robotic operations.

Christensen et al. [97] developed a method to detect failures of robotic sensors and actuators

by observing changes in the sensory data that is recorded in real-time. For this purpose, faults

are caused by software programming in the system, and their effects on sensory data are learned

through neural networks. McGuire et al. [98] used contextual multi-arm bandit algorithms to

help the robots learn how to select the best assistants to recover from failures while accounting

for uncertain/dynamic operating conditions and assistant capabilities. In many works on multi-

robot systems, failures arising due to communication failures, lack of situational awareness, sensor

failures, and localization failures are studied [99–101].

Tang et al. [102] incorporated the advancement in prognostics and health management systems

to develop a proactive and automated contingency management system that takes into account

prognosis information for mission replanning and failure recovery. They demonstrated this frame-

work on a Pioneer 3-AT ground robot by using NASA’s Hybrid Diagnostic Engine (HyDE) as the

fault analysis engine and particle filtering-based prognosis algorithms [103].
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2.2 Multi-robot Task Allocation

There is an abundance of multi-robot task allocation (MRTA) in the robotics literature [104–107].

Classical approaches have relied on mixed integer linear programming (MILP) techniques [108–

111]. Zhang et al. [112] study the problem of automation in an assembly line with robots and

human workers. They solve a MILP problem to compute the initial agent placement. The required

tasks are then assigned and scheduled on these agents using hill-climbing and Tercio algorithms,

respectively.

Scheduling of activities on transportation and routing networks using constraint programming

(CP) approach has been reported heavily [113,114]. In general, task scheduling problems in multi-

robot scenarios can also be formulated as a constraint satisfaction problem making it amenable to

the methods of constraint programming. Booth et al. [115] show that CP outperforms MILP for

task allocation and scheduling problems relevant to retirement homes. Novas and Henning [116]

use CP to automate manufacturing, traveling, and storage activities in flexible manufacturing

systems (FMSs) while accounting for tools, machines, and robot constraints.

Evolutionary techniques have also been effectively utilized in solving MRTA and scheduling

problems. Godinho Filho et al. [117] have surveyed the increasing application of genetic algo-

rithms in scheduling activities in FMSs while [118] contains an application of particle swarm

optimization algorithm to FMS scheduling problem. Mousavi et al. [119] have employed a hy-

brid method combining simulated annealing and tabu search to solve supply chain scheduling

formulated as a two-stage MILP problem.

Multi-robot scheduling problems share several similarities to multi-processor scheduling prob-

lems and hence processor scheduling algorithms are heavily applied [1,120]. Application of proces-

sor scheduling algorithms mainly involves the use of different heuristics to schedule robot coalitions

on tasks greedily [121,122].
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Mission scenarios involving mobile robots must take into account the temporospatial nature of

tasks which also have inter-task precedence constraints [123,124]. Task allocation and scheduling

algorithms also need to take into account the uncertainty associated with task execution durations

and robot traveling times due to the robots’ and tasks’ characteristics and their interactions with

the environment [125,126].

Peters and Bertuccelli [127] developed a MILP framework to compute robust schedules for

collaborative human-UAV missions. Gombolay et al. [128] present Tercio algorithm which solves

a simplified MILP problem to generate agent-task allocations from which a near-optimal sequence

satisfying temporal and spatial constraints is computed using dynamic priority heuristics.

Owing to inter-robot communication failures and imperfect situational awareness across all

the robots engaged in the mission, decentralized approaches have become a popular method

of handling these challenges. These mainly consist of auction/market-based methods or their

variants. Liu and Shell [129] developed a market strategy for MRTA problems where prices

are strategically controlled to guide the purchasing behavior of the bidders and achieved global

optimality. Wicke et al. [130] proposed a specific MRTA algorithm inspired by bounty-hunting

practices robust to loss of agents and other noises while accounting for non-exclusivity of task

assignments. Otte et al. [131] proposed a generalized Prim allocation auction algorithm to study

MRTA problem with lossy communication channels.

Another successful multi-assignment approach of combining auction and consensus methods

results in the consensus-based bundle algorithm (CBBA) [132]. Zhao et al. [133] developed a

distributed algorithm to allocate tasks among heterogeneous unmanned vehicles for search and

rescue missions by maintaining significance values of tasks across all robots which performs much

better than the CBBA. Das et al. [134] developed a distributed, market-based MRTA algorithm

called Consensus Based Parallel Auction and Execution (CBPAE) for dynamic allocation of tasks

in health-care facilities where the next task is not assigned to robots till they have finished their

current task. It was shown that CBPAE was much quicker than CBBA.
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When the numbers of robots are more than the number of feasible tasks and multiple robots are

allowed to work on a task simultaneously, a crucial factor in the MRTA problem is to form effective

teams (or coalitions) among the robots and assign them to appropriate tasks [135–138]. This

problem becomes even more complicated when heterogeneous robots are considered. Guerrero

and Oliver [139] model the physical interference caused when employing a team of robots to finish

a task to compute the task execution time and use auctions to determine the effective coalition

sizes. Gunn and Anderson [140] study dynamic team formation when a robot gets lost or separated

from the team in urban search and rescue missions. Cases with replacement robots and failures

of leader robots are also analyzed.

Hybrid methods try to make use of different parts of these primary methods to improve com-

putational performance and solution quality. Lim et al. [141] designed four hybrid evolutionary

techniques by putting together differential evolution, artificial bee colony, genetic and particle

swarm optimization algorithms in different combinations. They were applied to optimize layouts

for multi-robot cellular manufacturing systems. Lu et al. [142] proposed a hybrid multi-objective

backtracking search algorithm to solve permutation flow-shop scheduling problem by considering

both make-span and energy consumption.

Heuristic schedulers are generally combined with MILP models to converge to solutions quickly

[143,144]. A unified framework for combining MILP and CP models achieves faster convergence to

high-quality schedules [145,146]. Evolutionary techniques can be incorporated into the scheduling

procedure to obtain better results [147,148].

In processor scheduling literature, problems dealing with precedence-constrained have been

addressed, but those methods have not been explored at length in the robotics community. One of

the work in robotics used in this dissertation for benchmarking purpose is [1], which assumes that

the set of admissible coalitions is already available and does not consider precedence constraints.

But one could also enhance features of the mission model, such that it allows fractional task

completion, task interruption, and accounts for uncertainty.
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Ou et al. [149] present an online task allocation method for multi-gantry work cell in which

a machine requires the gantry system to supply it with a part from its upstream buffer and send

the processed part to downstream buffer. The goal is to maximize throughput, so the authors

define a metric called permanent production loss to track the system’s performance. Machines

must not be allowed to be idle, and production systems must be robust to disruption events. This

is accounted for by the concept of opportunity windows.

Flushing et al. [111] solve a multi-robot task allocation scenario where a mobile ad hoc network

(MANET) needs to be set up and maintained. This requires computing data routing policies and

data transmission schedules. They design a mixed-integer linear program (MILP) that allows a

trade-off between task completion and communication performance. However, the mixed-integer

linear program solutions only consider the total delivery ratio for the transmitted data, and

therefore, an extra LP-based refinement mixed-integer linear program stage is also added to

include another important metric, viz. transmission delays.

Whitbrook et al. [150] developed a distributed performance impact (PI) algorithm to allocate

time-critical tasks among multiple heterogeneous robots. This paper suggests a useful extension

to the PI algorithm to speed it up and solve more complex problems. Benchmarking it against

the consensus-based bundle algorithm and baseline PI algorithm shows that it outperforms both.

The baseline PI algorithm runs the risk of not exploring the search space fully. To tackle this

issue, the task selection procedure is chosen to be an appropriate combination of the PI selection

procedure and either the ε-greedy action selection method or the Boltzmann Softmax action

selection method. Simulations were carried out for search and rescue missions which comprise

of vehicles, helicopters and unmanned aerial vehicles that must reach the victims to provide the

resources they are carrying. The number of tasks is double the number of these vehicles. Average

time to finish the rescue mission was reduced by as up to 8% using these modifications.

Nam and Shell et al. [105] model resource contention among multiple robots during task

allocation. There is interference happening when a team of robots shares the same resource to
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perform a task. The authors model the performance degradation in task execution when multiple

robots contend for the same resource and physically interfere with each other. These robots

may perform the same tasks in different manners. Based on how the robots end up deciding to

execute each task, a convex or linear penalization function is added to the objective function to be

minimized. This problem is solved in two phases. In the first phase of optimization, the integral

constraints of the linear programming problem are relaxed, and fractional solutions are found using

the interior point method. In the second phase, these fractional solutions are then rounded to

integral solutions using the multi-choice Hungarian algorithm and multi-choice Murthy’s ranking

algorithm. Physical experiments, as well as simulations, were carried out where globally optimal

solutions are found quickly.

Shiroma and Campos [151] tackle the problem of task allocation in robots capable of doing

multiple tasks simultaneously and ensuring coordination among the formed teams. They call this

algorithm CoMutaR, which stands for coalition formation based on multi-tasking robots. They

use schema theory and represent tasks as a set of motor schemas. This allows them to decompose

the tasks into smaller robot-independent tasks such that the information collected incrementally

by the system may be used by all the robots freely to perform their remaining tasks. Resources

cannot be freely shared among robots. Coalitions among robots are formed using a single-round

auction algorithm. Simulation experiments are carried out using player/stage/gazebo platform

in ROS. Loosely coupled tasks like area surveillance and transportation are considered as well as

tightly coupled tasks like box pushing.

Turpin et al. [152] solve the problem of concurrently assigning goal locations to robots and

then plan collision-free trajectories for each robot. It considers an obstacle-free environment,

and collisions among robots are prevented using online avoidance algorithms. The authors first

introduce a centralized algorithm which is tested out on a team of quadrotors. The minimum

clearance between quadrotors was shown to be safe. The assignment was done to minimize the

square of the minimum distance traveled using the Hungarian algorithm. Then collision-free
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trajectories were computed using the calculus of variations. Also, a decentralized version of the

algorithm was designed to perform local replanning based on inter-robot communications, which

resulted in sub-optimal but safe trajectories.

Nunes and Gini [153] design an auction algorithm to allocate tasks with time windows among

cooperative robots. The time windows specify the time range during which the tasks must be

executed, and the tasks are allowed to overlap. Each robot models its temporal constraints

using a simple temporal network. This is the variation they introduced in the sequential single-

item auction algorithm and call it the temporal-sequential single-item auction algorithm. Their

algorithm minimizes mainly the mission makespan in conjunction with the total distance traveled.

Their algorithm outperforms a greedy algorithm and the consensus-based bundle auction during

simulation in the JADE multi-agent platform.

Maoudj et al. [154] solve the problem of allocating and scheduling tasks for robots such that

the total mission completion time is minimized. The allocation of tasks among robots is done

using a negotiation based approach similar to the contract net protocol. Thereafter, priority-based

scheduling rules that respect task constraints are used to minimize the time spent being idle by

robots. They demonstrated their methods using a pick-transport-place operation involving two

manipulators and two mobile manipulators.

Kanakia et al. [155] model robotic firefighting and ant foraging tasks as global games where

each agent’s action depends on others as well as an underlying signal. Also, there is imperfect

information and uncertainty associated with this scenario. Here, the authors show the application

of continuous threshold functions to allocate tasks among robots which leads to efficient coordi-

nation among the swarm members and show how this leads to Bayesian Nash equilibria without

communication among the agents. Additionally, it is shown that this method works even if the

agents do not have a behavioral model of each other.

Chopra and Egerstedt [156] consider several spatially distributed service requests with time

instants when the tasks must be executed are also specified. Each such request requires a set
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of skills. Only the robots which have at least one skill in common with the skill set required

are allowed to travel to the task location and execute it. This is formulated and solved as a

combinatorial optimization problem. Its solution is validated using MATLAB simulation of a

robotic music wall where different robots traverse over a wall to play a song, and each robot can

play different instruments.

Deng et al. [157] solve task allocation and path planning problem for multiple autonomous

underwater vehicles (AUVs). They use a Mobile Ad Hoc Network (MANET) simulator for testing

purpose. They adopt a location aided auction algorithm to assign tasks to robots and benchmark it

against generic auctioning. Some autonomous underwater vehicles are good at searching vast areas

of water while others are good at identifying the nature of the target. For planning trajectories of

multiple autonomous underwater vehicles, they adopt a multi-objective feedback-based dynamic

system that generates an action determination grid map to guide the autonomous underwater

vehicle motions. This map encodes the combined benefit at each cell due to multiple objective

functions, and it is used in conjunction with a vehicle distribution grid map that stores the location

of other vehicles. They simulate two different acoustic noise conditions for testing their model.

One models autonomous underwater vehicles in shallow waters over a sandy bottom in calm seas

while the other simulates the autonomous underwater vehicles operating in shallow water reef in

rough seas. They achieve this by varying the power spectral density of the background noise and

the Nakagami fading coefficient.

Mosteo et al. [158] consider a multi-robot routing problem with limited communication ability.

The robots cannot break the network connectivity among robots via radio waves while executing

their allocated tasks. Whenever a communication link appears to be breaking, a motion-control

mechanism based on spring action is activated to ensure that radio communication is not lost. Four

task allocation algorithms are proposed that optimize over the total distance traveled, mission

makespan, or the average task completion time. They use greedy and auction algorithms, and
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another one based on the traveling salesman problem. Then they also code an algorithm that

allocates tasks by imitating the clock sweeping motion in polar coordinates.

Kaddouh et al. [159] present a mission involving multiple unmanned aerial vehicles where

vehicle teams are dynamically created and reconfigured to solve different parts of the mission.

There are constraints associated with the different locations where the unmanned aerial vehicles

are supposed to perform the tasks, and these tasks comprise time windows, refueling, or trans-

portation services. Multiple requests are allowed to be combined into one task to reduce costs.

The resource allocation problem is formulated as a mixed integer linear program (MILP). Their

solutions outperformed those produced by greedy and bundle methods for effectively allocating

resources and unmanned aerial vehicles for the tasks and reducing take-off and landing costs.

There was a trade-off between faster mission completion and cheaper mission completion, which

they try to optimize.

Banfi et al. [160] deal with a scenario involving a set of mobile robots with limited-range

omnidirectional sensors tasked with monitoring other mobile targets. The robots are modeled to

have Bayesian beliefs regarding their targets and the environment which they exploit to monitor

all the targets more fairly. A mixed integer linear program is formulated to maximize the amount

of average monitoring done for the targets as well as to minimize the standard deviation of the

detection rate of the targets. The latter optimization is done to ensure fairness in the sense that

lower uncertainty means the targets were monitored equally. The mixed integer linear program is

used to monitor for a specific interval of time after which robot beliefs are updated, and the mixed

integer linear program is then solved again. The simulation experiments varied replanning times

and communication ranges to study their effects. Both centralized and distributed architectures

were also implemented. The distributed architecture proved to be better overall due to its low

computational cost. Real robot experiments were shown to report a deviation from the simulations

due to collision avoidance routines and robots getting stuck in congested and narrow channels.
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2.3 Decomposition of Exploration Tasks

A lot of work has been done to efficiently explore unknown regions based on different constraints

using multiple robots. Also, in the general context of multi-robot tasks, there is a heavy emphasis

on decomposing the main tasks effectively among the robots. Task decomposition thus arises

naturally into a host of robotics applications, including industrial manufacturing.

Tham and Prager [161] use task decomposition methods to develop modular approaches to

learning manipulator tasks through their sub-tasks using reinforcement learning. Since the state

space and action space are both vast, they used a special type of neural network called a cerebellar

model arithmetic computer (CMAC) based on the mammalian cerebellum.

Wu et al. [162] studied the specific example of mold manufacturing operation as representative

of multi-site product manufacturing. The operation is decomposed into tasks that can be managed

individually within a network of manufacturing firms. A graph algorithm is presented based on a

bidding process to assign the tasks to different contenders.

Gindy and Ratchev [163] represented process capabilities of a facility using resource elements.

Conventionally, sequences in which components visited different machines in a facility was used

for this purpose. Rather than that, authors propose that machining operations be used to classify

different components and then based on these classified component groups, machines are chosen.

These resource elements are used to decompose a manufacturing facility into machining cells which

can operate autonomously. It avoids machine repetition, thus avoiding bottlenecks and is more

compact.

Whiteson et al. [164] study the soccer drill called keepaway which is a complex multi-agent

task. In this drill, the players assigned as keepers aim to learn good performances for the tasks.

But since the task is so complex, the idea of decomposing the task based on decision trees is used.

Then the learning can be done over the simpler subtasks and learned models could be combined to

master the original complex task. The authors use three learning methods with varying degree of
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human assistance so that somehow humans are not constraining the search space of good solutions.

They show that when the player assigned as a taker in the keepaway game is allowed to run after

the ball with very high speeds, only the decomposition-enabled techniques can learn the winning

strategies.

Stone and Veloso [165] design a distributed autonomous system for robotic soccer games

allowing for periodic team synchronization. Tasks are decomposed into flexible roles. Agents are

allowed to create formations. Each agent could change its roles within formations, thus allowing

flexible teamwork. It was shown that the flexible teams outperformed rigid teams. Formation

switching was also allowed, and it helped to maximize the number of goals scored.

Su and Zheng [166] worked on coordinating the motion of a legged mobile platform and a

robot arm mounted on top of it, which is a challenging problem. They developed three different

task decomposition approaches for reaching a given goal end-effector pose. The task of orienting

the robot is decomposed to orienting the two robots separately in a defined sequence, thus making

the problem easier to solve. The first two approaches do motion using both the platform and the

arm. The third approach exclusively uses the platform. As expected, the approach that uses the

arm more is better because arm manipulation consumes less energy than platform motion.

Tan et al. [167] facilitated a cable assembly operation using human-robot collaboration. The

hierarchical task analysis technique is used to decompose the entire assembly operations into tasks

assigned to only the human worker or both robots and human worker. When a task is assigned

to both of them, then the sub-tasks are partitioned between them and sequenced properly. This

reduces the mental workload of the human worker and increases worker efficiency by reducing

faults during assembly and reducing the time taken for assembly.

Huckaby and Christensen [168] use a taxonomy based on the decomposition of complex airplane

assembly tasks into primitive robot skills. But this is easily generalizable to other manufacturing

tasks. Perception tasks which will be done by vision systems are also incorporated in the taxonomy.
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The problem of decomposing exploration tasks among multiple USVs is closely linked to the

problem of area partitioning. Hert et al. [169] define boundary points that should lie in the

partitioned polygons. Bast et al. [170] compute partitions of equal areas by merging and dividing

convex pieces obtained originally via convex decomposition of the polygon such as in [171].

Bullo et al. [172] derive spatially distributed algorithms to compute a convex and equitable

partition of a convex polygon based on power diagram with additional features involving the use of

Voronoi diagrams. These works furnish mathematically robust solutions to the area partitioning

problem.

There is an abundance of literature that focuses on the area partitioning problem in physical

robot settings.

Chand and Carnegie [173] developed a hierarchy to utilize the available robots maximally. The

robots are divided into three classes: manager robots have high processing and communication

abilities. The planner robots have medium range communication abilities but low sensing and

actuation abilities. The explorer robots have low communication abilities but high sensing and

actuation abilities. Each robot gets scores for the task it performs, and when these task scores

are used as feedback, it leads to significant improvement in some cases.

Ziparo et al. [174] consider scenarios where large teams of robots are coordinated for explo-

ration problem using RFID tags. The RFID information helps to avoid collisions during local

region exploration. A global monitoring process based on sequential planning is used to start

explorations at different regions to increase the explored area. This outperforms task assignment

techniques because it avoids conflicts.

Visser and Slamet [175] study frontier-based exploration in office-like space. The USARSim

framework is used to simulate the office space, obstacles, and robots in rescue scenarios and fron-

tiers are assigned to robots with maximum utility based on information gain and probability of
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maintaining communication links. Planning is done by estimating the probability of communi-

cation success significantly longer into the future motion. And it is shown that when robots are

allowed to share their maps, they avoid traveling the explored corridors doubly.

Matignon et al. [176] attempt to solve CAROTTE challenge where an unknown environment

has to be explored and objects known a priori to the robots have to be identified in the area.

For some of these objects, robots may also have extra tasks associated with them. This problem

is formulated as a decentralized Markov Decision Process (MDP), but since it is challenging to

solve, the authors instead consider using a set of individual MDPs. A distributed value function

is used to take the interaction among robots into account and maximize the area coverage of the

team with minimum interactions.

Yuan et al. [177] perform cooperative multi-robot exploration by expanding individual fron-

tiers and selecting next target destinations to maximize information gain while minimizing travel

cost and satisfying communication-limit constraints. They benchmarked their technique against

the approach that automatically selects the nearest frontier cell. Their approach finishes faster

and explores more area.

Low et al. [178] use robotic simulator webots to simulate a team of 4 robots getting assigned

a region where mineral data must be collected, which amounts to exploring a wide area which has

only a few mineral hotspots. An adaptive sampling based exploration algorithm is designed, which

leads to lower energy consumption, lower mission time, and higher hotspot sampling. Adaptive

samplers use estimators, which can be highly biased by data sampled at hotspots. So they use

Rao-Blackewellized estimators to handle the bias leading to higher chances of uncovering less likely

hotspots. Low et al. [179] solve the problem of performing both wide area coverage and hotspot

sampling together. They use non-myopic and adaptive strategy to choose the next exploration

locations based on data already observed. The new locations are sampled for exploration to

minimize spatial mapping uncertainty. Their approach outperforms greedy and non-adaptive

strategies.
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Ahmadi and Stone [180] deployed a team of robots to continuously monitor an area based

on the changing importance of different locations. Simulation experiments that were carried

out show how area gets partitioned with respect to conventional static partitioning algorithms.

Their method also accommodates the addition or deletion of robots. They consider robots at

different speeds also. Due to the changing importance of different locations, they are visited with

non-uniform frequencies.

Zhao et al. [181] proposed a multi-robot exploration approach that uses a market-based ap-

proach for assigning frontiers to robots. Potential fields are used to coordinate the robots using

virtual forces exerted on them. To avoid local minima, the potential field is not always kept active.

Basilico and Amigoni [182] consider an unexplored region with unknown targets inside this re-

gion for which the paper shows the efficiency of using Multi-Criteria Decision-Making techniques.

The multiple criteria considered for frontier selection are information gain, the probability of

communication link working, and traveling cost. To combine their scores into one global utility

function, they make use of Choquet integrals computed using Kappalab R package. Their algo-

rithm was benchmarked against other algorithms and shown to perform better, especially when

diverse decision choices were available with sharply varying rewards.

Solanas and Garcia [183] partition the unexplored area periodically using a K-means clustering

algorithm and then assign the partitions to robots closest to their centroids. They have bench-

marked this method against Burgard’s multi-robot exploration work. This algorithm focuses on

spreading out robots to cover the area and performs better than Burgard’s method. But it is not

significantly more efficient than Burgard’s method.

Wurm et al. [184] use Voronoi graphs to partition indoor environments into segments. Then

the cost of sending each robot to the frontier targets of each segment is computed, and the

Hungarian algorithm is used to assign robots to their optimal segments. Simulation experiments

show that it is faster than frontier-based coordination. Real experiments using two identical
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Pioneer II robots in office-like environments were done to show that the environment was explored

completely and without any interference between robots.

Pei et al. [185] consider robots exploring an environment such that connectivity is maintained

and bandwidth is available to transmit video/audio feed from any explored region at any time back

to the central command. They apply the set cover problem, Steiner tree problem, and the linear

bottleneck assignment problem to solve such constrained exploration tasks. They compare their

methods against two communication-limited exploration techniques. With respect to exploration

time, they outperform the other two overall. Their method also guarantees better connectivity.

Simmons et al. [186] work on frontier-based exploration via distributed bidding among robots.

But the system is not fully distributed. Higher efficiency can be achieved using a central plan-

ner that synthesizes the local data accrued by all robots. The frontiers are expanded based on

information gain. A team of two Pioneer AT robots and an Urbie robot was used to test their

algorithm’s robustness and was found to reduce exploration time and increase mapping accuracy.

Doniec et al. [187] formulated frontier-based exploration problem by multiple robots as a

constraints satisfaction problem and solved it by using a distributed and asynchronous algorithm.

Constraints are placed so that communication links do not break and robots explore the unknown

area more by not overlapping their sensing regions. Simulations were carried out in NetLogo

to observe the algorithmic performance with multiple robots while allowing for obstacles and

different communication and sensor ranges.

Sheng et al. [188] augmented a distributed bidding algorithm with two measures to accom-

modate the limited-range communication for efficient, coordinated frontier-based exploration by

multiple robots. These features handle the limited communication ranges of the robots. The

robots explore areas such that it leads to maximum information gain in minimum time. A near-

ness measure is introduced so that the robots tend to stay close together within appropriate

limits. An important consideration when two robots meet is how do they exchange as little of

their knowledge as possible to synchronize their maps.
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Vazquez and Malcolm [189] develop a behavior-based approach to explore an unknown area

with communication limits. The behaviors include achieving communication connections, main-

taining them, or avoiding collisions. This method is benchmarked against Yamauchi’s seminal

multi-robot exploration paper. Simulations were carried out for different environment sizes, and

different communication limits and their method was found to be faster than Yamauchi’s method.

Elmaliach et al. [190] study the area patrolling problem in closed areas where constraints are

laid down on the frequency with which the target locations are visited, and an algorithm based

on finding Hamiltonian cycle is introduced. Then they also introduce deadline constraints for

handling contingency events and design algorithms to recover from such scenarios quickly.

Howard et al. [191] deployed mobile sensing robots in a stationary configuration to maximize

the area covered. The authors use potential field-based methods to achieve the static sensor

network configuration in the environment. Simulation experiments study the time to deploy a

network as well as the node spacing that is generated. Velocity and acceleration limits are added

to the potential field dynamics model to prevent oscillations during convergence. It does not,

however, prevent the system from reaching static equilibrium.

Batalin and Sukhatme [192] seek to achieve good coverage of an unknown environment. To

achieve this, they disperse the robots so that their coverage regions do not overlap. The infor-

mative approach is to form local coalitions among robots within each other’s range. Then the

information is exchanged, and directions of motions decided that spread out the sensor coverage

to the maximum. Their molecular approach, on the other hand, assigns a direction to the robots

away from others without any local information exchange or deliberation. Both approaches out-

perform the basic approach based only on robots maximizing their covered area. However, they

find the molecular approach to perform better than the informative one but only very slightly.

Marjovi et al. [193] consider a search and rescue mission in a big warehouse that caught

fire and is filled with smoke. Khepera III robots with innovative smoke sensors are deployed

in the warehouse to detect the fire sources while exploring the entire floor space. They employ
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frontier-based exploration technique such that the time taken to finish exploring the warehouse

is minimized. The frontier is assigned to the robots based on their distances. They benchmark

their method against the optimal solution to cover the region if it was known entirely.

Senthilkumar and Bharadwaj [194] study the multi-robot exploration of an unknown envi-

ronment using an online ant-inspired robot dynamics to completely cover the area based on the

spanning tree coverage method. They also handle partially occupied cells and allow for narrow

open spaces to be shared among multiple robots. Their method is benchmarked against their

previous algorithm in which spanning trees are not allowed to intersect in more open spaces so

that collisions are avoided. Their new algorithm proves to be faster.

Zlot et al. [195] present their work on frontier-based exploration trying to maximize informa-

tion gain. Their method is robust to communication failures and can handle dynamic addition or

deletion of robots. The frontier is expanded based on greedy, random, or quadtree-based strat-

egy. Physical experiments were carried out with a team of ActivMedia PioneerII-DX robots.

They compare different strategies based on area covered per unit distance traveled and found

exploration efficiency to improve by a factor of 3.4 for a four-robot team.

De Hoog et al. [196] consider robots that can be in two roles: explorers or relays. The

explorers cover the complete area and return periodically to rendezvous points to pass on the

data to relays. The relays then take the information to a central command center. They compare

their algorithmic performance with frontier-based methods. In terms of area covered, non-limited

frontier methods perform better. In terms of responsiveness to command centers, communication-

limited frontier methods perform better than role-based. But the role-based method provides a

trade-off between complete area coverage and maintaining tight communication links between the

robots and the command center.

De Hoog et al. [197] work with dynamic environments where paths can become suddenly

blocked, and communication links may break suddenly. The rendezvous points are selected for

explorer and relay robots by first using Hilditch’s Algorithm for Skeletonization to compute a
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small set of points in the robot’s chosen frontier and then selecting the one with best communi-

cation range and traversal costs. The frontier methods were faster than the rendezvous methods,

but their command center performance was poorer. The authors’ advanced rendezvous point

selection method was shown to outperform the simple method in office-like, open, and cluttered

environments.

Ouyang et al. [198] design a decentralized multi-robot active sensing algorithm and apply it to

real-world scenarios. The task for multiple robots is to gather information at different locations to

predict the unknown, non-stationary phenomenon and estimate the spatial correlation structure

of the phenomenon. The phenomena studied here include the plankton density in oceanic regions

and traffic speed data on urban road networks. These phenomena are modeled using a Dirichlet

process mixture of Gaussian processes.

Hassan et al. [199] use Voronoi partitioning while optimizing multiple objectives and verifying

the resulting multi-robot cleaning using torque heatmaps. Jager et al. [200] develop a dynamic,

decentralized area partitioning method while accounting for limited inter-robot communication.

Carlsson [201] solves a stochastic vehicle routing problem by dividing a given region using

probabilistic analysis of traveling salesman problem (TSP) tours such that all vehicles have a

balanced workload. Higuera et al. [202] use subgradient search methods to divide an area among

multiple robots based on their speed profiles. Agarwal et al. [203] compute rectangle partitions

of holed rectilinear regions and distribute them among multiple unmanned reconnaissance aerial

vehicles (URAVs) based on their heterogeneous capabilities.

Yamauchi et al. [204] established the use of frontiers to guide maximal information gain based

exploration. In this work, the idea was to detect the boundaries between explored and unexplored

regions as frontier cells and greedily explore the closest frontier regions. Sheng et al. [205] consider

limited-range communication and develop a distributed bidding algorithm where every robot bids

for its claim to frontier cells and tries to remain close to each other to minimize communication

volume. Burgard et al. [206] use multiple robots to explore an environment in minimum time
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by assigning utility values to frontier cells available to robots such that the robots explore varied

locations. Ma et al. [207] use a genetic algorithm (GA) to compute the optimal assignment of

the frontier cells to multiple robots based on the utility of these cells calculated using Burgard’s

technique.

Wang et al. [208] develop a frontier-based grid exploration approach where they use the PSO

method to prevent multiple robots heading towards the same cell. Zhou et al. [209] use the

PSO method to guide the robots to explore remote frontiers, thus minimizing the exploration

time. Jung et al. [210] develop a coverage method based on dynamics of autonomous underwater

vehicles (AUVs) and sea current disturbances. While each AUV in a team uses the developed

method to cover regions, they avoid colliding with each other leading to entire area coverage.
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Chapter 3

Modelling and Verification of Contingency Resolution

Strategies for Multi-robot Missions Using Temporal Logic

In this chapter, a framework to model multi-robot missions using formal methods is presented

and desired properties for such systems are verified.

3.1 Introduction

Multi-robot missions may encounter unexpected situations that can halt or alter mission tasks.

For example, consider the case of a large ship that has to be escorted by robotic boats and drones.

Each robot has been assigned its nominal task schedules. However, the ship’s path may experience

a blockage; robots’ batteries may die; communication links may stop working; a civilian vessel may

be spotted in the protected region around the ship. These situations will interrupt the regularly

scheduled tasks.

Due to the presence of such contingencies, contingency resolution strategies must be designed

to contain and minimize the adverse effects of contingencies without drastically affecting the

primary mission objective such as minimizing the expected time to produce parts or reach a

location. In the civilian vessel escorting example, one strategy could be to first direct a drone to

assess the situation and, if the intrusion is confirmed to jeopardize the mission significantly, then
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a robotic boat must approach the intruder and warn it to move away. However, there may be

numerous such strategies having different impacts on the mission. Some may lower operational

costs while others lower mission makespan. Appropriate methods are needed to select the most

promising strategies.

Since contingencies occur unexpectedly or even rarely, one cannot test the resolution strategies

as rigorously as one can test the nominal mission execution strategies. One could, in principle,

run multiple high-fidelity simulations to decide how effective these strategies are and which ones

are better. The problem with running such simulations is that they are not easily scalable for

larger problem sizes because they try to encompass several minute details and run on professional

simulation software packages which are resource-intensive and time-consuming. Also, manually

coding different possible mission executions and verifying them through computer simulations is

very time-consuming and maybe unrealistic.

This chapter focuses on leveraging the use of model checkers to the domain of multi-robot

missions to assess the adequacy of contingency resolution strategies to minimize the adverse effects

of contingencies on the mission execution. In robotics research, the use of formal methods has

become quite popular to analyze mission execution protocols and contingency resolution strategies.

Formal methods provide a complete framework for handling dynamic and uncertain systems in

a mathematically rigorous, and logically consistent manner. However, such model checkers were

traditionally designed for other applications such as embedded systems and computer hardware

design. So when modeling multi-robot systems, generally some simplifications have to be made.

The challenge is that one must not oversimplify the mission model so much so that running high-

fidelity simulations would have proved to be the better choice. However, it must be ensured that

the mission model adheres to the semantics implemented by the model checkers.

This chapter presents a framework for the nominal modeling of the mission using formal

methods, the design of contingency resolution strategies for model checking and evaluation of

these strategies with respect to desired mission objectives.
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3.2 Problem Statement

The objective is to develop a framework to apply model checking tools to incorporate contin-

gency models in nominal mission models and evaluate the effectiveness of contingency resolution

strategies. Given a mission model and alternative strategies to handle contingencies, one must

evaluate the performance of these strategies using a model checking framework. In the next sec-

tion, the various components required for designing such a framework are described and then this

framework is applied to two case studies in the next two chapters.

3.3 Overview of Approach

3.3.1 Nominal Mission Modeling for Deterministic Transitions

Mission modeling and verification methods require a nominal mission description as input. One

must generate a formal transition model for the system based on such a description. Model

checking refers to the automatic and exhaustive verification of whether a given specification is

satisfied by the system. Therefore, both the mission model and specifications are needed for model

Figure 3.1: Characterization of multi-USV escorting mission scenario (Not drawn to scale)
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checking. A mission example representative of multi-robot surveillance and patrolling missions

is used for illustration purpose. Suppose there is a high-value target that has to be guided by a

team of mobile robots through waypoints to reach the desired location ultimately. An example

is shown in Figure 3.1, where a ship has just entered a port and must be escorted by a team of

autonomous unmanned surface vessels to its designated location. However, the modeling presented

here is independent of this specific mission and applies generally to multi-robot patrolling missions

involving any mobile robot.

Based on such a mission description, the nominal tasks comprising the mission are identified.

Most missions consist of spatially distributed tasks that may be performed concurrently by mul-

tiple agents. Agents may be human workers or robots. One example is the task of escorting the

high-value target from one waypoint to the next performed by a team of mobile robots. The

pre-conditions and post-conditions are identified for each task. If the pre-conditions for a specific

task are satisfied then an agent, available and well-suited for carrying out the task, executes it

which results in a change of the mission scenario as described by the task’s post-conditions.

Then a mission execution plan is chosen that is well-suited for the mission under consideration.

It is a sequence in which the available tasks must be executed to meet the mission objective while

adhering to pre-conditions and post-conditions of all tasks. For example, the mobile robots will

meet up with the high-value target at a safe location, and then the convoy will proceed through

each successive waypoint until it reaches its final destination.

Missions are generally of two types, deterministic and probabilistic. If a mission only allows

an agent to transition from a current state to a unique new state when certain conditions are met

at the current state, then the mission is modeled as a deterministic process. If there is at least

one agent state where one or more probabilistic transition rules are applicable, then the mission

is modeled as a probabilistic process.

To perform nominal modeling and verification for deterministic missions, proceed as follows:-
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• Identify the set of discrete states (let vjai denote the j-th variable for the i-th agent ai)

available for each agent along with their domains and initial values. For example, the

location of the high-value target may be a mission variable whose domain is given by the

designated waypoints. The initial state for each such variable must also be characterized.

For example, mobile robots begin their operations initially from some designated resting

station.

• Identify the environment variables (let vje denote the j-th environment variable) that keep

track of relevant factors in mission scenario: For example, some variables may keep track

of whether the high-value target is encountering a dangerous situation. It may be assumed

that these contingency variables are maintained and updated by a ground control station

(GCS). The GCS receives sensory data that helps it to detect such unexpected contingencies

and communicate their occurrence to mobile robots.

• Encode transition rules (let tj denote the j-th transition rule) which specify constraints for

agents to transition from one state to another in terms of tasks’ pre-conditions and post-

conditions which in turn are specified in terms of agents’ states and environment variables.

For example, a transition rule specifying the motion from one waypoint to another represents

a task for the mobile robot to execute. Such transition rules may be encoded with ease in

model checkers like NuSMV as: if pre-conditions, then post-conditions.

Transition systems are adopted for modeling the missions. These are computer science tools

used to describe transition rules for discrete-state systems. Transition systems are represented

using Kripke structures. According to Kripke semantics, a Kripke frame is represented by 〈S,R〉

where S refers to the states that may be taken by the system. For missions, states are of two types,

one representing the states which the agents assigned to the mission may reach, vjai , and another

representing the states that environment may reach, vje. R ⊂ S × S represents the accessibility

relations. The accessibility relations indicate which states can system access or transition to from
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a given state. R comprises of transition relations tj which indicate which states a system may

access or transition to from a given state.

Let AP denote the set of atomic propositions relevant for the system under study. When

atomic propositions that can be verified for the system are provided, the Kripke model for the

system gets defined. Kripke model is denoted by 〈S,R,L〉 where L : S × 2AP → {>,⊥} is

a labelling function that returns true or false for a given state and atomic proposition(s) over

it. If multiple atomic propositions are queried, this function can only return true if all atomic

propositions are individually satisfied by the queried state. Finally if the initial states of the

system denoted by I = [vjai(0), vje(0)] are identified, the Kripke structure is given by 〈S, I,R, L〉.

3.3.2 Nominal Mission Modeling for Probabilistic Transitions

Transition rules between states of a system are not always deterministic. For stochastic systems,

probabilistic transition rules are specified [211]. Stochastic systems with discrete states are gen-

erally modeled as Markov Decision Processes (MDPs). An MDP is a discrete-time stochastic

framework denoted by a 4-tuple M = 〈S, I, As, Pa〉. Here S represents a finite set of states the

system may transition to. I denotes the initial states the system begins from. As lays down the

finite set of actions that are applicable at state s ∈ S. Pa(s, s′) represents the probability that the

system will transition to state s′ in the next step if it is currently in state s and adopts action a.

A finite path through an MDP is a sequence of alternating states and actions that may be

denoted as follows:

ρ = s0
a0−→ s1

a1−→ · · · (3.1)

PRISM allows one to define reward structures that help in computing expected total rewards

for the system. One can either define state-based rewards r : S → Q or transition-based rewards

r : S × A → Q. Then the total reward for path ρ consisting of N state transitions is given by
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rew(r, ρ)
def
=

N∑
i=0

r(si, ai). The expected total reward is computed over all finite paths that meet

some user-defined conditions.

Discrete-time Markov chains (DTMCs) are also feasible modeling tools in several cases. MDPs

allow for states in which multiple transition rules are applicable and resolve such conflicts based

on the principles of nondeterminism. However, DTMCs differ from MDPs in that they allow only

one probabilistic transition rule for every possible state of the system.

NuSMV allows some simple handling of probabilistic behaviors, but it is limited in scope. The

first case study discussed in next chapter is mostly deterministic, but it includes a few simple

probabilistic transition rules. For example, if an agent may execute two tasks from its state x,

one with 2/3 probability where it moves to state y and another with 1/3 probability where it

moves to state z. It would appear in NuSMV as follows.

next(agent_state) :=

case

agent_state = x : {y, y, z};

esac;

NuSMV excepts the user to pick each mission variable in a sequence. Then for all possible cases

that the variable may encounter, one must specify the corresponding change in its state. NuSMV

also requires the user to repeat the variable names to match their probabilities. Coding such

transition rules in NuSMV may be inconvenient for complex stochastic systems. The probabilistic

model checkers are more convenient and effective. PRISM is a popular tool for this purpose. Unlike

the exhaustive enumeration of NuSMV, PRISM requires the user to encode different conditions

that the user considers relevant for the mission and then specify how all the mission variables will

change if those conditions hold. For example, if an agent may execute two tasks from its state x,

one with 75% probability where it moves to state y and another with 25% probability where it

moves to state z. It would appear in PRISM as follows.
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[] agent_state = x -> 0.75 : y + 0.25 : z;

Real-world systems are often simulated by appropriately synchronizing these transition rules in

PRISM. The extensive use of this tool for probabilistic model checking is demonstrated with the

help of the second case study.

3.3.3 Modeling of Contingency Resolution Strategies

These are the steps to incorporate contingency information in mission execution. Firstly, design

the contingency resolution strategies which are invoked when a contingency is reported during

mission execution. However, these strategies do not merely assign an agent to execute a specific

action to resolve a contingency. These strategies may require multiple actions to be performed in a

sequence. So for different cases, different sets of actions may have to be invoked. Below, different

examples of contingencies are given that may be encountered during multi-robot missions such as

those described earlier.

• Suppose robots are required to maintain contact with GCS at all time. This may be neces-

sary for robotic operations so that human remote operators may take control of the robots if

they break down. Since the ground station must always maintain a communication link with

the robots, a variable called “comm link[i]” is introduced. This Boolean variable denotes

whether the communication link between GCS and i-th mobile robot is working or not.

Then a strategy is laid down for resolving communication failures. If the communication

link breaks down, then the robot is supposed to go back to its station for repair purpose

and avoid any unsafe situation in the open waters. When the link between the station and

the robot is restored, it rejoins the rest of the convoy.

• It is common to find missions interrupted because suddenly some event took place which

halts the mission. The only way to resume the mission is for the agents to address the

event first. For example, when the high-value target is moving through a crowded region
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and is being assisted by multiple mobile robots, it is possible for another vehicle to come

dangerously close to the protected asset. To prevent collisions, the following strategy is

designed. If another vehicle is reported in the protected zone, then a robot is instructed to

first go to the region to confirm whether the vehicle is still there. If the vehicle’s presence

is confirmed, then the robot must approach and warn the intruder to leave that region and

return to resume its mission only after the intruder has acknowledged the message.

• In busy seaports, a civilian vessel may come dangerously close to a ship. Following the pre-

vious example, one can consider a slight modification to the contingency resolution strategy.

Suppose each unmanned surface vehicle (USV) had an unmanned aerial vehicle (UAV)

mounted on top of it. The UAV is used to confirm the presence of the vessel because it may

roam easily in the port region compared to the USV. If UAV confirms the civilian vessel,

then the USV will approach and warn the intruder.

• The path ahead of the convoy may be blocked. Static obstruction, say debris may be found

on the path which when reported, a robot must go to that location to confirm the obstruction

and its nature. Upon confirmation, it must attempt clearing the path, and until the path

is cleared, the mission is paused. Only when the path is cleared, the mission resumes. One

can assume that if there is large-sized debris that the robot will be unable to clear, then

it will message the central mission controller to send human-operated tugboats to clear the

debris. Again, for the ship example, one may use the UAVs for contingency confirmation

and the USVs for contingency resolution.

Secondly, encode the contingency resolution strategies using appropriate transition rules. Model

checking is crucial in detecting whether humans have introduced any inconsistencies when coding

such transition rules. For example, if the communication link for i-th robot breaks, then it should

head towards the base station coded as !comm_link[i]: base_station.
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If multiple contingencies coincide, then an essential aspect of contingency planning is to decide

how the respective strategies should synchronize among themselves. Synchronizing contingency

actions in different ways may significantly impact mission performance. This is clearly demon-

strated in the second case study.

3.3.4 Model Checking and Verification

3.3.4.1 Deterministic Transition Systems

The system properties to be verified by the user are encoded with the help of temporal logic. After

the mission model and contingency resolution strategies are coded in the programming language of

the model checking software and subsequently compiled, the user assesses those system properties

using available model checking tools. For deterministic systems, one must verify whether the

system eventually reaches a desirable state. There may be multiple such desirable states.

For deterministic transitions, one may use LTL formulas to specify goal states. If states of a

system are considered as nodes then the transition rules of the system define a graph-like structure.

CTL and LTL operators help in reasoning in this domain. While CTL operators explicitly help

in reasoning about branching paths, LTL operators help in reasoning about temporal nature of

system execution in a single path. CTL operator A is used to reason about all paths that a

system might take whereas operator E tries to reason whether there exists a path reaching some

desired state. The LTL operators assume a set of atomic propositions AP are defined. LTL builds

up on the logical connectives (or : ∨, and : ∧, negation : ¬) by proposing new temporal modal

operators: X (neXt), U (Until), F (Finally), G (Globally). If p1, p2 ∈ AP are atomic propositions

then Xp1 indicates that p1 holds true in the next time step, p1 U p2 indicates that p1 is true at

least until p2 becomes true, Fp1 indicates that eventually p1 holds true and Gp1 indicates that

p1 always holds true.
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One may also verify whether risky or inconsistent behaviors have been injected into mission

execution due to human error. For example, in vehicle routing problems, one generally wishes to

verify whether the vehicle reaches a desirable state and stays there. For this, the following type of

LTL specification may be used: FG φ, where φ is a logical proposition about the mission. φ may

be composed of conjunctions and disjunctions of atomic propositions. The LTL formula states

that the logical condition φ will eventually be always satisfied. The G operator is used to ask the

model checker to verify whether the vehicle achieves equilibrium at the desired location once it

reaches that location safely or it has a tendency to wander off to another location due to the way

mission specifications were encoded.

Before verifying such properties, one must explicitly ask the model checker to discard specific

paths of model execution. This is done by making a fairness assumption which restricts NuSMV

only to consider those mission executions which are generally expected in real-world. When

verifying the correctness of a given mission protocol, one wants to discard trivial counterexamples,

say those produced due to livelock situations. This is because the contingencies may put the system

in a never-ending loop. For example, suppose the convoy is interrupted by a contingency event,

and the mobile robots are assigned to resolve it. Once the contingency has been resolved, and the

convoy is ready to proceed with the mission again, another contingency event occurs. This may

keep happening again and again. This is a livelock situation.

3.3.4.2 Probabilistic Transition Systems

Deterministic missions require exhaustive enumeration of states possibly reached by the system

to verify LTL properties. But this may not be computationally possible due to physical memory

limits. So it may be computationally more efficient to model missions as probabilistic processes.

Many missions happen to be probabilistic. But then one is only able to provide probabilistic

guarantees by computing the probability with which a system will reach a specific state in a par-

ticular duration or expected time elapsed before system encounters a goal state. For probabilistic
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systems, probabilistic operator P is added to the previous LTL operators, and this temporal logic

is referred to as Probabilistic Computation Tree Logic (PCTL). These PCTL formulas are most

commonly used to query about probabilistic reachability conditions which may refer to querying

the probability that the system eventually satisfies a set of atomic propositions in a conjunctive

or disjunctive way or even a mixture of the two. PCTL verification results produced by PRISM

are used to evaluate how the different contingency resolution strategies perform and how mission

performance varies by changing mission settings.

For probabilistic model checking, numerical methods like value iteration are used. Numerical

techniques create symbolic representations using binary decision diagrams (BDDs) and multiter-

minal BDDs (MTBDDs) and operate iteratively in conjunction with a sequential stopping rule.

Systems exhibiting nondeterminism are modeled as MDPs, and one can only query the minimum

or maximum values of probabilities and expected rewards. One is generally interested in querying

about probabilistic reachability conditions such as: Pmin=? [F≤t “cond” ], asking what is the

minimum probability that within first t state transitions the system satisfies the logical condition

“cond” which may be a union or intersection of atomic propositions.

If a reward structure TR assigns real-world time duration during system’s state transitions

then PCTL expression like TRmin=? [ F “cond” ] queries the expected time in which system

satisfies the specified condition. PRISM returns a finite output for this query if and only if

Pmax≥ 1 [ F “cond” ] which means that the condition “cond” is eventually satisfied by the system

almost surely. However, Pmax≥ 1 [ F “cond” ] maybe true even though a stronger condition like

AF “cond” fails. As of PRISM 4.4, one can only query the actual value of Pmax because bound

checking is not allowed. The bound checking expression was only used for clarity. MDPs are only

solved using numerical methods which place a significant restriction on the problem sizes that

may be investigated.

Missions are modeled as DTMCs so as to investigate problems of larger sizes because DTMCs

are computationally more efficient than MDPs. In addition to numerical methods, even statistical
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methods may be applied to DTMCs for performing model checking. They involve Monte Carlo

simulation and sampling for hypothesis testing and are much faster. Statistical methods can

handle larger problem sizes as compared to the numerical methods.

3.4 Task Network Generation

Temporal logic-based modeling is also used to generate task precedence graphs for multi-robot

missions. For example, missions involving multiple mobile robots usually comprise precedence-

constrained survey-like or travel-to-location tasks [212]. Often it is assumed that the mission

supervisor provides such precedence graphs. However, temporal logic may be used to extract

such precedence graphs from mission specifications itself. These task-precedence graphs are then

provided as input to task allocation and scheduling algorithm.

Two types of LTL constraints generally suffice for all cases. Firstly, a system may have

Sequencing with Avoidance and without Repetition (SAR) constraints. Suppose task τ2 cannot

be started until τ1 has been finished and both tasks have to be done only once throughout the

mission. The LTL expression for this SAR constraint is:

F (τ1 ∧ Fτ2) ∧G(τ1 =⇒ XG¬τ1) ∧G(τ2 =⇒ XG¬τ2) (3.2)

Each such SAR constraint creates a directed edge originating at a node representing task τ1 and

ending in node representing task τ2.

Secondly, the system may have a simple reachability constraint like Fτ1, thus adding a node

to the task network. Using these two types of LTL constraints that may be extracted from

the mission description, one can construct task precedence graphs which serve as an input to

the previously developed task allocation method. The resulting task network will be a directed

acyclic graph with the possibility of free nodes. So it may not be a connected graph even in the

undirected sense.
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3.5 Summary

This chapter presents a framework that can model nominal missions with deterministic and prob-

abilistic transitions. An approach is also provided for modeling the contingency resolution strate-

gies with specific examples of contingencies. Existing model checkers are used to evaluate these

strategies.
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Chapter 4

Multi-USV Case Study

In this chapter, a case study involving a mission in port environments is presented to escort a

ship to its docking location using multiple unmanned surface vehicles.

4.1 Introduction

NASA’s Mission Control Centre is an excellent example of how complex missions are being central-

ized and automated. Today, the crew on board the international space missions mostly performs

research activities while the spaceflight and other safety conditions are maintained through a

ground station via remote control. This concept of automating complex missions involving robots

and AI software through a base station supervised by humans is a major focus of current automa-

tion goals. It is desirable for humans to be able to supervise and control the entire mission through

robots while sitting in a base station far away from the mission activities. However, automation

technologies are still lacking in some areas so that humans may also be needed to collaborate with

robots.

A mission involving multiple unmanned surface vehicles (USVs) in a busy port is analyzed

where the USVs must escort a ship to its designated docking location. The autonomous vessels

used during this mission are assumed to be under the supervision of a base station just like with

space missions so that in case of a catastrophic failure or mission disruption, human supervisors
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can take over. Three types of unexpected contingency events are introduced that the system

must be robust against. Mission execution protocols are designed taking into account the desired

mission objectives. But these protocols must be checked to be logically consistent and fail-proof,

so their correctness is verified using NuSMV model checker [213].

4.2 Problem Statement

Given an English description of the ship escorting mission, the framework presented in the last

chapter must be able to encode it in a model checker and evaluate the performance of the con-

tingency resolution strategies. One must first model a ship escorting mission with the help of

USVs mounted with UAVs. These robotic boats and drones must operate autonomously to assist

the ship once it has entered the port until it has docked successfully. The different contingencies

or accident scenarios that can occur must be modeled and strategies must be designed to use

the robots to contain these situations without damaging the convoy mission. The framework

developed in the previous chapter is used to evaluate the strategies to resolve different types of

contingencies.

Figure 4.1: Characterization of multi-USV escorting mission scenario (Not drawn to scale)
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4.3 Mission Modeling

In this section, a multi-USV mission scenario is analyzed as shown in Figure 4.1 where a ship

which has just entered a port must be escorted by a team of USVs to its docking location and

assisted till it has been properly docked. The USVs are initially located in the USV station and

must finally return to it after mission completion. Though the USVs are autonomous, they are

supervised from a ground control station labeled in Figure 4.1 as GCS. The GCS receives sensory

data that helps it to detect contingencies. The GCS is also required to maintain contact with

USVs at all time. This is necessary for robotic operations for various reasons, the most important

being the ability for human remote operators to take control of the USVs if the USVs fail.

The Kripke structure for each of the transition system involved in this mission is described

one by one along with its corresponding NuSMV codes. For this purpose, the USV states must

first be identified. Each USV can be located at the docking station (ls) or one of the way-points

generated for the ship motion (l0, l1, · · · , lw). The straight line segment traversed by the ship

from one way-point to another, say li−1 to li is denoted by pi. It is assumed that pi is the path

generated by ship to move linearly from location li−1 to location li. The region around path pi

must be clear of other vessels.

In busy ports, commercial or civilian vessels may come dangerously close to a ship and thus to

prevent collisions it is important to keep the area around a ship’s path clear. The region around

path-segment pi is denoted by ri. When a civilian vessel intrudes into the protected region of

the ship, these situations are referred to as contingencies of type A. Thus, if a contingency of

type A arises in region ri, then a UAV is instructed to survey the region ri to confirm whether

the civilian vessel is still there. If the UAV confirms that the civilian vessel is still there, then

its corresponding USV will approach the intruder’s vessel and warn it to leave. The USV must

keep tracking the moving intruder vessel till the vessel has cleared the region. In NuSMV, this
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contingency state of the USV is modeled by assigning it the task of monitoring entire region ri.

Thus, ui = ri denotes the contingency state of type A.

ui = ri (4.1)

Contingencies of type B refer to the blockage of the path in front of the ship, thus making it

dangerous, or at least not feasible, to go ahead. Now if contingency of type B occurs, then some

static obstruction, say debris, have been found in the path of the ship which prevents the ship

from traversing that segment, so a UAV is commanded to survey the path-segment to find if there

is a static obstruction. If there is an obstruction, then the associated USV of the UAV will be

directed to attempt clearing the path, and until the path is cleared, the mission is paused. Only

when the path is cleared, the mission can resume again. It is assumed that if there is large-sized

debris, then the USV will be unable to clear. So it will message the central mission controller to

send human-operated tugboats to clear the debris. This interaction is not explicitly modeled, and

it is assumed that the obstruction is eventually cleared due to the intervention by the USV, and

only then the mission resumes.

So the additional states that can be accessed by the USVs are p1, · · · , pw and r1, · · · , rw. In

NuSMV, this is coded as follows:

u1_state : {ls,l0,l1,l2,p1,p2,r1,r2};

The states that ship s0 may take is given by the computed way-points: l0, l1, · · · , lw. The

location l0 is assumed to be the starting location where the pilot assigned to the ship begins

guiding it to enter the busy port. The central mission controller, which is generally a ground

station on the port premises, computes the way-points needed to be traversed by the ship to

reach its docking location, and it is denoted by lw. These way-points are computed as soon as the

ship enters the port at location l0. Once the ship has reached its docking location, then it must

perform complex and slow maneuvers to dock itself properly. During this docking action after
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reaching the way-point lw, the ship is assigned to the next state, which will be the execution of

the task of getting “docked” properly. In NuSMV, this reads as follows:

u1_state : {ls,l0,l1,l2,docked};

The initial state of all the USVs, as well as the UAVs, is the port station where they rest

and are periodically serviced for maintenance purposes. The initial state of the ship is the first

waypoint.

The occurrence of contingencies during the mission is simulated by two variables for each

segment. The variable “contingency type A[i]” holds non-negative integer values representing the

number of other vessels intruding into ship’s space ri. For simulation, an upper limit must be

placed on the number of vessels that can appear in this region. Varying this limit significantly

affects the simulation results. For each intruder’s vessel, only one USV is assigned to handle it.

Similarly the Boolean contingency variable “contingency type B[i]” denotes whether the path-

segment pi is obstructed or not. This flag may be raised even if the segment is deemed to have

low depth or high current. If path-segment is obstructed, then at least two USVs are assigned to

handle it. Again such constraints on the number of USVs are needed to handle the contingency

tasks. They are user-defined and can be changed appropriately. If ρI represents the number of

robots that must be assigned for a contingency task of type A, then ρI = 1. Also, assign ρII = 2,

which has a similar meaning. In this work, ρI is fixed but other values may be allowed for ρII .

In the former case, it is assumed that the USV’s job is to warn intruder vessels by turning on

a beacon alarm and alerting the vessel driver to leave the area. This can be efficiently done by

a single USV. In the latter case, a static obstruction may have to be cleared. For this purpose,

multiple USVs are employed in a coordinated effort to push away the debris. One can choose

ρII = 1 if larger debris will not be encountered, or if human assistance will be provided when large

obstructions are noticed. Similarly, one can have higher values of ρII to be safe, but employing

USVs is expensive, so there must be a trade-off.
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In the case of real-world operations, these variables are maintained and updated by the central

ground station, which regularly communicates this information to the USVs. Though the central

ground station must listen to the environmental sensory data to update these values, in th present

simulation, their values are randomly sampled from a probability distribution which is assumed

to mirror the sensory data recorded over time previously. Therefore, the initial values for the

contingency variables are generated by sampling randomly from a probability distribution.

Since the ground station must always maintain a communication link with the USVs, another

state variable called “comm link[i]” is introduced. This is a Boolean variable maintained for USV

ui, which denotes whether the communication link between the ground control station and the

USV is working or not. Initially, this variable is set to true for all USVs because initially all USVs

are at their station and assumed to be properly functioning before the mission commences.

For the above mission scenario, if inputs are given in the form of the number of USVs assigned

to the escorting mission, the number of way-points that must be traversed to complete the mission,

and traffic/environment modeling for the region around the ship’s pre-planned path, then Matlab

is used to generate a SMV file for the problem scenario. For example, if there are three USVs,

three way-points, and only one civilian vessel can intrude upon the region around the ship’s

pre-planned path, then the generated SMV file’s initial code looks as follows

MODULE main

VAR

s0_state: {l0,l1,l2,docked};

u1_state: {ls,l0,l1,l2,p1,p2,r1,r2};

u2_state: {ls,l0,l1,l2,p1,p2,r1,r2};

u3_state: {ls,l0,l1,l2,p1,p2,r1,r2};

a1_state: {ls,l0,l1,l2,p1,p2,r1,r2};

a2_state: {ls,l0,l1,l2,p1,p2,r1,r2};

a3_state: {ls,l0,l1,l2,p1,p2,r1,r2};
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comm_link: array 1..3 of boolean;

contingency_type_A: array 1..2 of 0..1;

contingency_type_B: array 1..2 of boolean;

DEFINE

num_USVs_for_2nd_contingency:=2;

ASSIGN

init(s0_state):=l0;

init(u1_state):=ls;

init(u2_state):=ls;

init(u3_state):=ls;

init(a1_state):=ls;

init(a2_state):=ls;

init(a3_state):=ls;

init(comm_link[1]):=TRUE;

init(comm_link[2]):=TRUE;

init(comm_link[3]):=TRUE;

The transition relationships are described for these states as follows. The ship s0 which will

be assisted in docking can travel from way-point li−1 to li only if all USVs along with their UAVs

have approached the ship’s current location, their communication links with the central mission

control station are working, and contingency tasks of type A and B are not affecting the mission.

This is coded as follows:

u1_state=l0 & u2_state=l0 & u3_state=l0 & a1_state=l0 & a2_state=l0 &

a3_state=l0 & comm_link[1] & comm_link[2] & comm_link[3] & s0_state=l0 &

contingency_type_A[1]=0 & !contingency_type_B[1] : l1;
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Figure 4.2: Kripke modeling for the ship

Also if the ship is at its last way-point, then it can only start getting docked if all the USVs

along with their UAVs are around the ship to assist it while docking and their communication

links are working properly. If none of these conditions are met, then the ship remains at its current

location.

u1_state=l2 & u2_state=l2 & u3_state=l2 & a1_state=l2 & a2_state=l2 &

a3_state=l2 & comm_link[1] & comm_link[2] & comm_link[3] & s0_state=l2 : docked;

Figure 4.2 shows the Kripke graph for the ship based on the above transition rules.

Next, the transition rules for the USVs are described. Figure 4.3 shows the partial Kripke

graph for a USV based on the following transition rules.

A port station is a location inside the port where USVs rest when they are idle and not

participating in any mission. If they suffered a communication failure, then they must report to

the port station to get the communication equipment repaired or wait safely till the communication

link is back on. If the USV is at the port station, the communication link is working, and the

ship is assigned to go to any of the pre-planned way-points, then the USV must also approach

the same way-point. This is coded up as follows:

u1_state=ls & comm_link[1] &

(next(s0_state)=l0 | next(s0_state)=l1 | next(s0_state)=l2): next(s0_state);

This transition rule helps take care of both the cases that a USV may find itself in when

located at the station. This can be readily verified. It is assumed that the mission begins when

the ship has been guided by the pilot to the port location l0. So if the USV is at the station before
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Figure 4.3: Kripke modeling for a USV in the absence of contingencies of type A and B

the starting of mission execution, then the ship will remain stuck at port location l0 until the

USV also arrives at l0; thus next(s0_state)=l0 holds. Then the USV heads towards the location

next(s0_state) which is clearly l0. It is assumed that a low-level controller implemented for the

USVs will guide them to the ship’s location l0 such that all USVs are in proper formation around

the ship and well-separated waiting for a new task to be assigned to them.

Another case may also occur so that the USV suffers a communication failure prompting it

to return its base station ls. In this case, it is desirable for the USV to remain at ls till the

communication link has been restored. Once restored, then the USV must meet the ship at the

way-point which the ship is headed towards.

If the ship along with all USVs and their corresponding UAVs are at a way-point li−1 and

none of the three contingencies are impacting the mission, then the USV heads towards the next

way-point li. For i = 1,

u1_state=l0 & u2_state=l0 & u3_state=l0 & a1_state=l0 & a2_state=l0 &

a3_state=l0 & s0_state=l0 & contingency_type_A[1]=0 &

!contingency_type_B[1] & comm_link[1]: l1;

If there are civilian vessels inside the region ri but sufficient number of USVs have not been

sent to warn off the vessels, and the UAV a1 corresponding to the USV u1 is already deployed in
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the region to warn off the vessel, then the USV must go to the region ri to warn off the intruder

civilian vessel. In all such USV operations, the communication link between the USV and the

ground station must be working properly for any operation to proceed.

u1_state=l0 & contingency_type_A[1]>count(u3_state=r1,u2_state=r1) &

a1_state=r1 & comm_link[1]: r1;

If there are not ρII USVs surveying and clearing the debris in the path-segment pi when path

blockage has been reported, then such contingencies of type B are also handled similarly, as shown

below.

u1_state=l0 & toint(contingency_type_B[1])*num_USVs_for_2nd_contingency

> count(u3_state=p1,u2_state=p1) & a1_state=p1 & comm_link[1]: p1;

If the USV is in region ri because it was sent to warn off intruder civilian vessels and the

ship is at way-point li−1 waiting for the contingency to be resolved, then once the vessels have

Figure 4.4: Strategy for handling communication failure
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Figure 4.5: Kripke modeling for a USV with three way-points only

acknowledged the warning signals of the USVs and moved away, the USV must go back to the

ship’s location. Similar logic holds for contingencies of type B.

u1_state=r1 & s0_state=l0 & contingency_type_A[1]=0 & comm_link[1]: l0;

u1_state=p1 & s0_state=l0 & !contingency_type_B[1] & comm_link[1]: l0;

Finally, when the USVs have successfully helped the ship in docking to its assigned location,

then they head back to their base station ls.

u1_state=l2 & u2_state=l2 & u3_state=l2 & a1_state=l2 & a2_state=l2

& a3_state=l2 & s0_state=docked & comm_link[1]: ls;

If communication signal fails then the USV is headed towards the base station.

!comm_link[1] : ls;

Figure 4.5 shows the full Kripke graph for a USV based on the above transition rules.

Next, transition rules are given for the UAVs mounted atop the USVs. Suppose the USV ui

and UAV ai are at location lj−1, then if there are more intruder civilian vessels to warn off than

the number of UAVs currently assigned to verify and detect their presence, then the UAV ai must
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go to the region rj to decide whether to trigger USV response. This is desired because it is easier

to manoeuvre a UAV in a busy port than a USV, but UAVs will not be able to actually resolve

the contingency. For that purpose, USVs must eventually be used. For i = 1 and j = 1,

u1_state=l0 & a1_state=l0 & contingency_type_A[1]>count(a3_state=r1,a2_state=r1)

& comm_link[1]: r1;

Contingencies of type B are similarly handled as well.

u1_state=l0 & a1_state=l0 & toint(contingency_type_B[1])*

num_USVs_for_2nd_contingency > count(a3_state=p1,a2_state=p1) & comm_link[1]: p1;

If the UAV is already in the region rj and there are less UAVs than the number of intruder

civilian vessels estimated to be present by the central ground station, then the UAV must wait for

more UAVs to enter the region before heading to survey the location where the intruder civilian

vessels are believed to be present.

a1_state=r1 & contingency_type_A[1]>count(a3_state=r1,a2_state=r1) &

comm_link[1]: r1;

Similar transition rule follows for contingencies of type B.

a1_state=p1 & toint(contingency_type_B[1])*num_USVs_for_2nd_contingency >

count(a3_state=p1,a2_state=p1) & comm_link[1]: p1;

When such cases are encountered by the vessels for which no transition rules have been en-

coded, then it is expected that the ship and the USVs continue performing the task they are doing

or remain idle at the assigned task’s terminal state. However, UAVs are supposed to be mounted

on top of USVs, so they are expected to track USV’s next moves in the above cases. These rules

are shown below for the ship, USVs, and UAVs respectively.
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TRUE : s0_state;

TRUE : u1_state;

TRUE : next(u1_state);

Below, the transition rules for the contingency variables are provided. In practice, these are

maintained and updated by the ground control station, so these rules simulate the ground control

station. If as many USVs as the intruder civilian vessels are in a region surveying and warning

them off, then all contingencies of type A are designated the status of being resolved. This is

expressed in NuSMV as follows.

count(u1_state=r1,u2_state=r1,u3_state=r1)>=contingency_type_A[1]: 0;

Each path-segment has an associated range [imin, imax] of intruder civilian vessel that may enter

the region around the ship’s path. It is assumed that imin = 0 so that for every segment, there

is a possibility of there being no civilian intruder vessel. At location l0, the ship has just entered

the port area, so it is expected that this area will be less crowded and hence have lower values

of imax. As the ship’s motion proceeds, it will encounter higher traffic regions. So the middle

segments have a higher imax. And during the end of ship’s motion, it will be near the docking

regions which will have lower civilian vessel population and hence lower values of imax.

If UAVs arrive in the region where intruder civilian vessels were reported, then either the

contingencies will get resolved or not. Contingency resolution here only means that when the

UAV surveys the region for the intruder civilian vessel, then that vessel may have moved away

or it was not there in the first place and the sensor data was wrong or misinterpreted by ground

station. Let the probability with which this can happen for every civilian vessel be pres. It is

assumed that this is 50%. So if iu civilian vessels were reported in the region, then after UAVs have

reached the region, the number of civilian vessels still remaining in the region may be 0, · · · , iu.

The probability of i′u civilian vessels (0 ≤ i′u ≤ iu) still intruding the region is clearly
(
iu
i′u

)
piures. So

if imax = 3 and let iu = 2, then the transition rule would be:
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Figure 4.6: Resolution strategy for contingencies of type A

count(a1_state=r1,a2_state=r1,a3_state=r1)

>=contingency_type_A[1] & contingency_type_A[1]=2: {0,1,1,2};

Above, the following holds: contingency_type_A[1]= iu. This is in relation to the path-segment

r1 where two civilian vessels have been reported. Thus, a similar rule must be coded for all possible

values of iu.

The number of civilian vessels that may be reported is considered to be uniformly random.

So if a segment can have a maximum of say imax = 3 vessels, then a final transition rule may be

added as follows:

TRUE : 0..3;

The transition rules for contingencies of type B are handled in the same way. For example,

next(contingency_type_B[1]) := case

count(u1_state=p1,u2_state=p1,u3_state=p1)>=

num_USVs_for_2nd_contingency: FALSE;

TRUE : {TRUE,FALSE};

69



esac;

No separate rule is needed for UAVs because this contingency occurs singly, and is similar to the

case of contingency of type A if it is assumed that imax = iu = 1. It gets handled automatically

by the final rule: TRUE : {TRUE,FALSE};

Also, one could let the communication link be randomly maintained by the NuSMV solver or

associate a probability of pcomm. Say, the probability of the communication link going down is

1/3, then the transition rules for the communication link will be as follows:

next(comm_link) := case

TRUE : {TRUE,TRUE,FALSE};

esac;

The Kripke structure for the ship, USVs, UAVs, and the ground control station (which is

being simulated through the contingency and communication link variables) is incomplete without

explicitly mentioning the labeling functions. For the vessels, this is obvious because the labeling

functions are the assertions regarding whether a vessel is at some location or doing some task.

For example, in the case of the ship, s0_state=l0 is a labeling function which asks whether the

ship has entered the port region or not. These labeling functions are crucial for triggering state

transitions. For example, there is no point in commanding the USVs to head out of their station

until the ship has entered the port region.

Next, the labeling functions for the ground control station are clarified. The ground control

station is indirectly being modeled through the modeling of contingencies and communication

links. Thus, whether there are enough USVs in a region to resolve a contingency or whether the

communication link is properly working are examples of labeling functions used to trigger and

control the base station’s mission progress.
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4.4 Model Checking and Verification

As explained in Section 3.3.4.1, it must be verified whether the ship docks successfully and all

robots return to their station in the presence of all three types of contingencies. So LTL specifi-

cation to be verified is as follows:

φ1 := FG (s0 = docked) ∧ni=1 FG (ui = ls) ∧ni=1 FG (ai = ls) (4.2)

The above formula requires the ship to be docked and both the USVs and their corresponding

UAVs rested back at their base station. A fairness condition is also added such that the ship has

safely reached the docking location at least once, and this is given by F (s0 = docked). This is

done to prevent livelocks due to contingencies. Some practical upper limits could also be put on

the number of times each contingency could occur because NuSMV allows bounded past operators.

There may also be sophisticated ways to handle such livelocks in the model itself. One simple

method is given for handling the same. This fairness condition may prevent the detection of bugs

in the nominal mission modeling itself because the fairness condition may force NuSMV to ignore

them.

So, the correctness of the nominal mission model must be verified in the absence of both

contingencies and the fairness condition to detect bugs that may have been introduced by human

coders. For example, a transition rule is coded for each USV as follows:

u1_state=Ls & comm_link[1] & (next(s0_state)=L0 | next(s0_state)=L1 |

next(s0_state)=L2) : next(s0_state);

This rule ensures that the USVs will initially join the ship at l0 or if a USV has returned to its

station due to communication failure then it rejoins the ship once its link is working again. So,

the USV must track the ship’s next state.
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However, the ship’s next state must be a waypoint. This is enforced by the disjunction of

three atomic propositions, as shown above. This is done because if the ship’s next state is docked,

meaning the ship is at its last waypoint and trying to dock itself, then this rule will prompt the

USVs to take the docked state. But docked is not a state that the USVs can take. Therefore,

if the human coder had forgotten to encode this last condition, then NuSMV will throw up an

error. Thus, NuSMV allows bug correction. However, if the USV is sent to lw to assist the ship

while it is docking, one could code it up as follows:

u1_state=Ls & comm_link[1] & next(s0_state)=docked : L2;

For the contingency-incorporated model, it is first verified that the mission model does not

have deadlocks by checking for transition relation totality using the NuSMV command check_fsm.

It is confirmed that no deadlocks exist so Equation 4.2 is verified using the NuSMV command

check_ltlspec. NuSMV confirms that the property holds.

A model trace is generated to verify this by checking the correctness of ¬φ. This returns

a counterexample in the form of a mission trace. The mission trace returned by NuSMV is

trivial as it only shows the convoy moving through each way-point without the occurrence of any

contingency event until the vessels and drones are rested in their desired positions. A simple kind

of inconsistency that also gets detected is as follows. Suppose ρII = 3 and only three USVs are

available for the mission and a civilian vessel enters the ship’s protected space, then no USV is

available for clearing the ship’s path if it gets blocked.
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Also, the ship must visit the way-points in a sequence. Thus there are many SAR constraints

implicitly encoded in the mission model which may be verified explicitly in NuSMV. The previous

LTL expression needs to be modified as follows:

φ2 := FG (s0 = docked) ∧ni=1 FG (ui = ls)

∧ni=1 FG (ai = ls) ∧ F((s0 = l0) ∧ F((s0 = l1) ∧ F · · · ))

∧w−1i=0 (s0 6= li+1 U s0 = li)

∧w−1i=0 G(s0 = li+1 =⇒ XG s0 6= li)

(4.3)

This also passes the verification test. More interesting results are generated by starting the

system from different initial states and designing more complex LTL formulas. Let USVs u1 and

u2 along with their UAVs initially be at way-point l2 and USV u3 is at l0. Also, assume that the

communication link for USV u2 is not working properly. Other information remains the same as

previously. Then NuSMV produces a counterexample when verifying ¬φ1 which is interpreted as

follows: USV u2 returns to the base and waits for the communication link to work again. In the

next time-step, its communication link is working and it goes to l0 while USV u1 returns to the

base. Then USV u1 joins u2 and u3 at l0. The mission proceeds nominally thereafter.

Another case is obtained by adding a contingency condition to the previous initial conditions

that there is a civilian vessel intruding into region R2. The LTL specification ¬φ3 is given below:

φ3 := φ1 ∧ ((CII = 1) U ∨ni=1 (ui = R2)) (4.4)

CII is a shorthand for the variable “contingency type A[2]”. NuSMV counterexample is as follows:

The convoy proceeds up to l1 as usual. Then blockage for path P2 is reported while a civilian

vessel is still in R2. So, a1 goes to l(R2) and a2, a3 go to l(P2). The contingencies are still present

so the corresponding USVs head towards l(R2) and l(P2). Then the contingencies are resolved

and the vessels and drones return to l1 after which mission proceeds nominally.
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Table 4.1: Runtime statistics collected for different problem sizes

Number
of USVs

Number of
way-points

Wall-clock
time

RAM

3 3 7.38 sec 30.182 MB
3 4 2.54 min 81.639 MB
3 5 5.09 min 214.021 MB
4 3 34.01 min 350.021 MB
4 4 6.04 hr 3.187 GB
4 5 16.52 hr 8.090 GB
5 3 30.70 hr 8.885 GB

Bounded model checking was also performed using either of the two Boolean satisfiability

problem (SAT) solvers: Zchaff and MiniSat. In both cases, a counterexample was generated at

the eighth level as follows: The convoy proceeds up to l1 as usual, and then a1 goes to l(R2) because

an intruder is sighted. Then communication links for the USVs u2 and u3 fail simultaneously. So

they return to the base while u1 reaches l(R2) to warn the civilian vessel. Then all contingencies

are resolved. Finally, the convoy reassembles at l1 and mission proceeds nominally.

NuSMV also reports run-time statistics. For three USVs and three way-points, the reported

user time elapsed is 7.4 seconds, and the system time is 0.015 seconds. Thus, the total CPU

execution time consumed is 7.415 sec. The wall-clock time for this process is 7.38 seconds. The

RAM allocated for this process is 30, 906 KB ∼ 30.182 MB. The operating system is Ubuntu

MATE 18.04.1 and workstation is Dell Precision Tower 3620 including eight Intel Xeon E3-1245V5

CPUs having 3.5GHz speed (but this process seems to be single-threaded) and a total of 32GB

RAM. MATLAB was used to generate SMV files for different numbers of USVs and way-points.

From Table 4.1, it is observed that the running time and allocated memory rise exponentially

with an increase in problem size and USVs impact run-time statistics much more drastically than

way-points.
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4.5 Summary

A formal model of a ship escorting mission in a busy port is presented. Since running high-

fidelity simulation experiments is computationally prohibitive, it is demonstrated how verification

techniques like model checking can be used to model and verify the performance of such missions.

The correctness of contingency resolution strategies is verified using linear temporal logic formulas

in NuSMV software.
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Chapter 5

Multi-robot Assembly Case Study

In this chapter 1, a case study involving assembly cells is presented and it is described how the

robots and humans interact to produce assemblies efficiently.

5.1 Introduction

In this chapter, a manufacturing assembly line is analyzed which must carry out complex assembly

tasks. The modeling approach presented in this chapter is inspired from the following robotic

assembly example. Figure 5.1 shows a three-manipulator assembly setup that has been assigned

to assemble a mock-up of a satellite [215]. The parts required for the assembly process may

arrive at the assembly station through a conveyor system from where they are picked up by a

mobile manipulator (Figure 5.2) [216–219]. These parts are then assembled to build the satellite

mock-up whose assembled CAD view is shown in Figure 5.3. Figure 5.4 shows the exploded

view of the CAD model, and the YouTube video [215] shows the steps for assembling this model

from scratch. For large-scale, real operations, each manipulator would be assigned its station

and consider multiple such cells working cooperatively to produce complex end-products. Thus,

stations would be producing sub-assemblies that would be processed in each cell. Moreover, the

finished products from each cell will feed into each other to accomplish end-product completion.

1The work in this chapter is derived from the work published in [214]
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It is generally challenging to automate assembly tasks of high complexity fully. For this

purpose, human workers must collaborate with robots. Thus, human involvement is modeled, not

in a far-off base station, but at the mission site itself along with the robots. The entire assembly

line may still be supervised and monitored from a base station located away from the actual

operation site. This mission is modeled and analyzed in the PRISM model checker [220].

5.2 Problem Statement

Given an English description of an assembly line process, it must be encoded formally in a model

checker and then used to evaluate different contingency resolution strategies for preventing assem-

bly line stoppage or failure. The assembly cells comprising of assembly stations must be modeled

formally so that they can be encoded in a model checker. Human workers and robots must be

incorporate in this formal model to automate assembly production. The effectiveness of humans

to assist robots in recovering from faulty assemblies must be analyzed via different contingency

resolution strategies. An assembly line can be set up and then the divide-and-conquer approach

can be used to analyze it in smaller units. Those results can then be aggregated into a whole

because an entire assembly line cannot be efficiently modeled in model checking tools.

5.3 Overview of Approach

High-level operations planning comprises of operation modeling, verification of the nominal op-

erations plan, and assessment of different contingency resolution strategies. Initially, a nominal

operation description is given using which the nominal tasks comprising the operation are iden-

tified. Agents assigned to the tasks may be human workers or robots. The pre-conditions and

post-conditions are identified for each task. The set of discrete states that can be assigned to each

agent along with their domains and initial values is also identified. Other environment variables

can also be identified to track the operation progress. Transition rules are encoded that specify
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Figure 5.1: Three manipulators assigned for cooperative assembly operation

Figure 5.2: Mobile manipulator

constraints for agents to transition from one state to another in terms of tasks’ pre-conditions and

post-conditions. A nominal operations execution plan provides a sequence in which the available
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Figure 5.3: CAD model for the assembled satellite mock-up

tasks must be executed to meet the operation objective while adhering to pre-conditions and

post-conditions of all tasks.

It is assumed that the transition rules between states of a system are probabilistic. Markov

decision processes are adopted for modeling these operations. When there is only one probabilistic

transition rule for every possible state of the system, then the process is modeled as a discrete-

time Markov chain (DTMC) in PRISM which is commonly used for probabilistic model checking.

Model checking for DTMCs is done via numerical or statistical methods in PRISM. Statistical

methods allow handling of larger problem sizes.

The contingency resolution strategies are designed that get invoked when a contingency is

reported during operation execution. These strategies may require multiple actions to be per-

formed in a sequence which is simulated by appropriately synchronizing specific transition rules

in PRISM. For different cases, different sets of actions may have to be invoked. For probabilistic

systems, the formulated specifications are verified using Probabilistic Computation Tree Logic
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Figure 5.4: Exploded view of the CAD model for the satellite’s mock-up

(PCTL). Probabilistic reachability conditions may be queried, which means querying the prob-

ability that the system eventually satisfies a set of atomic propositions. If a reward structure is

defined, the expected value of different variables may also be computed.

The approach to analyzing multiple assembly cells working cooperatively is first to analyze

specific groups of assembly stations (referred to as a cell) using formal methods and then perform a

Monte Carlo analysis of the entire system working together. This is because large systems cannot

be entirely modeled in model checkers due to computational memory requirements. However, if the

more extensive system is decomposed into smaller subsystems, then it is possible to encode them

in a model checker and analyze them efficiently. Thereafter, performing an aggregate analysis for

the whole system using Monte Carlo simulations would not be so memory-intensive because model

checking results could be used. It may be possible to analyze the entire system by only using

Monte Carlo simulations without performing any decomposition and subsequent model checking,

but that appraoch would fail to leverage the rich field of temporal logic model verification. Since

the probabilistic model checking community has made significant progress in developing model
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checkers to solve Markov models under temporal logic constraints, it has become a popular tool

for use in robotics research as part of the broader application of formal methods to robotics.

5.4 Modeling of Assembly Cell

5.4.1 Nominal Operation Description

A simple assembly cell consisting of N assembly stations S1, S2, · · · , SN is described below. A

visual schematic for N = 3 is presented in Figure 5.5. The variables used in the Figure are

explained in Section 5.4.2. This model allows human intervention at each station when the desired

production process fails. Each station is also provided with one dexterous mobile manipulator

which performs all assembly-related tasks. The robot designated at station Si is denoted by Mi. A

conveyor system is modeled to bring parts from the storage area. The parts are then picked from

the conveyor belt and transported to the designated assembly station using a simple pick-and-

place mobile robot. Each station Si is provided with such a robot denoted by Pi. This conveyor

belt system is referred to as B1.

Figure 5.5: Schematic representation of multi-robot assembly cell
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There is another conveyor belt system B2 operating across the stations. This is because it is

assumed that serial production has been set up across the stations. The job of this conveyor system

is merely to transfer parts from the preceding station to the next station for further processing.

So, once the assembly robots have finished their tasks and are ready to transfer the part to the

next station, they place the assembled unit on the conveyor system which then transfers the parts

to the next station. Thus, the assembly process starts at the first station, and the fully assembled

part is produced at the last station. Then another pick-and-place robot is designated to pick

the part and transfer it to the desired location. Thus, an assembly cell consisting of N stations

deploys 2N + 1 robots. One could alternatively also model the cell to deploy fewer robots by

combining the responsibilities of various robots into a single robot’s tasks.

5.4.2 State Variables

The system model naturally translates into a set of variables. As shown in Figure 5.5, the operation

begins with two sets of parts being delivered at the first assembly station S1. The number of first

set of parts delivered to station S1 is denoted by n(1, 1) and the number of second set of parts

by n(1, 2). The convention used is to use the first index to denote the assembly station and the

second one to denote a variable index. Then the assemblies produced at station S1 is denoted by

n(1, 3). For all other assembly stations Si such that i > 1, one set of parts arrive via the conveyor

system B1 and a set of partially completed assemblies arrive from their preceding stations Si−1.

The number of parts delivered by robot Pi is denoted by n(i, 1) and the number of parts arriving

from previous stations is denoted by n(i, 2). Thus, a new set of parts is delivered to stations, and

these are fitted properly in the assemblies arriving from the preceding stations. Such parts will

be called intermediate units (denoted by n(i, 1)) and the partial assemblies will be referred to as

sub-assemblies (denoted by n(i, 2)). The total assemblies produced by each station at any time is

tracked using the variable n(i, 3). For a given cell, one is generally interested in the total number

of final assemblies produced by the last station, n(N, 3).
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All variables naturally have a finite range associated with it due to space constraints. For

simulation purposes, even smaller ranges may be imposed due to solver constraints. All the

variables declared above are non-negative integers. The upper bounds for these variables are also

impacted based on whether numerical or statistical model checking methods are used. If the

numerical method is used, then the model size must be kept small. Therefore, high upper bounds

cannot be placed for these variables. On the other hand, statistical methods provide approximate

results but accommodate larger model sizes, thereby allowing for comparatively higher upper

bounds.

All variables are initially expected to be zero. However, manufacturing units tend to keep

multiple intermediate units at the station before the conveyor operation, and assembly process

begins. This buffering of parts is done to avoid any bottlenecks in further operations due to a

shortage of intermediate units required to undergo assembly. This concept is referred to as initial

part buffer. Thus, all the variables n(i, 1) and n(1, 2) may be greater than zero, say N I . All other

variables are zero initially.

For example, below, the range of a variable n(2, 3) and its initial state are declared. Thus, at

any instant, there must not be more than five assemblies produced by station S2. The variable

n(2, 3) is shortened to n23 in PRISM. This convention is followed throughout this chapter.

const int max_assemblies = 5 ;

n23 : [0..max_assemblies] init 0 ;

Next, the modeling of assembly robots Mi is described. The description of robot M1 differs

from that of the rest because its model is a simplified version of that of others. So, first the model

for robot Mi is described where N ≥ i ≥ 2. Figure 5.6 provides a visualization aid for this model.

The sub-assemblies first arrive from station Si−1 to station Si.

Here, the sub-assemblies first undergo a pre-detection process by robot Mi to ensure whether

the arriving sub-assemblies are as expected and ready for further processing. If pre-detection
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Figure 5.6: Probabilistic transition model for assembly robot

succeeds with probability p1, then the sub-assembly is ready for the assembly process. Otherwise,

the sub-assembly must undergo a pre-repair process. The number of parts queued for pre-repair

is denoted by x(i, 1) whereas the number of parts queued up for assembly process is denoted by

x(i, 2).

Each station Si has two storage location referred to as contingency buffers: C(i, 1) and C(i, 2).

Here, parts which fail during repairing operations are sent for repair by a human helper. Each sta-

tion Si is assigned its own human helper Hi. So if the pre-repair process succeeds with probability

p2, then the sub-assembly is queued up for the assembly process. However, if during the pre-repair

process, robot Mi fails to resolve the problems in the sub-assemblies, then those sub-assemblies

are queued up in contingency buffer C(i, 1). The number of parts queued up in contingency buffer

C(i, 1) is denoted by c(i, 1).

If the assembly process succeeds with probability p3, then the assembled part is queued up

for a post-detection operation where the robot again confirms using image processing algorithms

whether the desired result has been achieved. Otherwise, if the assembly process fails (this is

likely because some assembly procedures may be very complex to carry out and may test robot

capabilities to its utmost limit), then the robot merely queues up the part for attempting its

assembly later again. The number of parts queued up for post-detection is denoted by x(i, 3).
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If post-detection succeeds with probability p4, then the sub-assembly is ready for being trans-

ferred to the next station, Si+1. Otherwise, the sub-assembly must undergo a post-repair process.

The number of parts queued for post-repair is denoted by x(i, 4).

If the post-repair process succeeds with probability p5, then the sub-assembly is ready for

being transferred to the next station, Si+1. However, if during the post-repair process, robot

Mi fails to resolve the problems in the sub-assemblies, then those sub-assemblies are queued up

in contingency buffer C(i, 2). The number of parts queued up in contingency buffer C(i, 2) is

denoted by c(i, 2).

There is a human helper assigned to station Si denoted by Hi who is responsible for both the

contingency buffers and attempts to resolve each sub-assembly sent to it. If human succeeds with

probability p6 each time he/she attempts contingency resolution at contingency buffer C(i, 1),

then these resolved sub-assemblies are queued up for assembly by robot Mi. For sub-assemblies

held at C(i, 2), the human may succeed with the same probability, and resolved sub-assemblies

are declared as finished sub-assemblies for that station and ready for transfer via conveyor belt

system B2 to the next assembly station, Si+1.

Model for robot M1 is a simplified version of the above as it does not have to perform the

pre-detection and pre-repair operations. This is because the two sets of parts are coming from the

storage area and not from a station within the cell. So it is assumed that parts arriving from the

storage area do not need to be verified. They will already be verified by the conveyor belt transport

system B1 but automated verification by conveyor system is not modeled here. Consequently,

there is also no contingency buffer C(1, 1). Robot M1 directly performs its assembly operation

followed by post-detection and post-repair operations.

Based on the above modeling, one can check that the PRISM model contains 9N −2 variables

and N + 1 modules. All the intermediate variables x(i, ·) referred to above have size constraints

as they represent the process of storing parts. The lower bound for each variable is zero while the

upper bound is user-defined. It is assumed that the upper bound on all variables is Nmax except
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for n(N, 3) whose upper bound is denoted by N∗. The rationale for doing so is to be able to

compute the expected production time for assembling as many parts as computationally feasible.

So N∗ can be made large despite keeping Nmax smaller.
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5.4.3 Transition Rules

The above description of the assembly model naturally results in probabilistic transition rules

which can be coded in PRISM. The pre-detection process of robot M2 in station S2 is expressed

as the following transition rule in PRISM.

const double p1 = 0.8;

const int max_units = 5 ;

[tick2] x21<max_units & x22<max_units & n22>0 -> (1-p1):(x21'=x21+1) &

(n22'=n22-1) + p1:(x22'=x22+1)&(n22'=n22-1);

According to the above rule, when a sub-assembly transferred from preceding station is pre-

detected and succeeds it will increase the variable x(2, 2) by one and decrease n(2, 2) by one.

Otherwise, if pre-detection flags the sub-assembly as having errors, then x(2, 1) is increased by

one and n(2, 2) decreased by one. This rule must only be invoked if the variable bound constraints

allow to do so. tick2 is a label for this transition rule. Such labels are used for synchronizing

one rule with other rules. This will be elaborated in the next section. Similar rules as above exist

for pre-repair, assembly, post-detect, and post-repair processes.

Human helper H2 must operate both the contingency buffers and keep clearing the faulty

sub-assemblies arriving in them. Consequently, the following rules hold for contingency buffer

C(2, 1):

const double p6 = 0.95;

const int max_units = 5 ;

[tick7] x22<max_units & c21>0 -> p6 : (x22'=x22+1)&(c21'=c21-1);

[tick7] !(x22<max_units & c21>0) -> true;

The first rule states that if there is a faulty sub-assembly in the contingency buffer, and there

is space for at least one more sub-assembly to be queued for assembly, then human helper H2

attempts resolving the sub-assembly and may succeed with probability 95%. The second rule
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only ensures that if the size constraints do not allow contingency resolution, there is a rule that

explicitly states this with both rules sharing the same label. Accounting for all possibilities

explicitly using transition rules with the same labels is required for synchronizing multiple rules

properly. This will be elaborated in the next section.

5.4.4 Nominal Operation Strategy

Next, the nominal protocol is presented through which assembly operations proceed. The entire

assembly process described in the previous section keeps repeating in cycles. Each cycle comprises

of eight steps involving specific operations like pre-detection and post-repair. Each station is

implemented as a separate PRISM module. In the first step of each cycle, both the conveyor

systems are implemented concurrently.

The conveyor system B1 is supposed to bring parts from the storage and stop for the robots

Pi to pick the parts and take them to their respective stations. For efficiency of the operations,

it is assumed that the conveyor system would have been automated such that the belt stops such

that the parts desired by robot Pi are optimally located. For each station, it must be checked

that the constraint n(i, 1) < Nmax for delivering intermediate units. Additionally, for the first

station, which also receives a second set of intermediate units, one must also check n(1, 2) < Nmax.

Therefore, N + 1 constraints must be checked for the first conveyor system operation.

The conveyor system B2 transfers finished sub-assemblies from one station to the next. For

N stations, N − 1 such transfers can take place if size constraints allow so. For each station Si

excluding the first, one must only check two size constraints: n(i− 1, 3) > 0 and n(i, 2) < Nmax.

The two size constraints can be combined into one using the conjunction operator. Thus, N − 1

constraints must be checked for the second conveyor system operation.

All these constraints are independent of each other. So the total of 2N constraints lead to 22N

cases, and transition rules are encoded for each of these cases for each station. Thus, there will

be N ∗ 22N transition rules relating to the first step, and hence, they must all be synchronized
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together. For this purpose, an additional clock module is used which cycles through eight steps.

According to the nominal strategy, each cycle comprises of eight steps. Hence the clock has eight

steps. A label tick1 is created for its first step and label all N ∗22N rules also as tick1. Another

simplifying assumption is made that both the conveyor systems are working deterministically.

If different operations in these conveyor systems were probabilistic and had different probability

values, then they could not be synchronized. This is a reasonable assumption because conveyor

systems are very efficient. Most problems generally arise in the robotic aspect of the operations.

In the steps second through sixth, the assembly robot performs its pre-detection, pre-repair,

assembly, post-detection, post-repair operations consecutively. Then in the seventh and eight

steps, the human helper seeks to resolve faulty sub-assemblies in contingency buffers C(i, 1) and

C(i, 2) respectively. No human activity is allowed inside the station while the robot is performing

any of its tasks because of safety purpose.

The goal is to compute the expected production time for N∗ parts. Therefore, a reward

structure labeled as time_duration must be defined. Since conveyor operations are fast, and

robot Pi may take some time to transfer intermediate units from the conveyor belt to the stations,

it is assumed that it takes around 10 seconds. Time is recorded in minutes. So the time taken

in the first step is rounded to 0.2 minute. Since computer vision algorithms have become very

fast, significant time spent during the detection operations is while manipulating the camera to

capture images from different angles or scan point clouds. So detection routines are also assumed

to take 0.2 minute. The repair and assembly processes take two minutes. The human helper takes

five minutes.

5.4.5 Contingency Resolution Strategies

The strategy described in the previous section is referred to as strategy s1. A nondeterministic

version of this protocol referred to as strategy A is also designed, which will be implemented as

an MDP in PRISM. The first step remains the same. In the second step, the assembly robots
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perform one of their detection actions taking a maximum of 0.2 minute. In the third step, the

assembly robots perform one of their assembly/repair actions, taking a maximum of two minutes.

In the fourth step, human helper repairs parts in one of the contingency buffers requiring five

minutes. Four more strategies are provided to resolve the contingencies which are variations of

strategy s1.

Instead of keeping a human helper at each station, there could be only one human assigned

to the entire cell. This is referred to as strategy s2. Each cycle of strategy s2 is implemented as

a concatenation of N cycles of strategy s1. Each of the N cycles are referred to as sub-cycles.

In each sub-cycle except for the last one, there are eight steps. In the last sub-cycle, there are

only seven steps. Thus, there are a total of 8N − 1 steps in each cycle of strategy s2. The first

six steps of each sub-cycle are same as strategy s1. In the seventh step of each sub-cycle, the

human seeks to resolve faulty sub-assemblies in contingency buffer C(i, 1), and in the eighth step

of each sub-cycle, the human seeks to resolve faulty sub-assemblies in contingency buffer C(i, 2).

Since the first station does not have contingency buffer C(1, 1), the contingencies for contingency

buffer C(2, 1) are resolved in the seventh step. Thus, for i-th sub-cycle such that i < N , the

human helper resolves faulty sub-assemblies at contingency buffer C(i + 1, 1) in the 7i-th step,

and at contingency buffer C(i, 2) in the 8i-th step. For the last cycle, faulty sub-assemblies at

contingency buffer C(N, 2) are resolved in its seventh step, and there is no eighth step, hence

8N − 1 total steps.

Strategy s3 is similar to s1 but with a slightly different protocol of resolving contingencies.

Suppose, strategy s1 had only seven steps. The human helper at each station resolves faulty

sub-assemblies in the first buffer in the seventh step for odd cycles, and in the second buffer in

the seventh step for even cycles. Thus, a cycle for strategy s3 is implemented as a concatenation

of two cycles of strategy s1 each curtailed to only seven steps. Thus, human Hi such that i > 1

resolves faulty sub-assemblies at contingency buffer C(i, 1) in its seventh step, and at contingency
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buffer C(i, 2) in its fourteenth step. Human H1 resolves faulty sub-assemblies at contingency

buffer C(i, 1) in both the seventh and fourteenth step.

Contingencies of a different nature may also arise during assembly processes such that the

human analyses the faulty sub-assembly and figures out that if he/she makes a minor fix and

sends the part back to the assembly robot for another pass through the sub-assembly, then the

robot is highly likely to succeed. This also saves the human’s time because rather than fully

correcting the error with the sub-assemblies, he/she is only making a minor fix and using the

robot for the rest of the work. For example, a human decides that if a washer is slightly tweaked,

then the assembly robot will succeed with the rest of the assembly. Also, even if the human

worker feels that the faulty sub-assembly might take significant time to repair, he/she decides

to send the part back to the automated assembly line hoping the robot to repair it successfully.

Since this model of the human worker is aimed at saving time, it is assumed that he/she takes

only two minutes for the contingency resolution operation. So it is assume that the human worker

succeeds in resolving contingencies with p61 = 80% probability, fails and puts the part back in

the contingency buffer with p62 = 5% probability, and sends the part for repair by the robot

with p63 = 15% probability. So, the contingency resolution rule mentioned in Section 5.4.3 gets

transformed as follows.

[tick7] x21<max_units & x22<max_units & c21>0 -> p61 : (x22'=x22+1)&(c21'=c21-1)

+ p62 : true + p63 : (x21'=x21+1)&(c21'=c21-1) ;

Applying this model of the human worker on strategy s2 produces strategy s4, and on strategy

s1 produces strategy s5.
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Table 5.1: Effect of initial part buffer on production time

Initial Part
Buffer

Strategy 1
Production Time (in min)

Strategy A
Production Time (in min)

0 45.17 43.10
1 45.07 42.90
2 44.93 42.70
3 44.75 42.50
4 44.55 42.30

Table 5.2: Effect of contingency resolution probability on production time

Contingency
Resolution
Probability

Strategy 1
Production Time (in min)

Strategy A
Production Time (in min)

0.50 48.67 46.58
0.60 47.52 45.43
0.70 46.64 44.56
0.80 45.96 43.88
0.85 45.67 43.59
0.90 45.41 43.33
0.95 45.17 43.10
1.00 44.96 42.89

5.5 Model Checking and Verification

5.5.1 Run-time Analysis

The computational performance of different contingency resolution strategies under different op-

eration settings is studied to gain better insights into the complexity of the process. The operating

system is Ubuntu MATE 18.04.1 and workstation is Dell Precision Tower 3620 including eight

Intel Xeon E3-1245V5 CPUs having 3.5GHz speed and a total of 32GB RAM. For a 5-station cell

running strategy s1, with Nmax = 2 and N∗ = 3, probabilities of 90% for all operations, and zero

initial buffer, it took 82.09 seconds to compute the reachable states using breadth-first search in

529 iterations. The resulting DTMC had about 116 quadrillion states and 483 quadrillion tran-

sitions. The underlying transition matrix consisted of 0.5 million nodes. The expected time for

the cell to produce three parts is then computed using PRISM’s hybrid computation engine with

the following expression given below:
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Table 5.3: Computational performance of s1 with varying parameters

# stations Nmax N∗
Time for

model building
(in sec)

Time for
model checking

(in sec)
2 2 3 0.63 0.05
2 2 2 0.57 0.04
3 2 2 7.77 0.26
3 2 3 7.43 0.38
3 1 3 0.16 0.41
3 1 5 0.25 0.94
3 3 3 59.30 0.42
4 2 3 38.86 4.66
4 1 3 0.54 4.13
4 3 3 367.11 3.05
5 1 2 1.09 30.13
5 1 3 1.19 46.40
5 2 2 99.65 37.10

R{"time_duration"}=? [ F n53=3 ]

where time_duration is the label given to the reward structure defined in Section 5.4.4. The

sampling method is used because the numerical method cannot handle such a large problem size.

The expected production time is computed to be 31.81 minutes based on 95% confidence level

and confidence interval width of 30 seconds. It took 828 sampling iterations and 59.24 seconds.

The average path length explored was 66. If instead, there was a 2-station cell, then the DTMC

could be solved numerically in 6.18 seconds with 88 Jacobi iterations requiring 64.6MB RAM for

the expected production time of 14.19 minutes.

Table 5.3 records the computational time for strategy s1 for the same cell setting as above by

varying the three parameters that affect the problem size: N,Nmax, N
∗. Tables 5.4 and 5.5 do

the same for strategies s2 and s3 respectively. As expected, strategy s1 can accommodate larger

problems sizes more efficiently than strategy s2 which in turn can accommodate larger problem

sizes more efficiently than strategy s3. Changing Nmax primarily increases the time for model

building whereas N∗ primarily increases the time for model checking. Strategy s4 and s5 have

similar computational performance as s2 and s1 respectively.
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5.5.2 Assembly Cell Analysis

The results for a single assembly station are analyzed first. All variables are given an upper bound

of four, and the expected time to produce ten assemblies is to be computed. And the initial part

buffer is zero for each station. An assembly cell is perfect if all success probabilities are one. The

expected production time for a perfect cell is the lowest bound achievable for the given transition

system. These values are 26 and 26.12 minutes and strategies s1 and A respectively. It is assumed

that a set of realistic values are used for the probabilities. It is assumed that the human worker

succeeds with a probability of 95% while all robot’s actions succeed with 80% probability. Table

5.1 shows that increasing the initial part buffer from zero to four decreases expected production

Table 5.4: Computational performance of s2 with varying parameters

# stations Nmax N∗
Time for

model building
(in sec)

Time for
model checking

(in sec)
2 2 3 1.50 0.07
2 1 3 0.05 0.05
2 3 3 9.04 0.05
2 2 4 1.78 0.09
3 1 2 0.46 0.37
3 2 2 47.51 0.50
3 2 3 47.04 0.78
3 2 5 67.54 2.19

Figure 5.8: Effect of different strategies on expected production time
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Table 5.5: Computational performance of s3 with varying parameters

# stations Nmax N∗
Time for

model building
(in sec)

Time for
model checking

(in sec)
2 2 3 1.45 0.08
2 3 3 7.43 0.07
2 3 4 8.87 0.08
2 4 5 34.89 0.13
3 2 3 18.25 0.55
3 3 4 219.01 0.90
4 2 3 133.89 6.34
5 1 3 2.91 119.00

Table 5.6: Effect of human characteristics on production time for strategy s1

Contingency
Resolution
Probability

Contingency
Resolution
Duration

Expected
Production Time

(in min)

0.99
5 45.01
7 46.72
10 49.31

0.80
5 45.96
7 48.05
10 51.18

Table 5.7: Effect of human characteristics on production time for strategy A

Contingency
Resolution
Probability

Contingency
Resolution
Duration

Expected
Production Time

(in min)

0.99
5 42.93
7 44.50
10 46.82

0.80
5 43.88
7 45.79
10 48.61

time by more than 30 seconds for both strategies s1 and A which is very significant for factory

throughput in the long run. The nondeterministic station comprising of cycles of four steps

shows a decrease of 0.2 minutes per row because the addition of one item in the initial buffer

helps skip one conveyor operation. This effect is not so vividly noticeable in the DTMC version.

Increasing the contingency buffer size does not have any notable effect. But increasing human

resolution probability from 50% to 100% reduces time significantly for both strategies (Table

96



5.2). Probabilistic model checking may also be used as a recruitment tool. Suppose a fast worker

could finish resolving contingencies in five minutes, and an expert worker could succeed with a

probability of 99%. Let a slow worker take ten minutes and a less skilled worker succeed with

probability 80%. Then, the expected production times for all four combinations of the worker

is recorded in Table 5.6 for strategy s1 and in Table 5.7 for strategy A. For both strategies, a

slow worker is a poor choice. Even if the slow worker does not take twice as much time, but only

seven minutes even then a slow worker is not preferable. Thus, at 80% success rate for robot’s

actions, there does not appear to be any trade-off between being slow and being less expert in this

mission scenario. But these observations would vary for different robot’s success probabilities.

But this tool may be applied similarly to study those cases as well as more complicated assembly

cell models where there are more human factors involved. Since the problem size above is small,

numerical model checking methods are used in PRISM to generate the above results. Hence,

multiple solution runs need not be executed because the numerical methods converge to the same

number in every run.

The problem with analyzing multi-station assembly cells as MDPs is state space explosion

which makes model building, as well as model checking, very memory-intensive and time-consuming,

if not impossible. However, the DTMC protocol of strategy s1 may be extended to multi-station

assembly cells. A 2-station cell can be simply obtained by ignoring operations of station A3. For

such a cell, suppose all variables are given an upper bound of two, and the expected time to

produce three assemblies is to be computed. And the initial part buffer is one for each station.

The expected production time for a perfect cell is 10.2 minutes.

Now let human succeed with 95% probability, robot assembly with 90% and other operations

with 80%. The expected production time of strategy s1 is compared with four other strategies in

Figure 5.8 and the time is shown as the percentage increase with respect to that of the perfect

cell. The simulation is run 100 times to report statistics at 95% confidence level, and width of 0.5

minute. On an average, strategy s5 performs the best but only marginally better than strategy s4.
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Strategy s2 shows significant improvement over strategy s1 on account of using only one human

to balance the task of two humans efficiently. However, when the two humans organize themselves

better as in strategy s3, then they outperform strategy s2 by a small margin.

These strategies are compared only for 2-station cells because model checking for strategies

s2, s3, s4 becomes very time-consuming for 3-station cells. This is because these strategies required

coding around 22 steps per cycle for three stations, and the modeling of the conveyor system

triggers scaling issues. The conveyor system must take into account 26 possibilities arising due to

storage-station interactions which for the three assembly stations leads to 3 ∗ 26 transition rules.

PRISM run-time statistics illustrate these issues clearly. Model construction for two stations

with strategy 2 took 1.9 seconds, having around 4.3 million states and 6.5 million transitions.

Statistical model checking took 0.14 seconds. But model construction for three stations with

strategy s2 took 21.4 seconds, and verification took 2.1 seconds.

The 3-station assembly cell operating with strategy s1 is considered next, and same variable

upper bounds and initial part buffer are used as before. If all success probabilities within a station

are at 90%, it is referred to as a low station. High stations have success probabilities throughout

at 99%. The conveyor system is assumed to be operating perfectly. A perfect cell would take

12.8 minutes. Figure 5.9a, shows the expected production time as the percentage increase with

respect to that of the perfect cell for all 23 combinations of high and low stations in the cell. For

example, LHL on x-axis denotes that the first and third stations are low, and the second one is

high. The first station being low is not as critical as the next two stations being low. A similar

trend emerges for strategy s5 (letting human helper 3-way split to be the same as 80− 15− 5%)

in Figure 5.9b. At these high probabilities for the 3-station assembly cell, both strategies start

performing similarly.
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(a) Strategy s1

(b) Strategy s5

Figure 5.9: Effect of different combinations of stations on expected production time.

5.5.3 Aggregate Analysis of Large-scale Assembly Operations

This section focuses on decomposing large-scale assembly operations into smaller and relatively

independent assembly cells, and then analyzing each cell using the probabilistic model checking
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Figure 5.10: Scenario for multiple assembly cells interacting with each other

tool, PRISM. Finally, the results of model checking are aggregated at the highest assembly op-

eration level to gain better insights into the system. A production line is set up across multiple

assembly cells, as shown in Figure 5.10. The figure shows five cells labeled as A,B,C,D,E. It

is assumed that the probability values representing operational efficiency are the same for each

station within a cell. The specifications for each cell are given below:-

Cell A comprises of two stations and executes strategy s1. Nmax = 3, N∗ = 4, N I = 2, p1 =

90%, p2 = 90%, p3 = 90%, p4 = 90%, p5 = 90%, p6 = 95%.

Cell B comprises of three stations and executes strategy s5. Nmax = 2, N∗ = 5, N I = 0, p1 =

80%, p2 = 85%, p3 = 90%, p4 = 95%, p5 = 80%, p61 = 80%, p62 = 5%, p63 = 15%.

Cell C comprises of two stations and executes strategy s5. Nmax = 3, N∗ = 3, N I = 3, p1 =

95%, p2 = 90%, p3 = 90%, p4 = 90%, p5 = 95%, p61 = 80%, p62 = 5%, p63 = 15%.

Cell D comprises of three stations and executes strategy s2. Nmax = 2, N∗ = 3, N I = 0, p1 =

85%, p2 = 80%, p3 = 90%, p4 = 80%, p5 = 85%, p6 = 90%.

Cell E comprises of five stations and executes strategy s3. Nmax = 3, N∗ = 4, N I = 1, p1 =

85%, p2 = 80%, p3 = 90%, p4 = 87%, p5 = 86%, p6 = 92%.

The parts produced at cell A and cell B feed into cell C. Also, parts produced at cell C and

cell D feed into cell E. So discrepancy between the operations at cell A and cell B may create
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bottleneck situations for cell C, and similarly, cells C and D may create bottleneck situations for

cell E. For example, cell A may produce parts at the rate of 3 minutes per part, and cell B at the

rate of 5 minutes per part. So, cell C must wait for 2 minutes to let the part from cell B arrive

assuming that all cells start their operations at the same time because cell C needs parts from

both the cells to proceed.

PRISM places substantial constraints on the possible problem sizes that can be solved. There-

fore, it is not computationally feasible to try to model the entire production line in PRISM. Each

cell can be individually analyzed according to the modeling approach using PRISM software de-

scribed in Section 5.4. The PCTL specifications may be used to compute the expected production

time for N∗ parts at each cell, say T ∗. Thus, the time taken to produce a single part by each cell

may be estimated to be T1 = T ∗/N∗. One could instead have queried PRISM to compute the

expected time to produce one part which would be faster, but a better estimate can be found by

averaging over the time to produce multiple parts because this is representative of a longer run of

assembly operations. Using T1 data for each cell, one may reason about the potential bottlenecks

in a production line similar to Figure 5.10. The cell settings may be modified to minimize such

bottlenecks.

Rather than the user writing a new PRISM script for each different cell settings which would be

very time-consuming and prone to errors, an automated way is used to generate PRISM scripts

in MATLAB for the specific parameter values of a cell. Thus, it becomes feasible to consider

different possible cell settings and choose the ones which provide the best trade-off.

PRISM codes are generated for cells A,B,C,D,E automatically in MATLAB based on the

input cell parameters. One can then query the expected time for the cells to produce N∗ parts

from which the expected time to produce one part can be approximated. The expected time T1

for each cell to produce one part is given below.

Cell A requires 4.475 minutes, and cell B takes 5.894 minutes per part. These are expected

values from statistical model checking in PRISM over 100 runs. Cell B is employing its optimal
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strategy. However, cell A employs two humans and strategy s3. So another strategy could be

found where fewer humans are employed even if this results in worsening of cell A’s production

time as long as it does not overshoot 5.894 minutes. This is because cell C would not be able

to proceed unless parts arrive from both cells A and B. If cell A switches to strategy s2, then

it employs only one human and brings down the operational costs significantly and takes 4.482

minutes per part.

Similarly, cells C and D must feed parts to cell E, but cell C takes 4.406 minutes and cell D

takes 8.115 minutes per part. Cell C is employing its optimal strategy and requires two humans.

However, even if one switches to strategies requiring fewer humans, the production time does not

increase. In such cases, there may be a user preference to achieve decreased production times

as it also leads to lower operational costs. However, the bottleneck issue remains unresolved

because there is still going to be a significant gap between the time taken by cells C and D to

produce their assemblies. So cell D’s production time may be brought down without bringing

any more humans. Cell D is employing strategy s2 and requires only one human but if one

switches to strategy s4 it still requires one human and it brings down the production time to

7.673 minutes per part. The probability values associated with the human worker for cell D’s

strategy s4 is set to p61 = 80%, p62 = 5%, p63 = 15%. The few seconds saved as a result of this

adjustment and the significant decrease in the operational costs due to reducing human workers

translates to huge profits for the manufacturing operations in the long run. This analysis is fully

automated in MATLAB, and the user does not need to interact with the model checker directly.

Thus, the user only needs to specify his/her competing interests. For example, it was specified

that the human costs as well as reduce bottlenecks must be brought down as much as possible.

Simply optimizing the performance for each cell individually would not suffice. Here searching

was restricted to strategies. The probability of human resolution for cell D was also chosen.

This implies choosing a human worker with that specific skill level to work in the cell. However,

one could search over other cell parameters like the initial part buffer, storage limits, and also
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the other probability values, if that is allowed for the operation. That is again straightforward

multi-parameter optimization problem and can be similarly encoded in MATLAB.

Cell E produces parts at the rate of 9.116 minutes per part. Based on these production rates,

one may perform queue-theoretic analysis to study the generated throughput. However, that is

beyond the scope of the present work.

Thus, with this approach, it is demonstrated with an example that analysis for fifteen assembly

stations can be analyzed, whereas using PRISM, it is difficult to perform analysis for more than five

stations efficiently. Similarly, large-scale assembly operations could be analyzed by decomposing

it into smaller cells and reasoning about cell settings.

5.6 Summary

A simplified model of production lines and assembly cells is presented that mimics the real-world

factory layout. Then this model is encoded in PRISM and PRISM’s analytical tools are used

to study the effect of different mission settings on the mission performance. The performance

of different contingency resolution strategies is compared, thereby indicating the usage of model

checking to plan for contingencies. The subsystems are analyzed individually, and their results

are aggregated to evaluate the performance of the proposed operations plan for the entire system,

thereby helping to design more optimized systems. It is demonstrated how the cell settings

could be modified based on feedback from the model verification results to optimize production

performance.
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Chapter 6

Incorporation of Contingency Tasks in Nominal Task

Allocation

In this chapter 1, a proactive approach for incorporating potential contingency tasks in task-

schedules of multiple robots assigned to a complex mission is presented.

6.1 Introduction

The deployment of robot coalitions requires optimal task assignment. Such problems are generally

formulated as multi-robot task allocation (MRTA) problem [222,223]. In this chapter, the problem

scenarios considered involve single-task robots, multi-robot tasks, and a time-extended assignment

problem (ST-MR-TA). However, it is solved using an iterative application of MRTA’s instanta-

neous assignment formulation (ST-MR-IA). Since this can be formulated as a set partitioning

problem which is strongly NP−hard, one naturally chooses to apply heuristics-based computa-

tionally efficient approximation algorithms. Heuristics approaches generally identify feasible tasks

based on precedence constraints, enumerate feasible coalitions based on resource constraints, and

then apply greedy heuristics for scheduling coalitions to tasks. The heuristics are designed to

1The work in this chapter is derived from the work published in [212,221]
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Figure 6.1: Example involving USVs where a contingency task impacts the mission

minimize the expected mission completion time or the maximum ending time of all the tasks.

This is often referred to as makespan (or bottleneck) optimization.

In this chapter, there are additional features associated with the execution of mission tasks.

A mission task can be interrupted, and its assigned robots can be reassigned to another mission

task. A task may cause a bottleneck by keeping its assigned robots idle, which leads to poor

resource utilization. This feature of interrupting tasks is incorporated to achieve lower mission

completion times. Next, task execution may start even when a fraction of the team assigned to

the task has arrived at the task location. This is because some robots in the team may take a

larger duration to arrive at the task location. If robots arriving early remain idle while waiting

for the other robots to arrive, the assigned coalition is not being properly utilized in finishing the

task. When the minimum number of robots required by the task for execution have arrived at the

task location, they start working and coordinating with other robots after they arrive to complete

the task.

Cost-effectively deploying multi-robot teams requires mission planning to be automated. This

involves the identification of tasks required for completing the mission while accounting for inter-

task dependencies and then allocating robots to these mission tasks. The planned execution of

mission tasks may get interrupted by the occurrence of unexpected events. The resumption of

nominal mission workflow may require the execution of additional tasks. These new, additional
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tasks are referred to as contingency tasks. Throughout the chapter, it is assumed that these

unexpected events adversely affect the mission workflow because they require additional work for

resolution and create unnecessary diversions. But they are not catastrophic because they do not

cause mission failures and can be resolved through the execution of contingency tasks. Multi-

robot teams should efficiently handle such contingency tasks to ensure the safety and security of

their corresponding logistics operations. Below, three concrete examples to clarify the notion of

contingency tasks are presented:

? Figure 6.1 shows an example of a mission where multiple USVs must escort a ship to its

designated berth location in a congested port. Routine mission tasks include: surveying the

area and leading the ship to the dock. Suppose a monitoring system flags a foreign object

that has been detected near the planned path of the ship, but this may be a case of false

detection with a probability of 10%. For example, a small civilian vessel has appeared sud-

denly, and if the ship continues proceeding, it may generate waves that may be catastrophic

for the occupants of the civilian vessel. This prompts the execution of a contingency task

with 90% probability requiring the closest USV to go near the object/vessel and ensure that

it does not collide with the ship by issuing warning signals or contacting port authorities for

intervention. The escorting task can proceed only after this contingency task is completed.

? Consider an automobile experiencing heavy traffic congestion so that it may run out of gas

before ending at its desired goal location if the congestion persists for a long time. If that

happens, the vehicle must reach a nearby filling station and refuel. The refueling operation

is a contingency task. If the probability of traffic congestion being resolved is 90%, then the

probability of refueling task impacting the mission is 10%.

? Returning back to the example of the escorting ship. Suppose that debris has been spotted

in or around a narrow channel. Due to water current, the debris may flow into the nearby

channel with 50% probability and render the channel nonoperational for navigation purposes.
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This gives rise to a contingency task with 50% probability requiring a nearby USV to go

to the channel and flag the location of debris for immediate removal by port authorities.

The ship and the escorting USVs need not arrive close to the channel for debris clearing

to proceed. Only the assigned USV approaches the debris and coordinates with the central

mission controller to clear the blockage for the convoy to proceed while the convoy itself

may be stalled at a safer distance.

One may point out that these contingency tasks may be handled at the trajectory planning level

if and when the need arises. Most literature dealing with contingency resolution and failure

recovery is devoted to developing effective online strategies to the specific failures that may arise

during their multi-robot missions. Then a distributed framework is implemented that results in

the application of these specific failure strategies based on the just-in-time principle during the

real-time mission execution. Most task allocation work does not consider contingency factors

during the allocation and scheduling phases. Contingencies are handled on-the-fly. Thus, most

works in contingency management in robotic task allocation paradigms do not involve centralized

approaches.

Most of the related papers focus on devising specific methods for different failure modes,

applying these to the robotic systems as and when required and analyzing the success rate.

However, there are benefits in considering a centralized framework to handle these contingency

tasks while accounting for their uncertainty. It is assumed that the tasks required to resolve failures

and unexpected situations during mission execution are known in advance. The contingency tasks

considered here are caused due to the nature of tasks that are being executed rather than being

associated with the robots accomplishing these tasks. This means that if robots are unable to

finish a task, then it is not due to shortcomings on the part of robots or robot failures. It

happens only because the task cannot be finished, and other tasks (contingency tasks) must be

finished first to finish the original tasks. The crux of such centralized operations is to allow
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human cooperation and intervention because centralized mission control architectures comprise of

a centralized mission controller (CMC) where mission execution is monitored by human operators

who can interrupt the mission execution and remotely control the robots whenever such a need

arises.

It is undesirable to only implement a low-level (trajectory planning level) reactive contingency

management module because it renders the role of CMC useless in contributing to preparedness

towards probable events of mission failures (contingencies). When human operators are in the

loop, the system needs to be designed such that there are strong prior beliefs regarding which

mission tasks will most likely be interrupted, and these can be updated during mission execution.

Humans have a better chance of contributing to contingency preparedness with the aid of such

systems. As seen in the multi-USV ship escorting example, one can strongly predict which con-

tingencies may occur and how to prepare the robot teams for them. As more and more activities

in ports are automated, it would become easier to predict situations encountered during mission

execution. Therefore, it becomes more efficient to address the issue of contingency tasks at the

mission planning level itself. This may be augmented with the implementation of the low-level

reactive contingency management module for better success guarantees.

To incorporate a contingency task in a mission plan, one only requires to add new tasks to the

mission plan. The central ground station monitoring situational awareness for the mission detects

these potential contingency tasks where the word potential signifies the associated uncertainty and

a non-zero probability of the mission getting completed without interruption by these contingency

tasks. Such potential contingency tasks may be handled using these two simple approaches. A

naive approach to incorporating the contingency task in the mission plan is to update the mission

plan by inserting all of these new tasks. However, there is an uncertainty associated with these

contingency tasks impacting the mission. So there is a non-zero probability associated with some

of these potential contingency tasks to not impact the mission execution at all. This must be

taken into account while making decisions regarding the contingency tasks. As outlined above,

108



a conservative approach would incorporate all the reported potential contingency tasks without

taking into any consideration the probabilities of the contingency tasks to impact the mission

adversely. A reactive approach is based on the real-time detection of a contingency task depending

on the robot’s current situational awareness. For example, when a task is ready for execution by

the assigned coalition, the mission planner checks whether its associated contingency task needs

execution. Thus, this approach only resorts to the execution of those contingency tasks which

are triggered just before the execution of the associated mission task. Both of these approaches

are seen to produce suboptimal results with respect to the minimization of the expected time of

mission completion. This is because both approaches have obvious shortcomings. The conservative

approach may execute mission tasks that have no impact on the mission workflow whereas the

reactive approach may lead to robots of a coalition waiting in the idle mode while a single robot is

finishing the contingency task. It would have been better to handle the contingency task earlier.

Based on the above discussion, a proactive approach is presented in this chapter to incorporate

the potential contingency tasks. It tries to address the contingency tasks in the initial stage of

mission execution based on their probabilities. There is a strong assumption on the nature of

contingency tasks. The characteristics of the contingency tasks should not vary with time or be

dependent on the percentage of mission completion. It is only then possible to address these

contingency tasks independent of the progress in mission workflow.

In this work, several heuristics are applied to allocate tasks to the robots for the contingency-

aware multi-robot task allocation (MRTA) problem. These heuristics are improvements based

upon the simple greedy method. A multi-heuristic scheduling framework has been developed

which can choose the best heuristic for the mission scenario based on the task characteristics.

The main goal is to account for contingency tasks effectively. Based on the above reasons, it is

clear that one must adopt a proactive approach to manage contingency tasks. It is also evident

that the proactive approach requires information coordination among the robots regarding the

required tasks. This cannot be achieved using distributed and decentralized techniques. The
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proactive approach is deliberative and can be implemented only through a centralized architecture.

But the proactive approach is bound to be computationally expensive as will become evident in

Section 6.5. For five contingency tasks, an exhaustive method must run the mission planning

module 45 ∼ 1000 times. For a nominal scenario of 50 tasks and six robots, the running time is

0.1 seconds in Matlab. Thus for solving the contingency scenario consisting of five contingency

tasks, total time spent during computation is approximately 100 seconds. Assuming a ten-fold

speed-up when deploying the technology in a low-level language, one gets a total running time

of 10 seconds. Running times of such orders are completely agreeable for a centralized mission

planning approach. But a heuristic is also developed to prune the decision search space of the

contingency tasks, thus significantly bringing down planning run-time further. This allows the

handling of a larger number of contingency tasks.

This chapter is organized as follows. Section 6.2 presents a motivating example of a multi-USV

mission scenario to describe the nature of the problem solved in this chapter and its applicability.

This is derived from the case study of Chapter 4. Section 6.3 provides the problem formulation.

Section 6.4 describes the heuristics-based approach to solve the proposed MRTA problem while

accounting for uncertainty. Section 6.5 outlines the approach of incorporating the contingency

tasks in the nominal mission plan while minimizing the expected mission ending time. Results

based on both the task allocation as well as contingency handling methodologies are then presented

in Section 6.6.

6.2 Background

Following is a motivating example that helps in setting up the problem scenario for this chapter.

Suppose a team of USVs in a port region (u1, u2, · · · , un) has been assigned to the task of assisting

an arriving ship to dock safely to its designated berth location. There may be multiple such

sea vessels like cruise or container ships proceeding towards their berth. Busy ports are also
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accompanied by the high traffic of civilian/recreational vessels. The free region where the vessels

are allowed to travel is known. Since the present chapter considers planning only at the mission

level, one need not concern with any port-related restrictions on vessels speeds like minimum-

wake zone. These are taken care of at the trajectory planning level. It is assumed that the

entire environment is accessible to the central mission planner. The job of this centralized mission

planner is to generate tasks that need to be executed and assign it to the USVs.

6.2.1 Environment Modeling

The mission planner keeps track of the relevant environmental factors by maintaining a list of

environmental variables which it keeps updating based on sensory information feedback. Even

today, ground stations guiding sensitive military missions or NASA control center controlling

space missions perform similarly by gathering sensory data from numerous sensors fitted across

the mission domain. These environmental variables are either continuous or Boolean. USV

characteristics like the current vessel position and task characteristics like an assigned location

where a task will be executed are modeled using continuous variables. These may be discretized

due to constraints from computational resources. On the other hand, the Boolean variables are

used to keep track of qualitative factors that are imperative for mission completion. They can

only hold two values: true (>) or false (⊥). A complete enumeration of such variables for the

example mission is as follows:

• `1: has ship arrived in port

• `2: has docking location been assigned to ship

• `3: has ship path been computed

• `4: have survey areas been computed

• `5: have USVs been assigned to survey areas
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• `6: have survey areas been partitioned among USVs

• `7: have coverage way-points been computed

• `8: have USVs surveyed regions of interest

• `9: have USVs approached the ship

• `10: have USVs escorted ship to the docking position

• `11: is ship at the docking position

• `12: has collision risk been detected

6.2.2 Resource Modeling

Tasks require resources for their execution. Motion-based tasks are executed using USVs. Com-

putational tasks are executed using the computing power available at the central mission planner

location as well as the individual computers mounted on each USV. In general, it is assumed that

the resources are homogeneous with respect to their tasks.

Resources place additional constraints on task execution. In addition to a task’s precondition

for execution to be satisfied, it requires the assigned resources to be available at the beginning

of task execution. Otherwise, the task remains halted until the required resources are freed up,

leading to idle time during mission execution. Therefore it is important to utilize resources in

such a way that the mission makespan is minimized.

However, the tasks do not tend to grab as much free resource as is available at the beginning

of their execution because this may result in inefficiency. For example, even though three USVs

may be available for surveying a region of interest, it may turn out to be faster to use only two

USVs which are much closer to the region and hence can complete the area coverage in less time.
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6.2.3 Task Modeling

Tasks considered here are atomic or elemental. Once assigned to the agent(s), they can be finished

without requiring any further decomposition. As already mentioned, tasks can be of two types.

Motion-based are related to trajectory tracking or motion control of USVs. Computational tasks

can only be done using the computing resources and result in the computation of data necessary

for mission completion or even initiation of mission execution.

These tasks may also be classified based on whether they are planned for before mission execu-

tion (offline) or during mission execution (real-time). For example, if USVs suddenly come across

a civilian vessel obstructing their paths or the ship’s path, then the USV closest to the concerned

civilian vessel must come near it and issue a warning to clear the path. This is an example of a

contingency task which cannot be planned beforehand. The central mission planner plans only

for the offline tasks initially and then keeps updating this plan by introducing contingency tasks

in the task network as and when required.

6.2.3.1 Mission Tasks

To be able to compute the task precedence network from the mission requirements, one must

model the mission tasks τ ∈ T as 5−tuple τ = (I,P,R,E,T) where:

i. I denotes the information required as input for the robots to be able to execute the task. In

the case of motion-based tasks, for example, one requires the USV positions.

ii. P represents the preconditions that must be satisfied before the task can be executed using

robots or computing agents.

iii. R refers to the resource demand by the tasks to be finished.

iv. E records the effects of task execution relevant to mission progress. Motion-based tasks may

change the continuous variables representing environment states (external effects) as well
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Table 6.1: Computational tasks

Tasks Inputs Preconditions Effects
monitor ship

arrival in
port (τ1)

• Ship real-time position
• Port region where

ship must arrive
• `1 = ⊥ • `1 updated

assign docking
position (τ2)

• Ship docking position
• Ship position

• `1 = >
• `2 = ⊥

• ship assigned
docking position

• `2 = >

compute ship
path (τ3)

• Ship docking position
• Ship position

• `1 = >
• `2 = >
• `3 = ⊥

• ship path
computed
• `3 = >

compute areas
to explore (τ4)

• collision-free path
• `1 = >
• `3 = >
• `4 = ⊥

• areas of interest
computed
• `4 = >

assign USVs
to areas (τ5)

• areas to be explored
• available USVs

• `1 = >
• `4 = >
• `5 = ⊥

• Assignment of
USVs to areas

• `5 = >

partition areas
among USVs (τ6)

• areas to be explored
• available USVs

• `1 = >
• `4 = >
• `5 = >
• `6 = ⊥

• Partitioning of areas
of interest among USVs

• `6 = >

compute coverage
way-points for

survey areas (τ7)

• areas to be explored
• available USVs

• `1 = >
• `4 = >
• `5 = >
• `6 = >
• `7 = ⊥

• coverage way-points
computed
• `7 = >

as update boolean variables (internal effects). On the other hand, computational tasks may

update boolean states or issue instructions to the available agents.

v. T denotes the logical conditions which must be fulfilled in order to declare the successful

termination of the task. This allows the handling of the temporal nature of tasks. When

tasks being executed get finished, all the appropriate environment states must be updated,

and this is achieved through the verification of these logical termination conditions. It allows

the mission planner to keep track of the goal and perform feedback-based planning.

The above task elements have been defined in Tables 6.1 and 6.2 for all the computational

and motion-based tasks which are considered in the illustrative mission scenario. The column for

the termination conditions for all computational tasks has been omitted because these refer to

the completion of the corresponding computations. So it is trivial to specify the same every time.
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The resources required by the tasks have also not been specified because it is assumed that the

entire pool of agents that is free and relevant to the concerned task may be utilized.

Once the task network has been computed, coalition formation and scheduling of tasks remain.

To solve this MRTA problem, it suffices to model the mission tasks τ ∈ T more succinctly as

4−tuple τ = (rin, rout, ρ ∈ [ρmin, ρmax], temin). The operator r(·) refer to the spatial position

operator throughout this chapter. It is assumed that once the robots are assigned to task τ , they

must arrive at the location rin(τ) and when they have finished the task they end up at location

rout(τ). In reality, it may be the case that different robots start their task execution from different

positions depending on various other factors, and may then consequently end up being in different

locations at the end of the task. However, such complexities may also be handled more efficiently

at the lower level planning once the mission has been planned and confirmed for execution.

The number of robots ρ assigned to the task τ must lie in the range [ρmin, ρmax]. Such resource

constraints are included to model tasks which cannot be started until a minimum number of robots

have arrived at the task location rin(τ). There must also be an upper bound on the coalition size

assigned to the task because multi-robot teams require higher overhead charges like communication

robustness, accurate localization, and sufficient battery levels. When ρ robots work on task τ ,

they take time te whose calculation is discussed in Section 6.4.1. The time temin taken by ρmin

robots to finish the task is known beforehand and used to compute te. To account for uncertainty,

it is modeled as a Gaussian distributed variable temin ∼N(µ, σ2).

Figure 6.2: Example of task precedence graph
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Table 6.2: Motion tasks

Tasks Inputs Preconditions Effects Termination

survey
region of

interest (τ8)

• coverage
trajectories

• USV positions

• `1 = >
• `7 = >
• `8 = ⊥

• region
surveyed
by USV
• `8 = >

• when
survey

completed

approach
ship (τ9)

• Ship position
• USV positions

• `1 = >
• `2 = >
• `8 = >
• `9 = ⊥

• ship
approached

by USV
• `9 = >

• when
approach
completed

escort
ship (τ10)

• Polygon
representing

docking region
• Ship position
• USV positions

• `1 = >
• `2 = >
• `8 = >
• `9 = >
• `10 = ⊥

• ship
escorted
by USV

• `10 = >

• when
ship enters

docking
region

station-keeping
(τ11)

• Ship docking
position

• Ship position
• USV positions

• `2 = >
• `10 = >
• `11 = ⊥

• ship
docking

monitored
by USV

• `11 = >

• when
ship

docked

issue warning (τ12)

• Ship docking
position

• Ship position
• USV positions

• `2 = >
• `10 = >
• `11 = ⊥
• `12 = >

• danger to
ship cleared
• `11 = >

• when warning
issued and

acknowledged

The mission proceeds by identifying feasible tasks, executing these identified tasks, and then

recomputing the next set of feasible tasks. This keeps repeating until the mission goals have

been successfully achieved. Figure 6.2 shows a task precedence graph of six mission tasks. This

directed acyclic graph may be interpreted as follows. Initially only tasks τ1 and τ2 are feasible.

After they are completed, three more tasks become feasible, viz. τ3, τ4 and τ5. Once task τ1 is

finished, task τ4 may be executed. Similarly, once task τ2 is finished, task τ5 may be executed.

Only task τ3 requires that both task τ1 and τ2 are completed. This implies that a sophisticated

scheduling algorithm must take such constraints into account when trying to minimize the total

duration for which the robots are idle. Finally, task τ6 may only be begun when all three tasks

τ3, τ4 and τ5 are completed. Thus, mission proceeds in stages of multiple tasks.
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Figure 6.3: General rule for graph refinement to incorporate a contingency task

6.2.3.2 Contingency Tasks

It is assumed that all contingency tasks with non-zero probability of impacting the mission are

known as a set Tc. One can model each contingency task τc ∈ Tc as 5−tuple τc = (r, ρ ∈

[ρmin, ρmax], tec,min, P
c, τin, δ). The first three elements have similar meaning as for mission tasks

but some specifics will be elaborated below.

It is assumed that before mission planning, one checks based on the environmental conditions

which contingency tasks may potentially impact the mission execution adversely. All contingency

tasks with zero probability are ruled out. For the remaining potential contingency tasks, one could

maintain a prior probability distribution P c(τc) as a function of time and project this probability

distribution into time as far as may be needed for mission completion. During mission execution,

some new information may become available that updates this into a new posterior distribution

and then replanning is done again just as at the beginning of mission execution but with newly

updated information.

Contingency tasks are additional tasks inserted in the nominal task network from where it also

derives its precedence constraints. The impact of a contingency task is analyzed through its effect

on the task network and expected mission completion time tM . A contingency task transforms

the task precedence graph Pm by deleting specific edges and nodes and replacing them with new

ones. This is shown in Figure 6.3 where the blue and green arrows are the directed edges from the

preceding tasks of task τin and the orange arrows represent the directed edges to the next-in-line

tasks.
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Figure 6.3 shows that the contingency task τc splits the interrupted mission task τin into

two fractions. In general, these fractions can be denoted by ξ1 and ξ2. The ξ1 fraction of task

τin remains unaffected by task τc because its effects appear to hamper only the remaining task

execution. When a robot team finishes the first ξ1 fraction of task τin, one would naturally assume

that along with the workload of contingency task τc, only 1− ξ1 task-fraction of task τin remains

to be done. However, in the generalized modeling of contingency tasks, one should include the

cases where task completion requirements of the original task τin have been changed so that it

is now required to finish task-fraction ξ2 of task τin which may be different than 1 − ξ1. For

simplicity, it is assumed that ξ1 = 1 − ξ2 = ξ throughout this chapter. It is this case that has

been depicted in the figure also. So it is assumed that the original workload of task τin remains

unchanged and task τin has only been interrupted by a task τc which is then simply an extra task

to be inserted in the mission. The general case can be easily handled by extending the framework

described here.

So in this kind of graph refinement, the uninterrupted task-fraction ξ1 is finished simulta-

neously with the contingency task. After both work-loads have been finished, the remaining

task-fraction of task τin is finished. Figure 6.4 shows another type of graph refinement. Here,

the uninterrupted task-fraction ξ1 must be finished first and only then the contingency task may

proceed. This case is useful in modeling scenarios where the contingency task was not incor-

porated at the beginning of the mission but is encountered during mission execution and hence

requires execution. In such cases, it is natural that the uninterrupted task-fraction is completed

as expected, and then the agents reorganize to address the contingency task.

Figure 6.4: Rule for graph refinement when the contingency task was not properly incorporated
in the nominal mission plan and encountered during mission execution
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There is one important difference that sets the contingency tasks apart from the mission

tasks. Contingency tasks must be finished before the interrupted task can be completed. On the

other hand, the mission tasks constrain other mission tasks from starting unless they have been

completed.

Figure 6.5: Overview of mission planning

6.2.4 Nominal Mission Planning

The initial mission specification generally includes an initial world state and the desired world

state. Information regarding tasks and environment is assumed to be known beforehand. At the

mission planning level, one starts by computing the set of all the feasible tasks. The nominal

mission planner then allocates the right resources, instructs the robots to execute the feasible

tasks, and records the new world state. If the new world state is the goal state, then the mission

terminates successfully. Otherwise, the current set of feasible tasks is again computed, and this

loop must keep on repeating until the goal state is achieved. This scheme is shown in Figure
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6.5. The external event generator is the simulator module used to simulate the occurrence of

contingency tasks in real life.

If tasks are visualized as nodes, this scheme naturally results in a directed acyclic graph which

encodes the task precedence constraints. Unlike search nodes in classical planning scenarios, the

tasks referred to here have time durations and resource constraints associated with their execution.

In the present example, the task network computed using this procedure is serial (a linear chain

of the tasks described in Tables 6.1 and 6.2) because each new task becomes feasible only when its

preceding task is finished. However, task networks may be more complex as will be encountered

in subsequent studies. After computing the precedence network, the general mission workflow is

known and the robots can be assigned to their tasks. These task assignments are communicated to

the USVs who plan their trajectories with respect to the International Regulations for Preventing

Collisions at Sea (COLREGs) [224].

6.3 Problem Statement

The exact problem that is solved with regards to the mission scenarios elucidated above is stated

below, along with its inputs and outputs. The entire framework comprises of solving two problems

sequentially. First, one must compute the coalition-task assignments and nominal schedules for

mission execution (Section 6.4). The inputs and outputs for the same may be summarized as

follows.

Given,

i. R = [r1, r2, · · · , rn], a set of n robots available for the entire mission

ii. T = [τ1, · · · , τm], a set of mission tasks
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iii. Pm = (T, Em), a directed acyclic graph denoting the task precedence graph. The set Em =

[(τi, τj), · · · ] consists of ordered pairs of tasks encoding the inter-dependence of the mission

tasks.

iv. Coalition inefficiency α

Compute nominal mission execution plan comprising of task schedules for each robot so as to,

i. Minimize the expected mission completion time while accounting for:

• Traveling uncertainty

• Task execution uncertainty

ii. Satisfy all task precedence constraints

Coalition inefficiency factor α will be explained in detail in Section 6.4.1. Expression 6.1

denotes an example task schedule for robot ri which is explained as follows. Robot ri travels to

task τa and then executes it [this is denoted by Trv(τa)→ Exc(τa)]. The robot then waits for task

τb to become feasible and this action is denoted by [Wait(P(τb))]. When task τb becomes feasible

for execution, robot ri travels to the task’s location denoted by [Trv(τb)], waits for ρmin robots

to arrive because they are required by the task for execution. This waiting action is denoted by

[Wait(ρmin(τb))]. Then the robot begins the task execution which is denoted by [Exc(τb)]. This

is how all the robots’ schedules are expected to behave like.

ri : Trv(τa)→ Exc(τa)→Wait(P(τb))→

Trv(τb)→Wait(ρmin(τb))→ Exc(τb)

(6.1)

After computing a nominal mission execution plan, one then incorporates the contingency

information (Section 6.5).

Given,

i. Nominal mission completion plan Mn
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ii. Tc = [τc1, · · · , τcmc
], a set of contingency tasks

iii. Coalition inefficiency α

iv. Fraction of contingency task completed for penalty type 2, κ (Algorithm 5)

v. Uncertainty associated with robot when traveling: σa (Section 6.4.4)

vi. Uncertainty associated with task execution τj : σej (Section 6.4.4)

Compute,

i. Task schedule for each robot that does the following:

(a) Minimize the expected mission completion time accounting for:

• Traveling uncertainty

• Task execution uncertainty

• Known probabilities for contingency tasks impacting the mission

(b) Satisfy all task precedence constraints

ii. Replanning trigger conditions for those contingency tasks which have been deferred for now

Expression 6.2 provides an example task schedule for robot ri when contingency tasks are

incorporated. According to the given schedule, robot ri first travels to the contingency task

location denoted by [Trv(τ ctga )]. It then finishes the contingency task denoted by [Exc(τ ctga )], and

travels to the mission task location denoted by [Trv(τa)]. Upon arrival, it waits for ρmin robots to

arrive at the task location denoted by [Wait(ρmin(τa))], and then begins task execution denoted

by [Exc(τa)].

ri : Trv(τ ctga )→ Exc(τ ctga )→

Trv(τa)→Wait(ρmin(τa))→ Exc(τa)

(6.2)
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6.4 Task Schedule Optimization

In this section, strategies are described to form robot coalitions and assign them to the mission

tasks. It is assumed that a robot performing its tasks is not affected by the environmental changes

caused by other robots. To decide which coalitions to assign to which tasks, it is important to

be able to score coalition-task pairs. For this purpose, a fractional task completion model [212] is

used to compute the time required to finish the task by the assigned coalition.

6.4.1 Task Execution by Partial Teams

When a higher number of robots are available, then the task takes lesser time to finish. It is

assumed that an inverse relationship exists between the task execution time and the coalition size.

However, in real-life, a bigger coalition size leads to additional overhead costs like communication

channels, which pushes the duration of task execution upwards. To include this effect, a coalition

inefficiency factor α is introduced whose value is assumed to be 30% when the coalition size is 10,

and linearly interpolated for other coalition sizes. Thus, if ρ robots have been assigned to task τ

and it can be assumed that the robots are already at the task location so that traveling actions

are not required, then the time taken for finishing the task is given by:

te(ρ) =
temin
ρ

ρmin(1 + α) (6.3)

Assume a coalition C ⊂ R is assigned to task τ . If the coalition violates the task’s resource

constraints, then the pair is given a score of infinity, essentially discarding it from future consid-

erations. Otherwise, the arrival times for the robots of the coalition to reach the task location are

computed, and the robots are sorted in the increasing order of their arrival times. This reordered

robot list looks as follows:

Cs = [rπ(1), rπ(2), · · · ] (6.4)
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where

π : N ∩ [1, |C| ]→ N ∩ [1, |R|] (6.5)

Task execution does not begin until the robot labeled as rπ(ρmin) arrives. Let the amount of

unfinished workload associated with task τ be ∆, initialized to be 1, because the task has not yet

been started. When the task is completed, then ∆(τ) will be assigned zero value. Otherwise, it

varies between 0 and 1.

The task execution time is computed based on the mean values µ(·). When robot rπ(ρmin)

arrives then the team of assembled robots begins task execution. They may complete the task on

their own, if no additional robots were to arrive, in time δte given by

δte = µ(temin)(1 + α(ρmin))∆ (6.6)

Suppose the robot rπ(ρmin+1) arrives in time δta. If δte > δta, then the task has only been

finished partially by the time the (ρmin + 1)th robot arrives. To update the amount of workload

remaining at this instant, one can assume a direct relationship between the amount of task finished

and execution duration (Equation 6.7).

∆← ∆− δta
µ(temin)(1 + α(ρmin))

(6.7)

The arriving robot rπ(ρmin+1) teams up with the previously arrived robots to finish the re-

maining task and this reasoning is repeated until the task has been finished.

However, if δte < δta then the task is finished before the next robot arrives. However, the

other robots assigned to the task are now rendered useless. To penalize such assignments, the

score given is the time taken by the last robot to arrive at the task location. Thus, every other
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robot remains idle for different duration of time, and this contributes to increasing the chances of

discarding this coalition-task assignment.

According to the above model, there are only two types of idle behaviors possible for the robots.

The first kind of scenario occurs when the first (ρmin− 1) robots wait for robot rπ(ρmin) to arrive.

This happens in all cases whether the task finished before or after all the robots arrived. The

second kind of scenario occurs if the task finished before some robots have arrived at the task’s

location. In such cases, all robots other than the last arriving robot have to wait additionally till

the time δta(rπ(|C|)).

Resource constraints may significantly impact the scheduling process because these place con-

straints on the number of robots that must be available for the mission execution. Inequalities 6.8

and 6.9 are also required for efficient mission execution. Otherwise, either the resource constraints

must be revised, or more robots must be added. If Inequality 6.8 is not satisfied, then mission

aborts unsuccessfully. Next, the rationale for these inequalities is provided. Observe that the

task networks decompose mission workflow into stages. Suppose for stage S, the set of feasible

tasks is denoted by Tf . Then every stage requires at least the sum of the minimum number

of robots required for each of its feasible task. The maximum over this minimum is computed

over all stages. The stage that requires the most number of robots to be feasible for execution

must require less than the number of robots available, |R|, hence Inequality 6.8. Similarly, ev-

ery stage will require the maximum number of robots. Any more robots than that are just not

needed because otherwise, they will remain idle during the execution of tasks in that stage. The

second inequality is not strictly required, but its role becomes clearer during the discussion of

benchmarking results presented in Section 6.6.1. One does not want to unnecessarily have a very

large number of robots engaged in the mission only because it is feasible to do so, and the second

inequality helps to enforce that.
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max
S

∑
τ∈Tf

ρmin(τ) ≤ |R| (6.8)

min
S

∑
τ∈Tf

ρmax(τ) ≥ |R| (6.9)

For every stage, if
∑
τ∈Tf

ρmax(τ) < |R| then mission can still proceed but some robots will

have to be idle. One simple way to address situations of such nature more efficiently may be the

following. Suppose the mean position averaged over the locations of all tasks to which the robots

have been currently assigned for a particular stage is r(Tf ). The robots which are further away

from the position r(Tf ) are discarded and remain unassigned to any task. While the assigned

robots are finishing their tasks, the unassigned robots advance to position r(Tf ). This ensures

that robots are not dispersed significantly over time and remain relatively close to each other.

However, the task resource constraints can also be revised to avoid such a situation. If robots are

not being utilized, then the number of robots assigned to the mission can be decreased. Such a

situation also indicates that one may increase ρmax values for tasks chosen based on user-defined

criteria.

6.4.2 Handling Divisible Tasks

This section models an additional feature associated with task execution that allows tasks to be

interrupted during their execution. In some real-world mission, such features are either specified

by the user or strictly prohibited based on the nature of robots, tasks, and environment. It is

useful to study the effect of task divisions.

This is not exactly the same as task preemption studied in processor scheduling literature.

The mission tasks considered in this chapter may be thought of, to some extent, as surveying

tasks using unmanned robots. Such tasks can be interrupted during their execution, meaning the

robots are reassigned to other tasks. This feature is referred to as the divisibility of tasks because
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workload of the tasks are divided on the Gantt chart (Section 6.6.1) when they are redistributed

among the robots.

Algorithm 1 Compute Task Completion fraction (CTCF)

Input: τ, Cτ , α, T1
Output: ∆
1: Task remaining, ∆← ∆(τ)
2: Robots at r(τ), Γ← ∅
3: Time elapsed, t← 0
4: R← sorted Cτ in the order in which they will arrive at r(τ)
5: ta(ρmin)← time taken by ρmin robots to arrive at r(τ)
6: remove first ρmin robots from R

7: if T1 < ta(ρmin) then
8: update robot positions
9: ∆← 1

10: else
11: while t < T1 do
12: if |Γ| == |Cτ | then
13: r(ri)← r(τ) ∀ ri ∈ Cτ
14: update ∆
15: t← T1
16: else if |Γ| < |Cτ | then
17: T2 ← FTCM(τ,Γ, α)
18: T3 ← ta(R.front ( ))
19: if T3 == T1 − t then
20: δt← T3
21: |Γ| ← |Γ|+ 1
22: Γ← Γ ∪ (R.pop ( ))
23: t← t+ δt
24: else
25: δt← T1 − t
26: t← T1
27: end if
28: if min(T1, T2, T3) == T2 then
29: ∆← 0
30: else
31: update ∆
32: end if
33: update robot positions based on work performed during duration δt
34: end if
35: end while
36: end if

Unlike processor tasks, the tasks are not being suspended to be resumed at a later point in

time. However, robot states are updated and possible reassignments are considered to see if faster

mission completion can be achieved. Task execution may still get suspended if all robots assigned
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to a task are reassigned to another task and new robots are assigned to this task because the

new robots will be traveling to the task and therefore task execution has been halted. Unless

drastic scenarios are considered, such cases do not arise and are not observed in the experiments

conducted for this chapter. Mostly, one or two robots from the current task are reassigned to

another task based on optimality considerations.

Also, the tasks undergoing execution by the robots are allowed to be interrupted only when at

least one task has finished. The motivation behind allowing this feature is to reassign the robots

that recently finished their task. All the robots are rescheduled, and not just those who got freed

up after finishing their task. This helps to explore the search space for high-quality solutions as

fully as possible.

This procedure can also be interpreted as if robot schedules are getting interrupted and reas-

signed as soon as any task is finished. For finding optimal reassignments, one must account for

robot positions before rescheduling carefully. Those robots that got freed up after finishing their

task must still be at the location of their current task. But the other robots may be working at

their respective task locations or in transit to their task locations.

It is required to compute the amount of workload remaining for each feasible task. Then the

robots can be optimally rescheduled based on the updated workload remaining for each task. In

such cases, the robots have worked on their assigned task until the time it took for the most

recent task to finish, and this time is known. This requires solving of the inverse problem of the

fractional task completion model: given a fixed duration T1 for the execution of task τ , how much

workload has been finished by its assigned coalition Cτ?

If the allowed duration T1 < δta(rπ(ρmin)), meaning the duration lapses even before the first

ρmin robots arrive at the task location, then the full workload is remaining. Otherwise, the

approach is similar to Section 6.4.1, where robots that are arriving at the task location are tracked

one by one, and they contribute to the completion of the task’s workload. Once a new robot has
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arrived, it combines with the previous robots. So, the workload finished by this extended team

before the arrival of another robot must be computed.

Suppose that this extended team requires time T2 to finish the task whereas the next robot

will arrive in time T3. If T1 < T2 < T3 or T1 < T3 < T2 then the task is partially finished by the

coalition up to the allowed duration T1. The robot positions are also updated because some of

them may be at intermediate positions while traveling to the task location. If T2 < T3 < T1 then

all robots have arrived and finished the task. If T2 < T1 < T3 then the intermediate position of

the robots is updated and the task is finished. If T3 < T1 < T2 or T3 < T2 < T1, then the arrival

of the next robot is recorded, the intermediate positions of the robots that have not yet arrived

are updated, and the remaining workload is computed. Then, the same procedure is repeated

until the allotted duration T1 is exhausted. A succinct implementation of this methodology is

shown in Algorithm 1.

6.4.3 Task Scheduling Strategies

Algorithms in processor scheduling literature provide insights in designing techniques for multi-

robot scheduling. These algorithms operate through two successive phases: task prioritization

and robot selection. These algorithms can be modified for MRTA problems based on the fol-

lowing analogy. The processing of tasks on processors is analogous to the execution of tasks by

robot coalitions, and inter-processor communication is analogous to inter-task traveling by robots.

Strategies S1 − S5 are inspired from the processor scheduling literature [122]. However, coalitions

rather than individual robots are assigned to the tasks in the second phase. This is because this

chapter assumes multi-robot (MR) tasks as noted in the beginning.
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6.4.3.1 Heuristics Employed

List scheduling algorithms use heuristics that provide an important method for developing fast

algorithms for such intractable problems. Greedy heuristics are very common which order the

tasks in the increasing (or decreasing) order of their execution durations.

Strategies S3 and S4 use static levels to prioritize the tasks. Static levels for the mission

tasks can be computed by summing up the execution durations of all the tasks along the longest

path to the terminating tasks in the task precedence graph. Tasks with higher static levels

are sequenced before tasks with lower static levels. If the execution duration of all the tasks is

assumed to be one and then compute the static levels, it constitutes strategy S3, and this heuristic

is based on the Levelized Min-Time (LMT) scheduling algorithm. On the other hand, if the actual

execution duration provided for the mission tasks beforehand is used, then that strategy is S4,

and this heuristic is based on the Highest Levels First with Estimated Times (HLFET) scheduling

algorithm.

Strategy S5 computes upward (or downward) ranks of the tasks in such a way that the time

spent in traveling to the task’s location is also included in the heuristic used for prioritizing the

tasks. This is based on the Heterogeneous Earliest Finish Time scheduling (HEFT) scheduling

algorithm. If one computes upward ranks, then the tasks are ordered according to the decreasing

order of their upward ranks and assign the coalitions which finish the tasks earliest in that order.

All the mission tasks that form the leaf nodes in the task network (having zero out-degree) are

assigned upward ranks as follows

ranku(τE) = e(τE) (6.10)
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Where the execution time of task τE is obtained using the function e(·). Let e(·) denote the

average execution time of a task over all feasible coalitions. For other tasks in general, the ranks

may be computed as follows

ranku(τ) = e(τ) + max
τ ′∈succ(τ)

(ranku(τ ′) + a(τ, τ ′)) (6.11)

Where succ(τ) refers to the direct successors of task τ in the precedence constraint graph, and

a(τ, τ ′) refers to the travel time from task τ to task τ ′.

6.4.3.2 Task Allocation Without Task Division

A naive strategy S0 would be to perform exhaustive enumeration over all possible coalition-task

pairs and use this brute-force technique (Algorithm 2) to compute the optimal schedule. After

computing the set of tasks whose preconditions are satisfied (Line 3), all the possible feasible

distributions (Lines 5− 7) of robots among the tasks (|Tf | ≤ |R|) are computed. In Lines 8− 23,

the optimal coalition-task pair is found and then both the task and the assigned coalition are

removed from further consideration (Line 24 − 26). The positions of the robots forming the

assigned coalition are updated so that when the next batch of feasible tasks is generated, the

optimal coalitions are selected appropriately.

Using n robots, 2n coalitions could be formed. Not all of them will be considered for task

assignment because the resource constraints are used to discard the violating ones. Given a set

of feasible tasks Tf , all the distributions of n robots among the feasible tasks are computed.

Since such computations are of the order O(|Tf |n), computers run out of memory for a high

number of robots or tasks. For example, 16 GB of memory is insufficient, even for nine tasks and

nine robots. One could improve this further by only considering such distributions of the robots

among tasks where at least one robot is assigned to a task because ρmin > 1 ∀ τ ∈ T. This leads
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Algorithm 2 Strategy S0 without task division

Input: R,T, Pm, α
Output: Mn

1: Mn ← ∅
2: while T not empty do
3: compute feasible task-set Tf ⊂ T from graph Pm
4: while Tf not empty do
5: D← all distributions of robots among tasks τ ∈ Tf
6: compute set Dr ⊂ D of distributions violating task-resource constraints
7: D← Dr \D
8: t∗ ←∞
9: for all d = (c, τ) ∈ D do

10: t←∞
11: if ρmin(τ) ≤ |c| ≤ ρmax(τ) then
12: if |R \ c| ≥

∑
τ ′∈Tf\τ

ρmin(τ ′) then

13: t← FTCM(τ, c)
14: end if
15: end if
16: if t < t∗ then
17: d∗ ← d
18: c∗ ← c
19: t∗ ← t
20: τ∗ ← τ
21: end if
22: end for
23: Mn ←Mn ∪ d∗
24: R← R \ c∗
25: Tf ← Tf \ τ∗
26: T ← T \ τ∗
27: update robot positions
28: end while
29: end while

to n ! ∗ S(n, |Tf |) distributions where S(· , ·) denotes the Stirling number of the second kind. This

still hogs the entire 16 GB of RAM for nine tasks and eleven robots.

Given a set of feasible tasks Tf , those distributions of n robots among the feasible tasks are

considered which do not violate resource constraints. If the problem specifications are within

RAM’s capacity, then strategy S0 computes the optimal mission assignment in the deterministic

version of the problem that serves as the baseline. However, the memory requirements placed by

strategy S0 are very restrictive. To efficiently solve problems of larger sizes, heuristics are used

to search the space of high-quality solutions quickly. The heuristics used in Sections 6.4.3.2 and
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Table 6.3: Overview of strategies used for task allocation

Strategy Task prioritization heuristic
S1 Pick tasks with lower execution duration first
S2 Pick tasks with higher execution duration first

S3
Start picking tasks with lower static levels

computed by assuming unit execution duration

S4
Start picking tasks with lower static levels

computed for actual execution duration
S5 Pick tasks with lower upward ranks first

6.4.3.3 are described using Table 6.3. Based on heuristics described in Section 6.4.3.1, strategies

S1 − S5 are designed, which can handle problems of larger sizes much more efficiently.

Two additional strategies, strategies S6 and S7, are also introduced for benchmarking purpose.

They do not comprise a task prioritization phase. They directly start selecting coalitions while

handling the interference of coalitions among themselves. Two coalitions interfere if at least one

robot overlaps between them. Strategies S6 and S7 are based on the MinStepSum and MinInterfere

heuristics described in [1]. The implementation details of strategies S1 − S5 are provided in the

context of task divisions in the next section.

6.4.3.3 Task Allocation with Task Division

It can be seen that when task divisions are allowed, lower mission completion times may be

achieved because this only results in reducing the duration for which the robots remain idle. This

is explained in detail in the context of strategies S1 − S5. Strategy S1 (described as Algorithm

3) greedily orders the feasible tasks generated in the ascending order of their execution duration

every time they are generated (Lines 3− 4). Then, the task with the highest priority is selected

for assigning its optimal coalition. The set of all coalitions that can be formed using the available

robots is computed and the coalition sizes are restricted to the minimum between the maximum

robots allowed for the task under consideration and the number of robots available for assignment

(Lines 7− 8).
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Algorithm 3 Strategy S1 (and S2) with task division

Input: R,T, Pm, α
Output: Mn

1: Mn ← ∅
2: while T not empty do
3: compute feasible task-set Tf ⊂ T from graph Pm
4: sort Tf in ascending (descending for S2) order by task duration
5: while Tf not empty do
6: τ ← Tf .pop()
7: Nf ← min(ρmax(τ), |R|)
8: C← set of all coalitions in set R up to Nf robots
9: t∗ ←∞

10: for all c ∈ C do
11: t←∞
12: if ρmin(τ) ≤ |c| ≤ ρmax(τ) then
13: if |R \ c| ≥

∑
τ ′∈Tf\τ

ρmin(τ ′) then

14: t← FTCM(τ, c, α)
15: end if
16: end if
17: if t < t∗ then
18: c∗(τ)← c
19: t∗(τ)← t
20: end if
21: end for
22: Mn ←Mn ∪ (c∗, τ)
23: R← R \ c∗
24: end while
25: τ∗ ← arg min

τ
t∗(τ)

26: T ← T \ τ∗
27: for all τ ∈ Tf \ τ∗ do
28: ∆(τ)← CTCF(τ, c∗(τ), t∗(τ∗))
29: end for
30: update robot positions
31: end while

For the coalition selection phase, another simple heuristic is used. The coalition that takes the

minimum time to finish the chosen task is then computed (Lines 17− 20). The time taken by the

coalition to finish the task using the fractional task completion model is computed (Line 14). The

selected coalition should satisfy the resource constraints (Line 12). The selected coalition should

be such that the number of robots available after the robots in the selected coalition are used up

is at least as much as the sum of minimum numbers of robots required for the remaining tasks

(Line 13).
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Algorithm 4 Task prioritization phase for strategies S3, S4, S5 with task division

1: Mn ← ∅
2: Tp ← prioritized T (Section 6.4.3.3)
3: while T not empty do
4: compute feasible task-set Tf ⊂ T from graph Pm
5: Tf ← Tp ∩ Tf
6: while Tf not empty do
7: REST IS SAME AS ALGORITHM 3
8: end while
9: end while

Once the coalition assignments Mn have been computed (Line 22), the task τ∗ which will

get finished the earliest is determined (Line 25). Task executions are paused once any task gets

finished and all the robots are redistributed among the new set of feasible tasks Tnewf . This is

done to prevent robots from being idle while waiting for the last task in the original set of the

feasible tasks Toldf to be finished. Instead, the coalition assignment Mn is only adopted until the

completion of the earliest task. Then task τ∗ is marked as finished (Line 26 − 27) and compute

the workload remaining for other tasks belonging to the set Toldf \ τ∗ (Lines 28− 30). This entire

procedure of computing the new set of feasible tasks Tnewf and finding its corresponding coalition

assignment is then repeated. By striving to reduce the amount of time spent by robots being idle,

task divisions lead to mission completing faster.

Other than the task prioritization heuristic, strategies S3 − S5 also differ slightly regarding

how they prioritize the tasks as shown in Algorithm 4. These strategies prioritize the tasks (Line

2) even before the currently feasible tasks are computed, i.e., before Line 3. When the feasible

tasks are computed, then they are ordered by taking an intersection with the prioritized task list

Tp while preserving the order in the task-list Tp. Rest of the steps are the same as in Algorithm

3.

The strategies described in this section are derived from the list scheduling algorithms by

adding the features of coalition formation, fractional task completion, and task division.
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6.4.4 Accounting for Uncertainty

Robots suffer from controller noise. Accurate models of tasks are generally not available before-

hand. Environmental factors cause deviation from conditions assumed at the beginning of mission

execution for its planning. Due to the interplay between these characteristics of robots, tasks,

and environment, uncertainty associated with mission execution must be addressed. The time

taken by robots to arrive at their designated locations to execute tasks becomes uncertain and

is modeled as Gaussian distributed variables. For simplicity, it may be assumed that the vari-

ance of the associated normal distribution is the same for all robots regardless of the tasks and

environment. Execution durations of the mission tasks are also modeled as Gaussian distributed

variables whose variances are again assumed to only depend on the tasks for simplicity.

The task allocation methods discussed above explore different possible mission assignments

and choose the best solution based on some optimizing criteria. Mission makespan is generally

used as the metric to be minimized. Using the principles of risk-neutral decision-making, that

mission assignment is chosen, which requires minimum expected mission completion time for its

completion.

When the mission tasks are divisible and stochastic in nature, mission completion time is

computed as follows. Generally, a task precedence graph decomposes the mission into stages.

In each stage multiple tasks are simultaneously being finished. One has to assign a coalition to

each of the feasible tasks of that stage, say for the sth stage τ1, · · · , τns
. To select the optimal

coalition, the distribution of the time taken by the coalition to complete the task is computed.

For concreteness, let Ck = [r1, r2, · · · , rnk
] be the kth coalition being considered for mission task

τj . Robot ri must travel distance dij between robot position r(ri) and spatial location of the

task r(τj) at mean speed v. The time taken to arrive at the task’s spatial location is modeled

as a Gaussian variable T aij ∼ N(dij/v, σ
2
a). Thereafter it must perform the task for duration

T eij ∼N(teij , σ
2
ej) which can be calculated using the fractional task completion model.
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The total task completion time of robot ri is T kij = T aij + T eij . The total task completion time

for the coalition is given by

sT kj = max(T1j , · · · , Tnkj) (6.12)

Assuming the Pearson correlation coefficient ρcorr between the two Gaussian variables X ∼

N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ) to be zero, their maximum is the distribution Z = max(X,Y )

whose mean and standard deviation can be computed using [225].

µZ = µXΦ

(
µX − µY

θ

)
+ µY Φ

(
µY − µX

θ

)
+ θφ

(
µX − µY

θ

) (6.13)

σ2
Z = (µ2

X + σ2
X)Φ

(
µX − µY

θ

)
+ (µ2

Y + σ2
Y )Φ

(
µY − µX

θ

)
+ (µX + µY )θφ

(
µX − µY

θ

)
− µ2

Z

(6.14)

where

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
(6.15)

φ(x) =
1√
2π

exp

(
−x

2

2

)
(6.16)

θ =
√
σ2
X + σ2

Y − 2 ∗ ρcorr ∗ σX ∗ σY (6.17)

The maximum of multiple Gaussian variables is computed based on the approximation [226] given

below.

sTj = max · · ·max(max(T1j , T2j), T3j) · · ·Tnkj) (6.18)

The coalition Ck∗ is assigned to task τj where

k∗ = arg min
k

(µ(T kj )) (6.19)
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Stage completion times are calculated by minimizing over the stage tasks because as soon as any

stage task finishes, all the robots are rescheduled and, hence another stage begins. To calculate

the mission completion time, one must sum over the stage completion times.

sT = min(T1, · · · , Tns
) (6.20)

The minimum of two Gaussian variables X ∼N(µX , σ
2
X) and Y ∼N(µY , σ

2
Y ) is the distribution

W = min(X,Y ) which is given as follows

µW = µXΦ

(
µY − µX

θ

)
+ µY Φ

(
µX − µY

θ

)
− θφ

(
µY − µX

θ

) (6.21)

σ2
W = (µ2

X + σ2
X)Φ

(
µY − µX

θ

)
+ (µ2

Y + σ2
Y )Φ

(
µX − µY

θ

)
− (µX + µY )θφ

(
µY − µX

θ

)
− µ2

W

(6.22)

And the minimum of multiple Gaussian variables is approximated by using the iterative method

that was used for calculating maximum over Gaussian variables.

6.5 Incorporating Potential Contingency Tasks

6.5.1 Background

Three different approaches to incorporate potential contingency tasks in mission planning were

previously discussed. The conservative approach adds the contingency tasks into the queue if they

have been reported with any non-zero probabilities. On the other hand, a reactive approach is

based on just-in-time behavior. According to this approach, if there is a non-zero probability for
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Table 6.4: Different types of penalty associated with available actions for contingency tasks

Action on
potential

contingency
task τc

τc does not
affect mission

τc affects mission

Defer action on
τc for now

Case A
(correct choice)

Case B
(penalty type 1)

Immediately
act on τc

Case D
(penalty type 2)

Case C
(correct choice)

contingency task τc to impact mission task τ , then just when task τ becomes feasible the planner

checks whether contingency task τc presents a clear danger. If task τc requires execution based

on the query at that instant, then the uninterrupted fraction of the task is first completed, next

the contingency task is finished and finally, the remaining portion of the task is finished.

However, the proactive approach explicitly takes into account the probabilistic nature of the

contingency tasks to decide which contingency tasks should be incorporated in the mission plan

and which should be ignored till beliefs about the occurrence of contingency tasks change. When-

ever a new potential contingency task is reported, or the beliefs associated with already reported

contingency tasks change, the entire decision-making process for all contingency tasks must be

redone. If a contingency task does not affect the mission, then the reactive approach will always

perform better than or at least as well as the proactive approach. However, if the contingency

task impacts the mission, the reactive approach pays a higher penalty and performs worse than

the proactive approach.

Two actions are available for every contingency task τc: either immediately incorporate it in

the task network or defer its incorporation. The planner evaluates all options and assesses their

impact on the expected mission completion time. Table 6.4 shows different outcomes associated

with the two actions based on the real-world scenario. To decide whether to defer incorporation

or not, the hypothesis testing approach is followed. If one decides to defer action on task τc and

it ends up impacting the mission, a penalty is incurred for keeping the robots associated with
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Algorithm 5 Computation of contingency task networks through refinement of nominal task
network

Input: Tc, T
cr
c , Pm

Output: Pc
1: T′c ← Tc \ Tcrc
2: W←

[
{>}|T

cr
c | , {>,⊥}|T

′
c|
]

3: Cd ←W×W

4: Pc ← ∅
5: for all (a,w) ∈ Cd do
6: P ′c ← Pm
7: for all τc ∈ Tc do
8: N ← node in graph P ′c for the mission task impacted by task τc
9: if a defers action on τc and τc does not impact w then

10: leave graph P ′c unchanged (case A)
11: else if a defers action on τc and τc impacts w then
12: add τc serially between the two task fractions (case B)
13: else if a acts on τc and τc impacts w then
14: refine network as in Figure 6.3 (case C)
15: else if a acts on τc and τc does not impact w then
16: µ(tec) = µ(tec) ∗ κ (κ = 70− 100%)
17: refine network as in Figure 6.3 (case D)
18: end if
19: end for
20: Pc · add(P ′c)
21: end for

the interrupted mission task idle because the contingency task becomes a bottleneck (Type 1

penalty). On the other hand, immediate action on τc may incur a penalty if contingency action

did not impact the mission tasks because some resources were unnecessarily diverted which could

have been used to continue mission workflow (Type 2 penalty).

If the number of contingency tasks that are reported is mc, then there are Nc = 2mc possible

decision outcomes. There are also Nc different world scenarios that could materialize when robots

are completing the assigned mission depending on whether a particular contingency task impacts

the mission.

A naive exhaustive method proceeds as follows. For each decision, one could compute the ex-

pected mission completion times for all the Nc scenarios. This leads to Nc×Nc score matrix S. To

compute the expected mission completion time for a particular action-world pair (a,w), the frac-

tional task completion model is applied on a task network derived from the original task network
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excluding the contingency tasks. The set of all possible task networks Pc =
[
Pc1, · · · , Pc(Nc−1)

]
is computed when contingency tasks are incorporated. Each graph Pci = (Tc ∪ T, Ec) is also a

directed acyclic graph. The task networks Pm and Pc comprise of all Nc decision alternatives. To

obtain set Pc, Algorithm 5 based on the case-by-case analysis in Table 6.4 is used. It uses the two

types of graph refinement shown in Figures 6.3 and 6.4.

It is assumed that if mission task τ is interrupted by contingency task τc, then a single robot is

commanded to resolve the contingency task. According to this operational model, ρmin = ρmax =

1 for all contingency tasks.

Given the probability vector P = [p1, · · · , pNc
] of the different world scenarios and the matrix

S, the vector Td = [Td1, · · · , TdNc
] storing expected mission completion times for each decision is

computed where Tdi ∼N(µ, σ2). The optimal choice of decision i∗ is risk-neutral.

Tdi =

Nc∑
j=1

pjSij (6.23)

i∗ = arg min
i
µ(Tdi) (6.24)

6.5.2 Search-space Pruning Heuristic

In this section, a heuristic is proposed to reduce the computations in the exhaustive method. For

every contingency task, δ∗1(τci) is computed by taking the difference between expected mission

completion time for deferring and executing it while all other contingency tasks are deferred.

Similarly, δ∗2(τci) is the difference between expected mission completion time when deferring and

executing it while all other contingency tasks are executed. A contingency task that satisfies

min(δ∗1 , δ
∗
2) − 0.1 ∗ tec(τci) > 0 is considered urgent and must be immediately incorporated in

the task network. A contingency task that satisfies max(δ∗1 , δ
∗
2) + 0.1 ∗ tec(τci) < 0 is considered

deferred and must be revisited when its probability changes. For other regular contingency tasks,
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a combinatorial search is performed to determine their optimal actions. The rationale for the

heuristic is described next.

6.5.3 Analysis of Pruning Heuristic

Using certain illustrative cases, the validity of the heuristic is demonstrated. Analysis for a general

task network encompassing all possible scenarios cannot be performed, it is analytically shown

for five nominal cases that this heuristic holds. In all these cases, contingency tasks are assumed

to take more time to finish than mission tasks, but the observations hold even if the assumption

is reversed. Consider a scenario involving three high-probability contingency tasks such that only

one contingency task impacts the mission per stage of mission execution. Then the expected

mission completion time for the decision to defer all contingency tasks is represented as TM (000).

Suppose the time to finish the mission according to the nominal task network is T . Then for each

contingency task, the nominal execution is modified according to case B of Algorithm 5 implying

that the network is serially extended by each contingency task so TM (000) ∼ T+tec1+tec2+tec3 where

teci is the time taken to finish task τci. To compute TM (100), observe that the first contingency

task will be treated according to case C, so the first stage of task execution is extended by time

tec1 − tmax where tmax represents the maximum time taken by the mission tasks of the first stage

to finish. Hence TM (100) ∼ T + (tec1− tmax) + tec2 + tec3 and δ∗1(τc1) = TM (000)−TM (100) ∼ tmax.

Even if one chooses an ordering for the contingency task execution times, the conclusion holds

regardless of which ordering is chosen. Suppose tec1 ≥ tec2 ≥ tec3. To compute TM (011) the first

stage adds tec2 − tmax to T because τc2 is clearly the bottleneck task. Similarly, TM (111) ∼

T + (tec1 − tmax) and δ∗2(τc1) = TM (011) − TM (111) ∼ tec2. The other pairwise differences, viz.

TM (010)−TM (110) and TM (001)−TM (101) are tec2 and tec3 respectively. These values are clearly

contained in the range [δ∗1 , δ
∗
2 ]. The same is observed when analysis is performed for the other

two tasks.
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Suppose all contingency tasks have low probability. Then TM (000) ∼ T because this corre-

sponds to application of case A. To compute TM (100) one can invoke case D for task τc1 and also

assume κ = 1 for simplicity so TM (100) ∼ T + (tec1 − tmax). Therefore δ∗1 ∼ −(tec1 − tmax) and

similarly δ∗2 ∼ −(tec1 − tec2). The other pairwise differences are −(tec1 − tec2) and −(tec1 − tec3) which

clearly lie in the range between the first two values.

The third case considers four high-probability contingency tasks where one stage has two

mission tasks impacted by tasks τc1 and τc2 and other contingency tasks only impact one mission

task per stage (tec1 ≥ tec2 ≥ tec4 ≥ tec3). The fourth case has two stages where two mission tasks are

impacted by a total of four high-probability contingency tasks: τc1 and τc2 in one stage, and τc3

and τc4 in another (tec1 ≥ tec3 ≥ tec4 ≥ tec2). The fifth case differs from fourth case only in assuming

them to be low-probability (tec4 ≥ tec3 ≥ tec1 ≥ tec2). The results for these are summarized in Table

6.5. Case 3.1 represents the analysis for task τc1 of third case. The first two entries in the second

column for each row are δ∗1 and δ∗2 followed by other pairwise differences.

Thus, all possible pairwise differences between deferring and doing a contingency task seem

to lie inside the range defined by δ∗1 and δ∗2 . Statistical experiments were performed to verify this

pattern using randomly generated task networks and found this bound to be overshot at most by

10% of the considered contingency task duration. This slight overshot is well expected because

approximations were used in the above analysis.

6.5.4 Contingency Handling Algorithm

The above heuristic helps in choosing the right action for urgent and deferred contingency tasks

which total to m∗ out of mc contingency tasks. For the rest mc −m∗ regular contingency tasks,

a sampling-based combinatorial search is performed. For each of the N∗c = 2(mc−m∗) possible

decisions, the expected mission completion times over K world scenarios out of the N∗c that

are possible (for experiments in this chapter, choose K = 50 if mc > 5 else min(N∗c , 2
4)) is
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Case Difference between deferring and executing contingency task
1.1 tmax, tec2, t

e
c2, t

e
c3

1.2 tmax, tec2, t
e
c2, t

e
c3

1.3 tmax, tec3, t
e
c3, t

e
c3

2.1 −(tec1 − tmax),−(tec1 − tec2),−(tec1 − tec2),−(tec1 − tec3)
2.2 −(tec2 − tmax), 0, 0,−(tec2 − tec3)
2.3 −(tec2 − tmax), 0, 0, 0

3.1
−(tec2 − tmax), tec2, t

e
c2,−(tec2 − tec4), tec2,

−(tec2 − tec4),−(tec2 − tec4), tec2

3.2
−(tec2 − tmax), tec2,−(tec2 − tec4), tec2, t

e
c2,

tec2,−(tec2 − tec3),−(tec2 − tec4)
3.3 tmax, tec3, t

e
c3, t

e
c3, t

e
c3, t

e
c3, t

e
c3, t

e
c3

3.4 tmax, tec4, t
e
c3, t

e
c4, t

e
c4, t

e
c4, t

e
c4, t

e
c4

4.1
−(tec2 − tmax), tec3, t

e
c2,−(tec2 − tec4), tec4,

tec3 − tec2, tec4 − tec2, tec3
4.2 −(tec2 − tmax), tec2, 0, t

e
c2, t

e
c2, t

e
c2, 0, 0

4.3
−(tec2 − tmax), tec3, t

e
c4, t

e
c3 − tec4,

tec3 − tec4, tec3,−(tec4 − tec2), tec4

4.4
−(tec4 − tmax), tec4, t

e
c4, 0, 0, t

e
c4,

−(tec4 − tec2), tec4
5.1 −(tec1 − tmax), 0,−(tec1 − tec2), 0, 0, 0, 0, 0
5.2 −(tec2 − tmax), 0, 0, 0, 0, 0, 0, 0

5.3
−(tec3 − tmax), 0, 0,−(tec3 − tec1),−(tec3 − tec1),

0,−(tec3 − tec2), 0

5.4
−(tec4 − tmax),−(tec4 − tec3),−(tec4 − tec3),
−(tec4 − tec1),−(tec4 − tec1),−(tec4 − tec3),

−(tec4 − tec2),−(tec4 − tec3)

Table 6.5: Analysis of various task networks

computed. The set of task networks Pc = [Pc1, Pc2, · · · , PcK ] representing each action-world

scenario is computed using Algorithm 5 based on the case-by-case analysis in Table 6.4.

The probabilities of these world scenarios are computed using the product rule. Then, the

probabilistic sum of the expected mission completion time over K scenarios is computed. Thus,

the vector Td = [Td1, · · · , TdN∗c ] storing expected mission completion times for each decision is

obtained where Tdi ∼ N(µ, σ2). That choice of contingency actions is selected which minimizes

the mean time.

For each contingency task, one must evaluate K task networks four times to compute δ∗1 and

δ∗2 . Thus, the first phase of proactive planning is of the order O(Kmc). If a total of m∗ urgent

and deferred contingency tasks were identified, then only 2mc−m∗ decisions need to be analyzed.
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Algorithm 6 Proactive planning for contingency tasks

Input: Tc, Pm
Output: Optimal decision x∗

1: for all τc ∈ Tc do
2: if min(δ∗1 , δ

∗
2)− 0.1 ∗ tec(τc) > 0 then

3: x∗(τc) = >
4: else if max(δ∗1 , δ

∗
2) + 0.1 ∗ tec(τc) < 0 then

5: x∗(τc) = ⊥
6: end if
7: end for
8: Compute Pc using Algorithm 5
9: for all N∗c decisions do

10: for all K sampled world scenarios do
11: Compute Tm using FTCM
12: Sxj ← Tm

13: end for
14: end for

15: Tdx ←
K∑
j=1

pjSxj

16: x∗ ← arg min
x
µ(Tdx)

The complexity of the second phase is clearly O(K2mc−m∗) as described above. Thus the overall

complexity of the proactive approach (Algorithm 6) is O(K(mc + 2mc−m∗)) = O(2mc−m∗). For

example, if a mission is reported to concurrently have ten contingency tasks and four contingency

tasks can be pruned so that they do not need to be considered during combinatorial analysis,

then this reduces the number of decisions to be considered from 1024 to 64, and thus enables the

proposed approach to handle around ten contingency tasks.

If an action on a particular contingency task is deferred, one must generate replanning trigger

conditions and monitor the associated probability values being updated for the ignored contin-

gency tasks in case they may become critical in the future. The replanning trigger condition

computed for the deferred tasks is basically a range of probability values [prl , p
r
u] ⊂ [0, 1]. The

lower bound is not of much importance and is set as the current probability of the contingency

task. It is assumed that if the probability associated with the contingency task decreases, then

the execution of the contingency task continues to get deferred. So one has to find the increase

in the probability that is critical for replanning. The upper bound however indicates that when
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the actual probability of the contingency task exceeds this value replanning of the mission must

be performed because low-risk contingency tasks may have become critical for successful mission

completion. The range is determined using a heuristic method of sensitivity analysis. All the

other information regarding the environment is kept fixed. The current probability value, say pc

of the contingency task, is increased in suitable step-sizes until a change in decision occurs at p∗.

The trigger condition is then given by the range [pc, p
∗].

The methods of incorporating contingency tasks are illustrated with two examples. Figures

6.12 and 6.13 show a simple and more complicated task network respectively followed by their

corresponding execution schedules. Observe that this approach helps robots spend less time

traveling and remaining idle (gray and black bars).

(a) (b)

Figure 6.6: Task networks based on neural networks used for simulation experiments in Table 6.8

6.6 Results and Illustrations

6.6.1 Multi-robot Task Allocation

The strategies listed in Section 6.4 can be first compared without introducing the feature of task

divisions. In Table 6.6, the optimized mission completion time is shown for ten different mission

scenarios whose task network topologies were manually generated, but all other features were

randomly generated some of which are described in Table 6.7. The task networks chosen for these

146



Table 6.6: Benchmarking strategy S2 against S6 and S7. Table entries are mission makespan in
minutes.

S0 S2 S6 S7
1 298.28 308.63 325.04 322.77
2 589.80 610.47 648.09 642.30
3 888.92 917.81 968.34 957.79
4 1190.44 1226.04 1295.36 1281.81
5 94.75 116.11 119.41 124.54
6 303.65 372.93 364.50 379.13
7 489.86 616.13 612.72 639.86
8 676.26 863.86 850.31 878.72
9 1779.97 1831.29 1924.50 1916.47
10 2163.44 2222.54 2343.84 2336.89

experiments were random repetitions of graphs derived from artificial neural networks (ANNs),

as shown in Figure 6.6. Task execution durations are randomly sampled for each task. Resource

constraints are tight meaning that the equality in Inequality 6.9 is satisfied or the corresponding

inequality is satisfied by a tiny margin.

As expected, the exhaustive method achieves the overall minimum. The second column shows

the time achieved by strategy S2. This is because of all the list scheduling algorithms described,

strategy S2 performs significantly better. All five strategies were simulated for the ten mission

scenarios. It was found that strategy S2 performed the best and strategy S4 was the second best.

The mean percentage by which the mission completion time computed by strategy S2 was less

than that of strategy S4 over the ten experiments was 3.28% with a standard deviation of 0.78%.

Strategy S2 performs better because it takes into account the task execution durations in a local

way, i.e., after the feasible tasks have been identified for parallel execution. On the other hand,

strategy S4 prioritizes the tasks globally before task allocation begins. However, once tasks are

allowed to be interrupted and reassigned to robots, strategy S4 starts working better. A detailed

explanation for the case of task division follows in the next section. The last two columns represent

the results for strategies S6 and S7.

Strategy S2 outperforms strategies S6 and S7 in seven cases out of ten. This is because in

these cases, resource constraints are tighter, and there are fewer robots. Having tight resource
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constraints means equality in Equation 6.9 or the inequality holding by a tiny margin which di-

minishes the advantage provided by using same robots for finishing multiple tasks (as in strategies

S6 and S7). When this is not the case as in the other four cases, the list scheduling heuristics still

outperform strategy S7 but not S6.

However, the runtime data shows that the list scheduling strategies are much faster because

the mean ratio of runtime for strategy S6 to S2 over the ten experiments is 62.47 and the standard

deviation is 62.5 and S6 is faster than S7. Given the motivation to develop fast contingency

handling techniques, one must devote as less time as possible during nominal mission planning.

The last two strategies were only included for benchmarking purposes.

All seven strategies are compared explicitly. In Figure 6.7a, the optimized mission completion

time reported for five different experiments is plotted. The exhaustive method takes the least time.

The second element that is plotted is the minimum achieved by the list scheduling strategies. The

last two elements represent the results for strategies S6 and S7. The list scheduling strategies

outperform strategies S6 and S7.

In Figure 6.7b, ten different scenarios were simulated and their normalized mission completion

time as well as running time are reported for all the seven strategies. A Pareto frontier is found

to be taking shape because reducing running time produces more suboptimal results. Note that

strategies S1 − S5 take less time to complete than strategies S6 and S7. In fact, some runs show

that the last two strategies take even more time than the exhaustive strategy S0.

A simple coalition selection heuristic was chosen for strategies S1−S5. The major weightlifting

was done by the task prioritization heuristics. On the other hand, strategies S6 and S7 used more

sophisticated coalition selection heuristics to handle coalition interferences and discarded the task

prioritization phase. The overall effect is that strategies S1 − S5 perform faster and produce

better results than the last two strategies. This is because tight resource constraints downgrade

the possibility of using overlapping coalitions for finishing concurrently feasible tasks. The last

two strategies were included only for benchmarking purposes and so can be safely removed from
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Table 6.7: Description of scenarios used for experiments in Table 6.8

|T| |R| |E(P)|
1 175 8 246
2 350 8 496
3 525 8 746
4 700 8 996
5 120 8 155
6 360 8 475
7 600 8 795
8 840 8 1115
9 1080 10 1435
10 1320 10 1755

further consideration based on the above observations. The exhaustive strategy is also excluded

from further consideration because it does not scale efficiently and restricts the problem sizes.

(a) (b)

Figure 6.7: Performance of list scheduling heuristics compared to MinStepSum and MinInterfere
from [1]
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Table 6.8: Results for ten simulation runs with task division

T c (in seconds) Tm (in seconds)
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 2.38 2.27 2.26 2.38 2.30 10510 9890 10265 9370 9950
2 13.52 13.51 13.51 13.52 13.53 21235 20795 21192 19376 20819
3 41.41 41.21 41.28 41.17 41.23 33138 31145 31181 28365 30823
4 93.08 93.60 93.08 93.06 93.44 43905 40952 41184 38949 40812
5 1.25 1.05 1.11 1.08 1.07 7276 6702 6537 5961 6582
6 14.80 14.91 14.97 14.77 14.86 22214 19734 19561 18139 19463
7 59.57 59.75 59.52 60.12 60.52 41269 36895 34296 33212 34556
8 155.76 164.67 166.98 173.03 183.42 55175 51759 47996 48023 47992
9 371.18 368.08 367.98 369.31 340.42 65144 60541 56752 54735 56361
10 612.50 622.37 627.38 623.98 592.20 80335 75028 69324 69413 68750

Next, the feature of task division is introduced and strategies S1 − S5 are compared. Ten

experiments were run whose specifications are given in Table 6.7. Again the task networks chosen

for these experiments are based on the artificial neural networks architecture as shown in Figure

6.6. All five strategies were applied on the ten scenarios. Here, the running times are denoted by

T c and optimized mission completion times are denoted by Tm. The results are shown in Table

6.8.

Since the complexity of the first seven experiments is significantly lower compared to the last

three (Table 6.7), the running times for the strategies in these cases do not differ significantly.

The last three experiments show significantly different running times.

From the data collected in Table 6.8, strategies which could be further discarded are decided.

A strategy Si dominates another strategy Sj if:

i. both Tm(Si) ≤ Tm(Sj) and T c(Si) ≤ T c(Sj)

ii. either Tm(Si) < Tm(Sj) or T c(Si) < T c(Sj)

Out of the ten experiments, strategy S4 is non-dominated eight times which is double that of the

runner-up. However, no strategy is dominated in every experiment so none can be discarded based

on Pareto efficiency. Strategy S4 outperforms the other four strategies except in experiments 8

and 10 where it was dominated by strategies S3 and S5 respectively. If a strategy is dominated in
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(a) (b)

(c) (d)

Figure 6.8: Application of strategy S4 on task networks (a,c), and corresponding robot schedules
(b,d)

every experiment, then it is discarded. However, no such strategy exists based on the collected

data.

The rationale for the above observations is as follows: The missions considered here are based

on spatially separated tasks that may be generally encountered by mobile robots. It is reasonable

to assume that the time spent by the robots during traveling is significantly less than the time

spent by them during task execution, and therefore, high task duration was assigned to all the

mission tasks. Strategy S5 includes traveling durations in its guiding heuristic. Strategies S1 and

S2 first identify the stage-wise feasible tasks and then order them using task execution durations.
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(a) (b)

(c) (d)

Figure 6.9: Application of strategy S4 on task networks (a,c), and corresponding robot schedules
(b,d)

But strategy S4 orders tasks based on their execution durations first and the identification of

feasible tasks and assignment of their optimal coalitions proceed later. In terms of running time,

it is approximately equal to others. Based on these arguments, strategy S4 is chosen as the optimal

choice for contingency handling.

The solutions generated by strategy S4 are illustrated for four different mission scenarios in

Figures 6.8 and 6.9. Task networks differing from ANNs are efficiently handled. Color coding is

used for better visualization of the solutions produced. Having robots idle for large amounts of

time is not beneficial for the mission, so such a duration is colored black. One can also consider
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traveling as a task of low significance and color traveling duration gray. The significance of this

coloring scheme is that when one looks at the solutions, the collective quantities of gray and black

blocks are expected to be smaller than those representing the execution of the mission tasks. The

task networks define a particular color for each mission task which is used in the Gantt chart for

the mission execution.

Computational analysis is performed for strategy S4. In both Figures 6.11a and 6.11b, the

running time is recorded by varying the number of mission tasks and robots respectively. In both

(a) (b)

(c) (d)

Figure 6.10: Effect on performance of strategies by varying task duration compared to traveling
duration
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(a)

(b)

Figure 6.11: Computational performance of strategy S4

Figures, the running time data is plotted for three different cases. In Figure 6.11b, on the y−axis,

the running time normalized by the square of the number of mission tasks is shown (because

O(m2) is a good approximation, and doing this fits all three data-sets in one plot).
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Table 6.9: Effect of uncertainty on mission makespan

σa σe Tm1 Tm2 |Tm1 − Tm2 | ↑ (as %)
1 3 0.1 7427 7693 267 3.59
2 5 0.1 7363 7793 431 5.85
3 10 0.1 7613 8440 827 10.87
4 12 0.1 7564 8452 887 11.73
5 15 0.1 7585 8721 1136 14.97
6 0.1 10 7438 8309 870 11.70
7 0.1 20 7544 8910 1366 18.10
8 0.1 30 7578 9460 1882 24.84
9 0.1 40 7644 9935 2291 29.97
10 0.1 50 7702 10038 2336 30.32

For the experiments of Table 6.8, it is assumed that task execution duration is significantly

higher than travel times because real-life tasks have similar characterizations and observed that

strategy S4 is a better optimizer in most cases. But then one must also study the effect of varying

task execution duration with respect to traveling time. The randomly generated ten task networks

are used as before. Specifically, the ratio of average task duration 〈te〉 to average travel time 〈ta〉

is varied. For strategy s, the mean 〈te〉 is computed over the number of tasks. So, the mean 〈ta〉

is computed over the number of tasks. For a given problem scenario and strategy s, the ratio

rs = 〈te〉/〈ta〉 is computed. One can then compute the average ratio for the entire scenario as

〈rs〉 = (
∑
rs)/5 because five strategies S1 − S5 are considered.

These experiments are repeated on 100 problem scenarios and the underlying task network

is chosen from among the ten generated task networks. The task duration is randomly varied

within specific bounds such that the computed average ratio for each problem scenario is roughly

the same. Then the mean as well as the standard deviation of the average ratios computed

for the 100 experiments is reported (Figure 6.10). The histogram representing the frequency

with which the strategies outperform others is also plotted. This is repeated for four different

scenarios as shown in Figure 6.10a-6.10d by reducing the task-travel ratio successively. For high

task durations, strategy S4 wins as already discussed above. For all ten task networks considered

here for benchmarking purposes, similar patterns were observed.
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However, when task duration is comparable to travel time or even much shorter, then strategy

S4 is outperformed by strategy S3. When travel duration becomes more significant, it is expected

that strategy S4 which relies partly on task duration as its task prioritizing heuristic will perform

worse than strategy S3 which disregards task duration by assuming it to be one for all tasks.

Intuitively, strategy S5 is expected to perform better in cases where there is significant traveling

involved because it tries to include traveling duration in its heuristic. But this strategy naively

averages travel times over all possible routes the robots may take. The experiments show this is

not good enough to beat strategy S3.

For analyzing uncertainty results, a scenario comprising of 120 tasks, 9 robots is simulated. The

task network is similar to Figure 6.6b and has 155 edges. The average task execution duration for

the 120 tasks is around 450 seconds. The average time spent by robots to travel to task locations

is computed by dividing the total time spent by all robots during traveling by the number of

mission tasks and is around 70 seconds.

In Table 6.9, the standard deviation associated with noise in traveling times and execution

durations are allowed to reach up to 10− 20% of their average values. Tm1 denotes the expected

mission completion time computed by only considering the mean time expected for traveling and

mission tasks. If the durations are instead modeled as Gaussian distributed variables and both

the mean and variance information are used, then the computed expected mission completion

time is denoted by Tm2 . The last column records the disparity caused by ignoring the variance

information associated with task durations. Ignoring the effects of uncertainty leads to highly

inaccurate decisions.

6.6.2 Contingency Management

The methods of incorporating contingency tasks are illustrated through two examples in Figures

6.12 and 6.13. The problem scenarios for the two examples are shown in Figures 6.12a and

6.13a respectively. Results of nominal mission planning without taking contingency tasks into
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(a) (b)

(c) (d)

Figure 6.12: (a) Mission scenario, (b) Robot schedules obtained without considering contingency
tasks, (c) Incorporating reported contingency tasks in robot schedules, (d) Replanning schedules
for robots when probability of contingency tasks exceed desired limits

consideration are shown in Figures 6.12b and 6.13b respectively. When contingency tasks are

considered, the resulting robot schedules are shown in Figures 6.12c and 6.13c respectively. When

the probability values of the contingency tasks change so much that they trigger the replanning

conditions, the newer schedules for robots are computed based on the updated information in

Figures 6.12d and 6.13d respectively.

In Figure 6.14, the time spent by robots during task execution is compared with the time spent

in other activities including traveling, remaining idle or performing contingency tasks. Figures
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(a) (b)

(c) (d)

Figure 6.13: (a) Mission scenario, (b) Robot schedules obtained without considering contingency
tasks, (c) Incorporating reported contingency tasks in robot schedules, (d) Replanning schedules
for robots when probability of contingency tasks exceed desired limits

6.14a and 6.14b show the doubly stacked bar-plots for the missions of Figures 6.12a and 6.13a

respectively. The durations are normalized by dividing with the nominal mission completion time

for each case. The set of left stacked columns in Figures 6.14a and 6.14b refer to the nominal

scenarios of Figures 6.12b and 6.13b respectively. The set of right stacked columns in Figures

6.14a and 6.14b refer to the contingency scenarios of Figures 6.12d and 6.13d respectively. The

average idle times of the robots are also computed for the scenarios shown in Table 6.8 and found

to be well under 1% of the mission time.
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(a) (b)

Figure 6.14: Comparison of time spent during task execution and otherwise for problems of (a)
Fig. 6.12a, (b) Fig. 6.13a

This optimization scheme should ensure that the robots spend more time during task execution

as opposed to other activities. All activities colored with a shade of gray are sought to be

minimized by minimizing makespan. In Figure 6.14, note that most robots spend higher times

executing tasks than otherwise. Note also that the contingency tasks adversely impact the robots

because their engagement in mission-related activities gets prolonged.

The sensitivity analysis results are shown for the contingency tasks based on six experiments.

In Figure 6.17, the upper bounds are shown that are supposed to trigger replanning for those

contingency tasks whose immediate execution was deferred. These experiments suggest that if

the probability of contingency tasks adversely impacting the mission is higher than 50%, then it

is highly likely that its execution is not deferred. However, the upper thresholds also depend on

other characteristics of the contingency tasks impacting the mission like their locations, durations,

and uncertainties. Therefore, contingency tasks can also have much smaller upper threshold, as

shown in the first three experiments.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i)
(j)

Figure 6.15: Comparison of conservative (C), reactive (R) and proactive (P ) approaches
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Figure 6.15 compares the conservative, reactive, and proactive approaches for ten different

problems. Generally, the proactive approach is expected to perform better than both the con-

servative and reactive approaches. In Figures 6.15a−6.15c, proactive approach outperforms con-

servative approaches by around 30% and reactive approaches by around 15%. However, if the

probability of contingency tasks impacting the mission is low, then the reactive approach is much

better than the conservative approach, and the proactive approach will at least be as good as

the reactive approach on average (Figure 6.15d). On the other hand, if the probability is high,

(a) Exhaustive method

(b) Pruning-based method

Figure 6.16: Variation of running time with number of concurrently reported contingency tasks
for strategy S4
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then the conservative approach will beat the reactive approach, and the proactive approach will

at least be as good as the conservative approach on average (Figures 6.15e−6.15i). There may

also be cases where the three approaches perform approximately the same (Figure 6.15j). The

three approaches were also compared on the ten task networks from Table 6.7 and it was found

that the proactive approach is at least as good as the other two approaches on average.

In Figure 6.16, the pruning-based method outperforms the exhaustive method by reducing

the running times. The number of contingency tasks pruned for each of the experiments in serial

order for the case of five contingency tasks is: 2, 1, 2.

Figure 6.17: Replanning trigger conditions obtained from sensitivity analysis

6.7 Summary

The current chapter studies an approach of forming coalitions among robots and scheduling them

for the execution of spatially distributed tasks having inter-task precedence constraints while

incorporating contingency tasks. Uncertainty associated with traveling and task execution is

taken into account while making decisions for the contingency tasks. In the present mission

model, partial teams can commence task execution depending on the resource constraints of

different mission tasks. Also, the robots assigned to a task can be interrupted mid-way and

rescheduled to another task. It can be concluded that the strategy that orders the tasks based on
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their execution durations using the concept of static levels provides the best trade-off. Running

time is around 5 minutes for approximately 1000 tasks and 10 robots in MATLAB. Thus, it can

efficiently handle a large number of mission tasks during nominal mission planning. For a scenario

involving six robots, ten mission tasks, and five contingency tasks, the running time was around

20 seconds. In real missions involving multiple USVs, it is not feasible to consider higher numbers

at least for centralized approaches. This should also hold for complex missions involving other

kinds of mobile robots.
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Chapter 7

Decomposition of Collaborative Surveillance Tasks with

Uncertainty in Environmental Conditions and Robot

Availability

In this chapter 1, an optimization approach is presented for partitioning a single, complex task

among multiple robots.

7.1 Introduction

Most categories of collaborative tasks involving one or more team(s) of robots require spatial

partitioning of the region of interest. For example, for tasks like search and rescue, patrolling,

and landmine detection, the robots need to sweep and clear the region of interest as early as

possible. In such scenarios, it will be quite difficult for a single robot to accomplish the task in

an acceptable amount of time. It will be advantageous to use a team of collaborative robots that

can efficiently decompose the task as early as possible.

Decomposition of tasks among the teams of robots is a very challenging problem because a large

variety of factors need to be considered. Some of these factors may be imperfect information of

the environment, changing environmental conditions, varying performance of the robot as a result

1The work in this chapter is derived from the work published in [227,228]

164



Figure 7.1: This is an illustration of a port scenario where a region has been demarcated for
exploration by multiple USVs.

of its interaction with the environment or risk of collision with external entities (e.g., civilian

traffic). The algorithm used to decompose the task has to ensure that the workload has been

effectively distributed among all the robots according to their capabilities. Also, the algorithm

should be intelligent enough to re-plan dynamically when it receives more information about the

robots’ operating condition as well as environmental conditions.

Figure 7.1 shows an illustrative problem scenario. Suppose one is interested in exploring some

region inside the port efficiently using multiple USVs. The region of interest (green polygon)

may have obstacles (red polygons). For an efficient exploration of the region to take place, one

can partition the environment among the USVs to ensure that when the USVs start covering

their assigned sub-regions, they complete exploring the region of interest efficiently. Once such

a partitioning has been completed, planning for the motion of the USVs can be performed using

methods described in [229–232].

The proposed method helps to decompose the exploration task for a given region among

multiple USVs. It is different from the geometrical area partitioning because one has to take into
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account the different constraints to USV motion in the region of interest. To achieve this, the time

taken by the bottleneck USV is minimized, which in turn helps in achieving workload balancing

among all the USVs. Such cases are also considered where information regarding environmental

conditions is unknown.

7.2 Problem Formulation

7.2.1 Definitions

Let A be the planar region that is to be surveyed by the team of USVs. Region A is the closure

of a subset of the Euclidean space R2 in the usual topological sense.

A =
[
(x, y) | (x, y) ∈ A ⊂ R2

]
(7.1)

It is assumed that the region A is a simply-connected region of the Euclidean space R2.

Simply-connected means there exists a path completely contained in A between any two arbitrary

locations that lie inside the region. In other words, the planar region A does not consist of any

disjoint regions.

Let, OA be the set of all non-traversable or obstacle regions that lie inside the planar region

A. These are the land areas that cannot be traversed by the USVs or port areas that must be

avoided. Each obstacle Oi ∈ O is a simply-connected region like the region of interest A. Now,

the traversable area within the area of interest A can be computed as Ap = A \ OA. Here, Ap

is the traversable area that needs to be surveyed by the team of USVs. The simply-connected

property of region A remains intact even after removal of the simply-connected obstacles O from

the region. Thus, it can be stated that the region Ap is also a simply-connected traversable area.

The boundary (denoted by ∂Ap) of the region Ap is assumed to be non-traversable wherever it

intersects with obstacles O.
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It may happen that for a given dynamic model of a USV, a path respecting nonholonomic

constraints may not exist between two points in the region Ap even if a geometrical path exists.

This problem only occurs when each USV starts coverage of its claimed sub-regions. In such cases,

the USVs should ignore covering areas unreachable physically and then return the non-traversed

regions to the mission planner so that the area can be reassigned to another team of USVs for

exploration if required. If the obstacle-deducted region is not path-connected, a mission planner

should have assigned the unconnected regions to different teams in the first place. However, since

the current chapter is mainly focused on exploratory task decomposition among multiple USVs,

the nonholonomic coverage problem is not addressed here.

Let the team of unmanned surface vehicles (USVs) be denoted by Tn, where n is the total

number of available USVs that may be used to survey the region Ap. Each USV in the team is

denoted by Ui ∈ Tn, where i ≤ n. In this chapter, the primary focus is on studying a partitioning

problem where a team of USVs Tn is assigned to perform a collaborative exploration task of region

Ap. Here, it is assumed that the USVs are homogeneous and have the same physical capabilities.

It is also assumed that a functioning global communication network exists among the USVs in

the assigned team.

While performing the collaborative exploration task, each USV Ui ∈ Tn will explore a subset

of region Ap. Hence, the team of USVs has to divide the exploration tasks among themselves

in an optimal manner. Essentially, this particular case reduces to a variant of area partitioning

problem. Each USV claims sub-regions, Ap1, Ap2, ..., Ap|Tn|, in region Ap such that the disjoint

union of each sub-region sums up to the original area to be explored.

Ap = Ap1 ∪Ap2 ∪ · · · ∪Ap|Tn| (7.2)

Equation 7.2 implies that all locations within the region of interest Ap are explored by one

USV only. Moreover, the USVs are not allowed to revisit the location it has already visited. This
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is enforced in the way each USV is allowed to expand its claimed area, which will be discussed

later. It is assumed that when a region Ap was assigned to team Tp, then the region was small

enough so that by the expected amount of time in which the exploration has been completed, the

conditions in the region Ap have not changed significantly. Hence the area of region Ap suitable

for exploration by a team of USVs will vary from port to port as well as within the port.

During the exploration task, the motion of each USV will be affected by the surface currents,

sea depth, and wakes generated by other civilian vessel and USVs. These factors introduce un-

certainty in the positions of the USVs and also lead to noise in the controller. The positional

uncertainties and controller noises increase with the increase in the USV’s speed. Thus, the USVs

operating at high speeds have large uncertainty in their positions and reduced controllability of

the vessel, and vice versa. Therefore, the USVs operating at high speeds have a higher probability

of collision with other civilian vessels and the static obstacles O. To handle the collision-risk, a

velocity-map V (ai) is introduced that decides the maximum operating speed for the USV operat-

ing in the region ai ∈ Ap by keeping the collision-risk within acceptable bounds. The maximum

operating speeds of a USV governs the rate at which the USV can explore the sub-region. In the

regions with higher operating speeds (or lower risk), the USV will cover larger areas as compared

to the regions with lower operating speeds (or higher risk).

7.2.2 State Space Representation

The continuous region of interest Ap is discretized with a uniform grid of δl. During the division

of region Ap into sub-regions, it is assumed that each USV can traverse at least one grid cell in

a unit time interval. Thus, the size of δl is decided by the length of duration of discrete time

interval (δt) and the minimum operating speed of USV (vmin), i.e., δl = vmin · δt. The discretized

region of interest is denoted by Ap,d. Each cell in Ap,d is represented by state s = (x, y) ∈ Z2,

where 1 ≤ x ≤ xmax and 1 ≤ y ≤ ymax. Let S be the set of all the states from region Ap,d.
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Neighbors of each state s are determined by performing a single step of Manhattan moves

from s in each direction, i.e., North, South, East, and West. Let Neigh(s) be a function that

returns all the feasible neighbors of state s. Finally, the discrete region Ap,d is approximated by a

polygon BA, such that all the cells of region Ap,d intersect with or lie in the interior region of BA.

The discrete velocity-map Vd(s) provides the maximum velocity the USV can operate at state s.

7.2.3 Problem Statement

The goal is to seek an optimal division of area such that the area is covered in minimum time and

work-load is optimally balanced among the USVs. This is achieved by minimizing the time taken

by the bottleneck USV based on Minimax style of decision-making [233].

Formally, given (a) Region of interest Ap,d, (b) Team of USVs, Tn, and (c) Velocity-map, Vd(·),

then one must compute optimal partitions of the region Pi ∈ P for each USV Ui ∈ Tn, where

i ∈ [1, n]. Each partitioned region Pi ∈ P is computed such that, the time taken by the team of

USVs Tn is minimized to explore then entire region Ap,d.

7.3 Overview of Approach

Below, the technique is described in detail. It is used to partition a region among multiple USVs

based on a spatially distributed speed profile stored in a velocity-map. In this method, different

initial placements of the USVs along the boundary of the polygon give rise to different partitions

for the same region. So one must find that initial placement of USVs for which the time taken

by the last USV to finish claiming its area is minimum. No other initial placement should result

in lower time for the last USV to finish. It is with regards to this criterion that a particular

partitioning result will be referred to as optimal or not.

The rest of the chapter is organized as follows: Section 7.3.1 describes how each USV grows

its area based on speed constraints. Section 7.3.2 gives the objective function to be minimized.
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Section 7.4.1 describes how the area partitioning simulations are implemented for known velocity-

maps. Then, some helpful illustrations (Sec. 7.4.1) and computational performance plots (Sec.

7.4.2) are provided. In Section 7.5, the strategies are employed to handle unknown velocity-maps.

7.3.1 Partitioning the Region of Interest

The discretized region of interest Ap,d consists of discrete states s ∈ S. Let Ntotal be the total

number of discrete states in S. It is desirable to compute the partitioned region for each USV

Ui ∈ Tn while minimizing the time taken by bottleneck USV during its exploration of the region

Ap,d. A partition P of the region is a collection of n mutually exclusive and exhaustive subsets

of discrete states S, here n is total number of USVs in team Tn.

Algorithm 7 Determination of discretized region of interest

Input: Polygon representing region of interest, obstacles, and grid structure
Output: Set of grid-cells Ap,d
1: Compute all cell-centers that collide with polygon and store as Boolean matrix
2: Use matrix to calculate which cell has at least one vertex intersecting with the polygon and

mark such cells as part of discrete polygon Ap,d
3: for all cells not in discrete polygon do
4: for all vertices in polygon do
5: Check intersection of polygon vertex with cell
6: if intersection found then
7: Add cell to discrete polygon Ap,d
8: end if
9: end for

10: end for
11: Repeat Lines 3− 10 for all obstacle polygons
12: for all cells in discrete polygon Ap,d do
13: if cell not intersecting with an obstacle as found in Step 11 then
14: Cell remains in Ap,d
15: else
16: Remove cell from Ap,d
17: end if
18: end for

Computing the discretized region of interest Ap,d involves using polygonal collision checking

routines. Ap,d denotes a contiguous set of cells in the grid imposed on top of the continuous

region. The recipe for calculating this set of cells is shown in Algorithm 7 which is described as

follows. In computational geometry, point-in-polygon (PIP) algorithms are computationally very
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efficient and can quickly decide whether a given point in the 2-D plane lies inside the boundary

of a polygon or not.

One call of such a software routine may be used to determine all grid cells whose centers lie

inside the polygon and store the information from this collision-checking in the form of a Boolean

matrix. Using standard geometric tricks, that matrix may be used to determine all cells whose

corners may be inside the polygon. All these cells are marked as included in the set Ap,d. Of the

excluded cells, one must again determine computationally as to whether any vertex of the polygon

representing region A lies inside these cells. All those cells with which at least one polygon vertex

intersects is also included in the set Ap,d. But now one must remove all those cells which are

intersecting with the obstacle cells. For this purpose, the same procedure is repeated that was

carried out using the polygon representing region A, but this time using the polygons representing

each obstacle sequentially. This generates a set of cells that intersect with the obstacle polygons.

All these obstacle cells must be excluded from the previous set of cells identified only using the

polygonal region A. Then only the set of cells Ap,d must be explored using the USVs.

Algorithm 8 Boundary Characterization

Input: nA × 2 matrix of polygon vertices
Output: Array of edge lengths li, polygon perimeter peri(A)
1: peri(A)← 0
2: for all edges of polygon do
3: Compute and store edge length li
4: peri(A)← peri(A) + li
5: end for

The boundary of the polygon representing the region Ap is parameterized by variable ρ ∈ [0, 1).

Here, ρ = 0 represents the starting point of the closed polygon. Note that ρ = 1 is excluded

because it corresponds to the same point as ρ = 0, i.e., the starting point on the boundary.

The boundary itself is also discretized with a suitable step-size δρ. This essentially reduces the

boundary to an array of vertices from where area exploration is started by a team of USVs. For

example, if δρ = 0.1 then a USV may start from the boundary point denoted by ρ = 0.9. Note

a finer assignment such as ρ = 0.92 is not possible because of the chosen scheme of boundary
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discretization. So choosing a correct step-size to discretize the boundary is an important design

decision taken to bring the approximate optimal boundary assignments to the USV as close as

possible to the true optima without increasing the computational costs by a huge margin. For

computing the partition of a USV that has been assigned the boundary point ρ = 0.9, one would

require further characterization of the boundary. This is shown in Algorithm 8. Considering the

polygonal region A consisting of |A| = nA vertices, the perimeter of the polygonal boundary is

computed by traversing over nA edges while also storing the individual length of each edge. This

is important as then one can use this information to map a particular ρ value to its abscissa and

ordinate. One needs to track the distance measuring ρ × peri(A) units from the starting vertex

ρ = 0. The edge lengths are used to determine which edge this vertex will lie in, and then the

unitary method is used to determine the exact intermediate point on this edge.

Once each USV has been assigned a boundary point, one readily obtains the starting states for

each USV, si,init. However, the mapping from ρ−space to states in grid-region Ap,d is generally

not injective though this also depends on the step size chosen to discretize the grid. Also, those

boundary points which are inside obstacles will never be assigned as starting points for any of the

USVs.

At each time-step, the USVs can only move at speeds prescribed by the velocity-map, Vd(s).

The results shown below are for velocity-maps based on Cartesian, or polar system as well as

contour lines. The speed is expressed in the units of number of cells traversed per unit time.

Suppose for the USV starting at grid cell s, the maximum allowed velocity is denoted as Vd(s).

So, the USV Ui will attempt to claim Vd(s) states next time step to augment its currently claimed

area. Also, denote the area claimed by USV Ui at iteration t by a(t, i).

Initially, all the USVs are assigned states along the boundary polygon BA of the region Ap,d.

All states are labeled open. At this point, each USV Ui ∈ Tn has claimed the state si,init at which

they are initialized. Each USV has claimed area a(1, i) = 1. In order to partition the region Ap,d

into n convex shaped simply-connected regions, it will be advantageous for each USV to select
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(a) (b)

Figure 7.2: (a) This image shows the example scenario discussed in Figure 7.3, (b) Contour-lines
based velocity-map is used to model low speeds for USVs near land.

states that are connected and nearest to current state of the USV. Let, CUi be the cache of all

the possible states that USV Ui can claim in next time-step by maintaining the convexity of the

partitioned region AUi . Here, AUi be the partitioned region for USV Ui and Si be the set of all

states belonging to region AUi . In the initial step, Si will contain si,init, and CUi will contain all

the neighboring states provided by Neigh(si,init). Let c1,i denote the maximum number of states

that USV Ui can claim at time step t = 2. Clearly, c1,i = Vd(si,init). The cache must have at

least c1,i states. Initially, cache of each USV, CU (i), is empty so at time t = 1, neighbors of state

si,init are added to the cache CU (i).

Once the state si,init has been claimed by one of the USVs and its neighbors are generated, the

state is labeled as closed. Since the starting state is a boundary point, at least one neighboring

state will lie outside the grid-region Ap,d. But because non-convex polygons are allowed, it is

possible to have | Neigh(si,init) | ≤ 3. If c1,i ≤ Neigh(si,init), then the partitioning procedure

continues with claiming states next time step from the current cache. States unclaimed at time

t = 2 from the cache will remain in cache for future times. But if c1,i > Neigh(si,init), then those

states in the cache, CU (i) that are open have their neighbors generated and stored in the cache.

This process continues till the cache population, |CU (i)|, equals or exceeds c1,i.
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The actual number of states c′2,i that the USV claims for time step t = 2 depends on conflicts

with other USVs and also the availability of free states in its neighborhood to explore. Thus,

0 ≤ c′2,i ≤ c1,i (7.3)

The frontier cells may be described as follows. At any time t, for a USV Ui it refers to the

c′t,i states it actually claims. Thus, the set of states that the USV Ui has claimed at time step

t = 2 can be denoted by si,2 = [s1i,2, s
2
i,2, · · · , s

c′2,i
i,2 ]. These form the frontier cells for the USV

Ui at time step t = 2. These frontier cells augment the current claimed area for the USV to

a(2, i) = a(1, i) + c′2,i.

The first cell s1i,2 is chosen from the contending open states in the cache such that it augments

the current claimed area of USV Ui with minimum loss of convexity. The chosen state should

have minimum center-to-center distance from the center of the starting state of USV Ui. Such

an expansion in an obstacle-free and unconstrained square lattice invariably leads to a circle-like

expansion. So, this heuristic is also expected to give good results for non-convex regions.

The distance heuristic referred to above is not based on the classical Euclidean metric because

the boundary contour itself maybe non-convex or contain non-convex polygonal obstacles inside

it. Euclidean distance heuristic works well only in the absence of these concavities and holes in

the map world. Instead, the Dijkstra’s algorithm is applied [234] to every lattice point, thereby

computing the lengths of shortest collision-free paths through the region, Ap between each pair of

lattice points as shown in Algorithm 9. The input for this algorithm is the undirected connectivity

graph of the grid world along with its weighted edges. Weights are the Euclidean distances between

neighboring states, hence either 1 or
√

2. It is prudent here to allow diagonal connectivity as well

to compute paths more tuned to the local concavities. The distances generated using such a

look-up table is used as the heuristic in guiding the growth of USV’s claimed area, a(t, i). The
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sub-regions claimed by USVs will not be convex in general because of the non-convex free region

Ap.

Algorithm 9 Compute all-pairs shortest path-lengths

Input: Discretized region of interest Ap,d
Output: Look-up table
1: Initialize an empty undirected graph G

2: for all cells in Ap,d do
3: Add cell as a node in the graph G

4: Compute neighbors and add as nodes if they lie in Ap,d
5: Add weighted edges to neighbors from cells
6: end for
7: Compute all-pairs shortest distances by applying Dijkstra’s algorithm on G

8: Store the distances in the form of a look-up table

Figure 7.3 demonstrates how a USV grows its area. The values shown represent the maximum

speed allowed at each cell. Figure 7.3a shows the snapshot of iteration 29 where the frontier cells

appear as green. There are 2 frontier cells having velocity values of 1 and 2. Thus their average

is 1.5, which is rounded to 2. So, in the next iteration, the USV tries to claim 2 more states

among the free states such that maximum convexity is maintained. Thus, in Figure 7.3b, 2 more

states have been added to the existing claimed area of the USV. This procedure is summed up in

equations below.

In the second iteration, there are possibly multiple frontier cells. Each cell corresponds to a

value of maximum speed that can be attained around that cell. So one can take an average of

these multiple maximum speeds to determine how many states should the USV Ui claim next

time step. Hence, the following equation is obtained:

c2,i =

c′2,i∑
k=1

Vd(s
k
i,2)

c′2,i
(7.4)

Thereafter, new neighbors are generated as before from the current frontier cells in a breadth-first

search pattern. If more states are needed, then other open states in the cache can be expanded.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 29 (d) Iteration 30

Figure 7.3: In the above images, the brown cells are outside the region of interest, the light blue
cells represent the free, unexplored region and the dark blue cells represent regions already claimed
by an USV for exploration. (c) The green cells represent the frontier cells for iteration 29. The
scheme used for the above exploration is explained in detail in Section 7.3.1.
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This process continues till the grid-region Ap,d has been completely explored. Thus, the number

of cells claimed evolve for each USV as follows:

c1,i = Vd(si,init) (7.5)

ct,i =

c′t,i∑
k=1

Vd(s
k
i,t)

c′t,i
c′t,i = f(ct−1,i) (7.6)

As pointed out earlier, the actual number of claimed cells c′t,i may not be equal to the maximum

number of cells that can be claimed, ct,i. The exact number c′t,i is however computed by doing the

simulations which is represented by function f(·) above. Also, area claimed by USV Ui evolves

as follows:

a(1, i) = 1 a(t, i) = a(t− 1, i) + c′t,i (7.7)

Next, a summary of this elaborate procedure is provided from the implementation point-of-

view in Algorithm 10 to compute the partitions of a region given the initial boundary assignments

to the USVs. Area partitioning proceeds in iterations, and for each iteration, a random ordering

of USVs is generated, and USVs start claiming their cells in that order. For this purpose, each

USV maintains its own open list. This list is populated firstly by the starting cell of each USV. In

the first iteration, each USV claims the only cell in the open list, which is its starting cell. This

is a trivial step. Each USV then adds the feasible neighbors of the starting cell into the open

list. Each USV also computes the number of cells that it should claim in the second iteration in

accordance with the velocity-map.
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Algorithm 10 Compute Partitions

Input: Discretized polygon, USV starting points
Output: Partitioned polygons
1: while region not explored do
2: OU = random ordering of USVs
3: iter ← 1
4: for USV ui in OU do
5: if iter == 1 then
6: remove current cell from ith open list
7: assign current cell to USV i
8: mark current cell as claimed
9: generate neighbors of current cell and populate ith open list

10: compute number of cells ni to claim next time step using velocity map
11: else
12: populate open list with enough cells to claim
13: if success in populating then
14: sort unexplored cells in open list by shortest path-lengths
15: for first ni cells do
16: remove current cell from ith open list
17: assign current cell to USV i
18: mark current cell as explored
19: end for
20: compute number of cells ni to claim next time step using velocity map
21: else
22: for all unexplored cells in the ith open list do
23: remove current cell from ith open list
24: assign current cell to USV i
25: mark current cell as claimed
26: end for
27: compute number of cells ni to claim next time step using velocity map
28: end if
29: end if
30: end for
31: check if all cells in Ap,d have been claimed
32: iter ← iter + 1
33: end while
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In subsequent iterations, each USV first populates its open list with enough cells to claim in

that iteration. It does this by adding the neighbors of the cells in the open list. If there are still

not enough cells in the open list, then one must include the neighbors of the cells in the open list

at the start of this iteration. The number of times each USV may recursively keep exploring its

neighbors in this fashion to populate its open list is kept fixed. For the simulations conducted

for the present chapter, partitioning proceeded smoothly if this procedure of expanding neighbors

recursively stopped at the fourth level. Mostly the open list gets populated way before reaching

the fourth level of neighbor expansion. So neighbor search gets terminated mostly in first or

second levels. If velocity maps assign very high area growth rates, then one may have to allow

the possibility of higher levels of neighbor expansion.

If the open list is successfully populated with enough cells, then one must sort them in increas-

ing order according to their distance in the geodesic sense from the starting cell for each USV and

then select the cells in the open list for the corresponding USV according to this new ranking.

Then the number of cells that may be claimed by each USV in the next iteration is computed

based on the velocity-map. It may happen that the open list of some of the USVs does not get

populated as desired; then those USVs claim all the cells in their open lists.

7.3.2 Optimizing Partition

The states in the region Ap,d are divided among multiple USVs in a finite number of time steps,

tfinish. At each time step, the USVs search their neighboring unclaimed states and keep expanding

their claimed sub-region for exploration. The iterations continue until all free states have been

claimed. Depending on the shape and size of the region Ap,d, each USV Ui ∈ Tn will take a

different amount of time to claim its sub-region. The USV which claims the last unclaimed state

is considered to be the bottleneck agent. In the scenario where multiple USVs finish in the final

iteration, any one of them can be considered the bottleneck agent. The time taken by each USV
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to claim all the possible free states depends upon the initial location of the USV on the boundary

BA. It is assumed that each USV is allotted a different initial state.

Suppose USV Ui takes time tif to complete claiming states for exploration. Then the time

step at which the process of area partitioning terminates as well as the bottleneck USV Ui∗ is

determined as follows:

tfinish = max
i

(tif ) i∗ = arg max
i

(tif ) (7.8)

The initial starting states map to an n−dimensional vector, ρU = [ρ1, · · · ρn]. The vector elements

should be sufficiently spaced so that two or more USVs do not claim to the same initial state. If

the minimum time taken by the bottleneck USV is allowed to only be a function of vector ρU ,

then this problem can be formulated in terms of optimal initial placement ρ∗U as follows

ρ∗U = arg min
ρU

max
i

(tif ) t∗finish = min
ρU

max
i

(tif ) (7.9)

One can also modify the objective function to take care of initial locations of the USVs. The USV

Ui will be at some state outside region Ap,d before exploration of the region has actually begun.

The distance it will travel to reach state si,init should also be included in the cost incurred. Based

on the maximum speed allowed (from velocity-map) at each state that will be traversed by USV

Ui along the shortest path to reach state si,init, one can calculate an optimistic estimate of time

taken, ti0.

ρ∗U = arg min
ρU

max
i

(tif + ti0) (7.10)
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7.4 Area Partitioning Using Known Velocity-map

7.4.1 Approach

While implementing the partitioning algorithm, the USVs are not implemented to behave like

concurrently operating agents that claim states in the region of interest simultaneously. However,

if the USVs sequentially claim states, then there will be a bias in the partitions created among the

USVs in favour of the USV which is assigned at the top of the list of USVs. Instead, a random

order is generated for each discrete time-step using which the USVs claim the states from the

set of free available states. This is the only source of randomness in this task decomposition

technique.

During area partitioning, this protocol will lead to dead-locks for those time steps when mul-

tiple USVs lay claims on the same cell. To resolve such deadlocks, one again makes use of the

random ordering of the USVs assigned to each iteration of the simulation. In case of a deadlock,

the USV with higher priority at that time step wins the bid to its claim.

The scenarios used to evaluate the performance of the developed approach were assigned

increasing degree of concavity to represent regions in ports such as narrow channels or small,

enclosed regions in the harbor (see Figures 7.5, 7.6, 7.7 and 7.8). A scenario of size 500 × 500

meters is selected and discretized with a uniform grid-size of 10 meters.

Four types of velocity-maps are generated for testing this area partitioning scheme. The

simplest example of such a velocity-map would be a uniform, constant map such that all states

have the same value of maximum speed allowed. Then, maps where velocities for each state are

defined as a function of its Cartesian (Figure 7.5a) or polar (Figure 7.7a) coordinates are also

generated. The former was based on using linear gradients to signify speed zones. By applying

a linear gradient horizontally and superposing it with another linearly graded risk profile in a

vertical direction, one can obtain the velocity-map, as shown in Figure 7.5a. The horizontal
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profile prescribes maximum risk on the left, whereas the vertical profile prescribes maximum risk

to the top of the area.

Figure 7.7a uses a velocity-map defined in terms of polar coordinates such that the risk con-

straints are described in terms of radius and azimuth rather than the usual Cartesian coordinates.

The most useful is the contour map (Figure 7.9a), which assigns lower speeds near land and higher

speeds away from land. Topographic maps use contour lines to denote the elevation. It is not

only an excellent visualization tool but also a very convenient way of recording features of the

terrain. In the present chapter, the velocity constraints and underlying risk factors at different

locations in the port region Ap are caused by features of the seabed such as depth, and features

of the sea surface such as current. Traffic and unaccounted objects flowing on sea surface also

should be taken into account. Velocity-maps can also be represented as contour maps. One such

velocity-map along with its example is shown in Figure 7.9.

The time taken by the bottleneck USV is only optimized in the present chapter over the

boundary points assigned to each USV. This decision variable has already been defined by the

ρ−vector, ρU = [ρ1, ρ2, · · · ρn]. For a given scenario, the initial choice of n boundary points

determines the partitions along with the randomness introduced in prioritizing the USVs at each

time step. Other factors like world size and region of interest are held constant in the current

simulation. Thus, the mission completion time is minimized over the vector of starting states ρU .

The objective function, ap(ρU ) = maxi(tif (ρU ) + ti0) is non-linear. The elements of the decision

vector are bounded in the subset [0, 1). The objective itself is an ill-defined mapping as far as

gradient-based optimization methods are concerned.

ap : (ρU ∈ [0, 1]n)→ Z (7.11)

Since the mapping associates every bounded vector to a positive integer, it is expected not to

be differentiable. Classical gradient-based methods are expected to perform poorly. Therefore,
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the PSO method is employed [235] to minimize the time taken by bottleneck USVs to explore

the region. PSO is used because it efficiently handles higher dimensions and does not require the

objective function to be differentiable. in the present chapter, the cognitive trust parameter is

chosen to be 1.7 and the social trust parameter to be 2. A population size of 12 was chosen for

optimization over four USVs, and PSO was run for 75 iterations. The tolerance for the convergence

of the solution was chosen to be 0.001. The initial population is chosen as the uniformly spaced

placement of USVs along the polygonal contour in terms of the ρ parameter, viz: 0, 0.25, 0.5, 0.75.

The above-discussed scheme of decomposing exploration tasks among multiple USVs is coded

in MATLAB(R) software [236] on Ubuntu MATE 18.04.1 operating system. The workstation

used was Dell(R) Precision Tower 3620 including eight Intel(R) Xeon(R) E3-1245V5 CPUs having

3.5GHz speed and a total of 32GB RAM. Computation time for generating partitioned regions

for a team of four USVs exploring the region (see Figure 7.4c) and velocity-map (see Figure 7.5a)

is approximately 17 seconds.

The partitioning of the area by the USVs to minimize the time taken by the bottleneck USV

depends heavily on the velocity-map available. This is because velocity-map determines the

maximum velocity allowed at each cell, and hence the maximum number of states that can be

claimed by the USVs at each time step.

A constant velocity-map is compared with the linear velocity-map in Figure 7.4. For the

constant risk case such that maximum speed allowed is 4m/s for each cell, as in Figure 7.4a, the

optimal bottleneck time obtained through simulation is 113 seconds whereas for Figure 7.4b it

is 89 seconds. The addition of obstacle reduces the number of states to be explored and hence

results in less time taken for the latter case. Also, the constant velocity-map leads to four fairly

equally divided regions for the four USVs. The number of USVs is only representative here and

can be varied as needed.

In Figure 7.4c, the total number of iterations required for dividing the region among multiple

USVs is 131 whereas for Figure 7.4d it is 103. Again as expected, the linear case without obstacles
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(a) (b)

(c) (d)

Figure 7.4: (a-b) Uniform, constant velocity-map, (c-d) Linear velocity-map

requires larger time than the corresponding constant-map case. This is due to the risk profile in

Figure 7.5a, which prescribes maximum speeds of magnitudes as low as 2m/s. In contrast, the

constant velocity-map prescribes speeds of magnitude 4m/s, irrespective of the cell location. And,

though some states in the non-uniform case do achieve speeds of magnitude as high as 6, it is clear

from the simulation that the constant-map case completes faster. This is because only a few cells

with such high speeds fall inside the region of interest. This pattern is observed in corresponding

obstacle cases as well (Figure 7.4b and 7.4d). Note that in the obstacle cases, the region of interest

is not divided equally among all the four USVs. This is because the presence of obstacle results
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(a) (b)

(c) (d)

Figure 7.5: (a) Linearly graded velocity-map, (b-d) Application on manually created regions.

in high concavities in the free region that will be explored. Similar behavior will be seen in the

absence of obstacles if the region of interest Ap itself is highly concave. Also, since the top and

left states of the map have lower speeds while the right and bottom states have higher speeds, so

USVs originating in the lower right zones claim larger area for exploration than the USVs starting

on the left in Figure 7.4c.

Referring back to Figures 7.4a and 7.4c, if the polar map is applied to the same region in

Figure 7.7b, then the optimal partition in this case is very different. In Figure 7.5(c-d), the linear
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(a) (b)

(c) (d)

Figure 7.6: Application of the linearly graded velocity-map on regions based on real maps.

map is applied to a convex and non-convex region. Then, the map is applied to regions modeled

using real scenarios obtained from Google(R) Maps in Figure 7.6.

In Figure 7.7(c-d), the polar map is applied to two highly non-convex regions. The polar map

is then also applied to two regions obtained from Google(R) Maps in Figure 7.8 but a smaller

spatial discretization of 5 meters is chosen to model the narrow channels correctly. Otherwise,

they get treated as obstacles when spatial step size is chosen to be 10 meters.
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(a) (b)

(c) (d)

Figure 7.7: (a) Polar velocity-map, (b-d) Application on manually created regions.

7.4.2 Computational Results

In this section, the effectiveness of the algorithm is evaluated by varying the number of USVs

from 2 to 10. Minimization of time taken by the bottleneck USV requires each USV in the team

to finish claiming all the possible remaining unexplored states at the same time as the bottleneck

USV. Figure 7.10(a) shows a box-plot for different ranges of the final exploration time required by

the team of USVs over 200 simulations. The range is computed by taking a difference between the

maximum and minimum value of the data. Theoretically, the range values for the final exploration

times of the USVs should be zero, but non-convexity associated with a region leads to deviation
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(a) (b)

(c) (d)

Figure 7.8: Application of the polar velocity-map on regions based on real maps.

from ideal results as can be seen in the simulation data recorded. The values shown on the y-axis

(see Figure 7.10(a)) are discrete values of time-step. In Figure 7.10(a), the median of the data

is 2 while the minimum is zero, which is expected. The maximum range is capped at 6, and the

interquartile range is 2. These results point to the successful minimization of time taken by the

bottleneck USV.

The reasoning behind the zero range is related to the idea of optimal load balancing. If the

bottleneck USV takes much higher time to compute its explorable region compared to other USVs,

it is implied that other USVs could be prompted to claim more area to reduce the load on the
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Figure 7.9: (a) Contour-lines based velocity-map, (b) Corresponding area partition

bottleneck USV. This process can then ideally be continued until all USVs finish at approximately

the same time. However, this still does not guarantee that the area will be equally divided. In

particular, if a USV is in a high-risk zone, then it will cover less area than another USV operating

in a low-risk zone for the same amount of time. Additionally, if a region is highly non-convex,

then it may not be possible to partition the area among the USVs such that they finish almost at

the same time. In such cases, the optimal bottleneck time may significantly be higher than the

finish times of the other USVs. In spite of such issues, optimal load balancing is possible for most

cases by computing the appropriate initial placement of the USVs.

Figure 7.10(b) shows the box-plot of the computational times obtained for partitioning the

area by varying the number of USVs. The y-axis plots the percentage reduction in computation

time with respect to the mean computation time required by the algorithm to compute the optimal

partitions for two USVs. Ordinarily, the optimization with more number of USVs should take

more computational time. However, with the increase in the number of USVs, the areas assigned

to each USV reduce. This results in a decrease in the number of time-steps required to compute

optimal partitions for each USV. So, the time to compute optimum partitions of the region for
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Figure 7.10: (a) This image shows the range of times required by the USVs for exploration
of given regions from over 200 simulations in the form of box-plot, (b) Here, the variation of
computational time required for generating area partitions with respect to the number of USVs
involved in exploration is shown.

each optimization iteration reduces. This effect is more significant and leads to a reduction in

overall computation time.

7.5 Area Partitioning Using Unknown Velocity-map

7.5.1 Approach

In this section, the robustness of the area partitioning algorithm is evaluated when the velocity-

map is unknown initially. The algorithm does not have perfect knowledge of the velocity-map

while computing the initial exploration plan. However, while the USVs are exploring the region,

they gather more information about the achievable maximum velocity and obtain the correct

velocity-map. So, two approaches are developed to handle such scenarios of imperfect or unknown

velocity-maps.

In the first approach, the optimal starting boundary points ρ∗U for the USVs is determined

based on uniform, constant velocity-map. USVs begin covering the region starting from the

boundary points ρ∗U but claim states based on speeds from the correct velocity-map. This is
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because even if the USVs do not know about the correct velocity-map but while exploring the

region, USVs will move according to the actual environmental conditions. While the USVs are

covering the areas in real-time, the central mission planner waits for the correct velocity-map to

be received. The planner then uses the correct velocity-map to compute the optimal partitions

for the remaining region. During this computation, the planner excludes the states of the region

Ap,d that have already been covered by the USVs.

In the second approach, the USVs proceed with a noisy estimate of velocity-map until the

correct velocity-map is obtained. The noisy velocity-map is assumed to be the best estimate of

the correct velocity-map based on the sensor data that is available at that moment.

It is assumed that the time taken by the USVs to estimate the correct velocity-map is testimate.

The optimal execution time required by the team of USVs to explore the region Ap,d with perfect

information of the velocity-map is denoted by t∗optimal. Finally, the optimal execution time required

by the team of USVs for the region remaining after time testimate using the updated velocity-map

is given by t∗remaining. So one can say that t∗optimal < t∗remaining + testimate. If the values of the

estimation time testimate are low, then one can also state that t∗optimal ≈ t∗remaining.

7.5.2 Computational Results

In this section, computational experiments are performed by varying the time taken, testimate,

by the USVs to estimate the correct velocity-map. To simplify the implementation, the results

are presented by varying the percentage area covered by the USVs before it acquires the correct

estimate of the velocity-map (shown on the x-axis of the graphs in Figure 7.11). Figure 7.11 plots

the percentage increase in execution time taken for exploration by the USVs from the true-optimal

time t∗optimal on the y-axis. The simulation data presented in the form of box-plots are taken over

100 simulations with medians denoted by the red lines. The simulation scenario used for the

experiments is shown in Figure 7.4.
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(a)

(b)

Figure 7.11: In the absence of correct velocity-map, one can either use (a) constant map, or (b)
noisy map; and record the time taken to complete partitioning the region based on how much
time into the area partitioning process the correct map becomes available. The observed trend is
explained in detail in Section 7.5.

Figure 7.11 gives plots that indicate that with more delay in estimating the correct values

of the velocity map, there is a steady increase in the execution time incurred by the team of

USVs. Both the approaches perform quite similar when the correct estimates of velocity-map

are received before the USVs cover about 10% of the area. However, when the USVs cover more
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than 20% of the area without correct estimates, then the approach which computes the initial

plan using the noisy estimates performs marginally poor as compared to the first approach which

starts with a uniform, constant map. This suggests that it is better to use the mean estimate of

the velocity-map computed over time as compared to using currently available noisy estimates.

It is seen from the graph (shown in Figure 7.11) that the % increase in execution time taken by

the USVs from the true-optimal time dips below zero. This is because the median time taken by

the team of USVs when correct velocity-map is available from the beginning is set to zero.

7.6 Area Partitioning Under Variable Robot Availability

In this section, the effects of robots becoming suddenly unavailable in the middle of task execution

is studied. It must be analyzed how robust this method is against such contingencies, and what

are the effects of such events on the resulting task decomposition.

Suppose three USVs are assigned to a region for exploration. This region is partitioned and

assigned to the USVs for exploration. Assume that while exploring, one of the USVs becomes

unavailable. So, the rest of the region must again be partitioned between only the two remaining

USVs. Let the time-steps it would take two USVs to partition the region completely be t2, and

for three USVs be t3. Suppose that η% of the region was covered by the time one of the USVs

becomes unavailable. Then the steps to partition the region with three USVs up to η%, and with

two USVs for the rest could be linearly approximated as ηt3 + (1 − η)t2. At least, this is what

would be expected for a constant unit map and a convex region of interest. Following simulation

experiments are run to analyze the effects of such robot unavailability.

Figure 7.12a shows plots for a scenario involving a convex region of interest Ra and a uniform

velocity map with a constant speed of 4 cells per time steps. If this map is denoted with an index

of 1, then t12a denotes the time taken by two robots to cover region Ra using the 4−uniform map.

A nonuniform map which is similar to a linearly graded map shown before is used and denoted
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Figure 7.12: Effect of a robot becoming unavailable in the middle of task execution on the time
to partition a (a) convex , and (b) nonconvex region

by index of 2. It has speeds varying from 2 to 6 cells per time step. Figure 7.12a shows two pairs

of four horizontal black lines. These horizontal lines indicate the linear approximations obtained

from the weighted averaging as shown above for both map scenarios.

The y−axis shows the time-steps taken to partition the given region. It is represented in the

percentage form with respect to t13a. The x−axis shows the percentage of area covered after which

one of the agent becomes unavailable. The plots show that transitioning from a uniform map to a

nonuniform map worsens the time required to partition the region but it is well within 30% in each

case. Again this is expected because the linear approximation will break for nonuniform maps. In

the case of the nonuniform map, the deviation from the horizontal line is clearly seen to be more

than the uniform case. Figure 7.12b shows similar patterns for a manually created nonconvex

region Rb. It is expected that the linear approximation will perform even worse for a nonconvex

region. Thus, the time to partition the region worsens between the uniform and nonuniform

map but still stays around 30% with respect to the time taken by three robots to finish the task

without interruption for the uniform map scenario. Thus, despite unfavourable scenarios the task

completion times do not deviate erratically and remain bounded within reasonable limits.
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7.7 Summary

In this chapter, an algorithm is developed that solves the area partitioning problem while taking

into account the physical constraints applied to the USVs. The algorithm can optimally partition

a large spatial region among multiple USVs using underlying velocity-maps well under one minute.
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Chapter 8

Conclusions

This chapter presents the expected intellectual contributions and anticipated benefits from the

work proposed in this dissertation.

8.1 Intellectual Contributions

This dissertation built computational foundations for handling contingencies proactively during

missions involving multiple robots. Nominal mission features can be handled using fast heuris-

tic methods. But for handling uncertain contingency information, optimization-based methods

must be employed. Thus, to proactively incorporate contingencies into nominal mission plan in

real-time, the problem must be partitioned to strike the right balance between optimization and

heuristic domain. The right interplay between the use of optimization and heuristics can help

obtain solution with high quality in a computationally efficient manner. This approach is used

in Chapters 6 and 7. Another approach to create efficient contingency-aware plans is to develop

a multi-layered structure for handling different levels of the problem. This was demonstrated

through Chapters 3 to 5 where a model checking framework was used for encoding the mission

model and queries using formal methods. On top of this, a sampling-based Monte Carlo simulator

was used to quickly evaluate the performance of different contingency resolution strategies. And
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finally a high-level reasoning framework was deployed to perform aggregate analysis for prob-

lems of larger sizes. Such multi-layered and combined approaches can be applied to solve other

computationally challenging problems arising in multi-robot mission planning domain.

The key contributions according to the three main problems dealt within this dissertation are

summarized in the following sections.

8.1.1 Modelling and Verification of Contingency Resolution Strategies

for Multi-robot Missions

Chapter 3 describes a framework to do modeling of multi-robot missions with deterministic and

probabilistic transitions based on a nominal mission description. The modeling of contingency

resolution strategies is also demonstrated with specific examples of contingencies for two case

studies. In the first case study, the correctness of contingency resolution strategies is verified,

and NuSMV is used to generate mission execution plans for different scenarios. In the second

case study, PRISM is used as a computational tool to provide a probabilistic assessment for

mission success and analyze the effect of relevant mission variables on mission execution. It is

demonstrated that subsystems can be analyzed individually, and their results can be aggregated

to evaluate the performance of the proposed operations plan for the entire system, thereby help-

ing to design more optimized systems. A modeling approach is presented for a production line

set up across multiple robotic assembly cells. PRISM software is used to combine probabilistic

modeling techniques with temporal logic based evaluation of the system. It is demonstrated how

the cell settings could be modified based on feedback from the encoded mission model to optimize

production performance.
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8.1.2 Incorporation of Contingency Tasks in Nominal Task Allocation

The multi-robot task allocation approach developed in Chapter 6 efficiently handles contingency

tasks by incorporating probabilistic analysis coupled with pruning to reduce the combinatorial

explosion of computational requirements. The proactive approach is shown to outperform the

conservative and reactive approaches to handling contingency tasks. This dissertation presents an

algorithm for incorporating contingency tasks in a mission plan. It is expected that the proposed

algorithm will be feasible for planning up to 10 contingency tasks because it takes under a minute

in MATLAB implementation for five contingency tasks, and one could reasonably expect at least

80−90% reduction for a parallelized C++ implementation. A higher number of contingency tasks

such as those that were considered in this work will generally not be encountered in such missions.

8.1.3 Decomposition of Collaborative Surveillance Tasks

Chapter 7 develops an algorithm that solves the area partitioning problem while taking into

account the constraints on the rates at which USVs can perform exploration tasks. The algorithm

can partition a large spatial region among multiple USVs using underlying velocity-maps well

under one minute. It is shown that by increasing the number of USVs, the computational time

reduces. The performance of the algorithm was evaluated in scenarios where the velocity-map is

unknown initially for a given length of time. Subsequently, the accurate velocity-maps becomes

available after the USVs have explored part of the desired region. It is observed that the percentage

increase in the optimal partitioning time remains below 5% even when the accurate velocity-map

becomes available after 10− 20% of the area has been explored.

8.2 Anticipated Benefits

This dissertation presents methods to incorporate unexpected, contingency tasks that may ad-

versely impact the progress of multi-robot missions. Autonomous systems are being deployed
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rapidly in various scenarios to automate the operations and increase efficiency in the long run.

However, the deployment of autonomous systems is not possible without guarantees against con-

tingency events. Reactive methods of handling contingency events cannot provide such guaran-

tees. Contingencies need to be handled proactively, which implies that it must be incorporated in

nominal mission planning tasks like model verification, task allocation, and task decomposition.

The approach in this dissertation is to set up simulation models that incorporate contingency

information into nominal mission planning techniques in a deliberative and proactive manner,

and then study and analyze the performance of this approach. Seeking such solutions provide a

robust degree of confidence and guarantee to proceed with the operations of autonomous systems,

especially when the operation site is complex and is frequently traversed by humans.

8.3 Future Work

The present work can be extended in the following directions:

• The work presented in this dissertation does not take unanticipated contingencies into con-

sideration. Enabling the ability to process environmental data and predict new types of con-

tingencies that may occur can help such automated contingency handling systems achieve

much better performance than existing state-of-the-art systems. This would possibly re-

quire humans in the decision loop but computational tasks may still be carried out by the

algorithms.

• A potential research direction for extending this dissertation is to develop interaction tech-

niques for humans to effectively supervise robot teams and provide input on contingency

handling. It would be also interesting to integrate the formal modeling approach presented

in this dissertation with scheduling software packages or custom-designed algorithms. This

is because scheduling allows the investigation of the behavior of involved agents in a more
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detailed manner. In scheduling literature, operation performance is enhanced by studying

the agent behavior, identifying undesirable behaviors, and addressing them.

• Limitations of the approach presented in this dissertation include the use of manually de-

signed heuristics to plan for multi-robot missions. One could deploy machine learning al-

gorithms for discovering task allocation heuristics. One could also deploy machine learning

algorithms so that newer and better contingency resolution strategies are automatically

generated based on sensory feedback and the history of human interventions. This will be

effective for scenarios where contingencies occur at high frequencies amid rapidly changing

mission conditions.

• Another current limitations of the approach presented in this dissertation is that robot teams

of large sizes are not taken into consideration. With the advancement of technologies, it is

however possible to deploy large teams of robots to accomplish complex and higher duration

missions. One could develop scalable techniques that account for contingency occurrence

in large robot teams using techniques from swarm robotics. Future work could also model

issues arising for heterogeneous teams.
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[147] Qiao Zhang, Hervé Manier, and M-A Manier. A genetic algorithm with tabu search proce-
dure for flexible job shop scheduling with transportation constraints and bounded processing
times. Computers & Operations Research, 39(7):1713–1723, 2012.

[148] Stefano Di Alesio, Lionel Briand, Shiva Nejati, and Arnaud Gotlieb. Combining genetic
algorithms and constraint programming to support stress testing of task deadlines. ACM
Transactions on Software Engineering & Methodology, 25(1), 2015.

[149] Xinyan Ou, Qing Chang, Nilanjan Chakraborty, and Junfeng Wang. Gantry scheduling
for multi-gantry production system by online task allocation method. IEEE Robotics and
Automation Letters, 2(4):1848–1855, 2017.

[150] Amanda Whitbrook, Qinggang Meng, and Paul WH Chung. A novel distributed scheduling
algorithm for time-critical multi-agent systems. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6451–6458, 2015.

211



[151] Pedro M Shiroma and Mario FM Campos. CoMutaR: A framework for multi-robot co-
ordination and task allocation. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4817–4824. IEEE, 2009.

[152] Matthew Turpin, Nathan Michael, and Vijay Kumar. CAPT: Concurrent assignment and
planning of trajectories for multiple robots. The International Journal of Robotics Research,
33(1):98–112, 2014.

[153] Ernesto Nunes and Maria L Gini. Multi-robot auctions for allocation of tasks with temporal
constraints. In Proceedings of AAAI Conference on Artificial Intelligence, pages 2110–2116,
2015.

[154] Abderraouf Maoudj, Brahim Bouzouia, Abdelfetah Hentout, and Redouane Toumi. Multi-
agent approach for task allocation and scheduling in cooperative heterogeneous multi-robot
team: Simulation results. In Proceedings of IEEE International Conference on Industrial
Informatics (INDIN), pages 179–184, 2015.

[155] Anshul Kanakia, Behrouz Touri, and Nikolaus Correll. Modeling multi-robot task allocation
with limited information as global game. Swarm Intelligence, 10(2):147–160, 2016.

[156] Smriti Chopra and Magnus Egerstedt. Heterogeneous multi-robot routing. In Proceedings
of IEEE American Control Conference (ACC), pages 5390–5395, 2014.

[157] Yueyue Deng, Pierre-Philippe J Beaujean, Edgar An, and Edward Carlson. Task allocation
and path planning for collaborative autonomous underwater vehicles operating through an
underwater acoustic network. Journal of Robotics, 2013, 2013.

[158] Alejandro R Mosteo, Luis Montano, and Michail G Lagoudakis. Multi-robot routing under
limited communication range. In Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), pages 1531–1536, 2008.

[159] Bilal Y Kaddouh, William J Crowther, and Peter Hollingsworth. Dynamic resource allo-
cation for efficient sharing of services from heterogeneous autonomous vehicles. Journal of
Aerospace Information Systems, pages 450–474, 2016.
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