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Abstract. An important step in the mold design process that ensures
disassembly of mold pieces consists of identifying various regions on the
part that will be formed by different mold pieces. This paper presents
an efficient and robust algorithm to find and highlight the mold-piece
regions on a part. The algorithm can be executed on current-generation
computer graphics hardware. The complexity of the algorithm solely de-
pends on the time to render the given part. By using a system that
can quickly find various mold-piece regions on a part, designers can eas-
ily optimize the part and mold design and if needed make appropriate
corrections upfront, streamlining the subsequent design steps.

1 Introduction

While designing injection molds, there are often concerns about disassemblability
of the mold as designed. An important step in the mold design process that
ensures disassembly of mold pieces consists of identifying various regions on
the part that will be formed by different mold pieces. These regions are called
Mold-Piece Regions.

Most of the literature in mold design is focused on detecting undercuts and
finding undercut-free directions. For an overview of mold design literature, the
reader is directed to [Priy03,Bane06]. Ahn et al. [Ahn02] presented a provably
complete algorithm for finding undercut-free parting directions. Khardekar et
al. [Khar05] implemented the algorithm presented by Ahn et al. [Ahn02] on
programmable GPUs. They also describe a method to highlight the undercuts.

We use GPUs to find mold-piece regions on a part efficiently and robustly.
The basic idea behind the algorithm is similar to shadow mapping. The near-
vertical facets are handled by slightly perturbing the vertices on those facets and
visibility sampling. We describe an implementation of our algorithm that can be
executed on any OpenGL 2.0. The complexity of our algorithm solely depends
on the time to render the given part.
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Fig. 1. Mold-Piece Regions

2 Finding Mold-Piece Regions

A Mold-Piece Region of a part is a set of part facets that can be formed by a
single mold piece. Given a polyhedral object P and a parting direction d, there
are four mold-piece regions with the following property:

1. Core is accessible from +d, but not −d

2. Cavity is accessible from −d, but not +d

3. Both is accessible from both, +d and −d

4. Undercut is not accessible from either +d or −d

Hence, the problem of finding mold-piece regions reduces to performing ac-
cessibility analysis [Dhal03] of P along +d and −d. Figure 1 shows various
mold-piece regions for a part.

2.1 Overview of Approach

We use programmable GPUs to highlight the mold-piece regions on a part. The
basic idea is very similar to hardware shadow mapping [Kilg01]. The given part is
illuminated by two directional light sources located at infinity in the positive and
negative parting directions. The regions that are lit by the upper and lower lights
are marked as ‘core’ and ‘cavity’ respectively. The regions lit by both the lights
are marked as ‘both’, while the regions in shadow are marked as ‘undercuts’.

For a given parting direction, our approach highlights the mold-piece regions
on a part in two steps:

1. Preprocessing: We create two shadow maps by performing the following pro-
cedure. First the part is rendered with the camera placed above the part and
view direction along the negative parting direction. The resulting z-buffer is
transferred to a depth texture (shadow map). The current orthogonal view
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matrix is also stored for the next step. The same procedure is repeated with
the view direction along positive parting direction.

2. Highlighting: The user can then rotate the camera and examine the mold-
piece regions of the part from all directions. A vertex program transforms
the incoming vertices using the two model-view matrices stored in the pre-
processing stage. The fragment program determines the visibility of each
incoming fragment by comparing its depth with the depth texture values
stored in the preprocessing stage and colors it accordingly.

If the algorithm is implemented as described, all the vertical facets will be
reported as undercuts. Also, like any method based on shadow mapping, it needs
to handle aliasing and self-shadowing. Section 2.2 and Section 2.3 describe tech-
niques to handle these issues.

2.2 Handling Near-Vertical Facets

There is a slight difference between the notion of visibility in computer graphics
and accessibility. The mathematical conditions for visibility and accessibility of
a facet with normal n in direction d are the following:

Visible if: d · n > 0
Accessible if: d · n ≥ 0

In other words, a facet perpendicular to a direction (vertical facet) is not
visible, but accessible. This means that all the vertical facets will be reported as
undercuts.

In addition to vertical facets, we also need to handle facets whose normals are
very close to being perpendicular to the parting direction. These near-vertical
facets are usually produced as a result of the approximation introduced by
faceting vertical curved surfaces. The robustness problems in geometric com-
putations are usually handled by slightly perturbing the input. But we cannot
adopt this approach here as perturbing the vertices of the part will change it’s
appearance on the computer screen. We solve this problem by visibility sam-
pling. To determine the accessibility of a rasterized fragment, the neighborhood
of the corresponding texel in the shadow map is sampled in the image space. If
any sample passes the visibility test, the fragment is marked as accessible. Inci-
dentally, percentage closer filtering (PCF) [Reev87] used to produce anti-aliased
shadows does just that.

For a given parting direction d, we divide the part facets into three categories:

1. Up facets: d.n ≥ τ

2. Down facets: d.n ≤ −τ

3. Near-vertical facets: |d.n| < τ

where n is the facet normal and τ is normal tolerance whose value is dependent
on the surface tolerance introduced by faceting the part. It is usually set between
1-2 degrees.

Up and down facets are tested for accessibility along −d and +d respectively.
The near-vertical facets are tested in both the directions with PCF enabled. In
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our implementation, we used the OpenGL extension ARB shadow that samples
the neighborhood of a fragment and returns the average of all the depth com-
parisons. If the returned value is greater than zero, we mark the fragment as
accessible. The PCF kernel that determines the size of the sampling neighbor-
hood should be adjusted according to the surface tolerance of the given part and
resolution of the shadow map. We found that 3x3 kernel (9 samples) worked fine
for the parts that we tested.

2.3 Preventing Self-Shadowing

Our algorithm, being based on shadow mapping, is prone to self-shadowing due
to precision and sampling issues. The focus of the currently available algorithms
to prevent self-shadowing is mainly on producing aesthetically pleasing results.
They may not be physically correct. We decided not to use the most popular
polygon offset technique [Kilg01] after extensive experimentation. We found that
it is very difficult to specify an appropriate bias for a part automatically. If the
bias is too little, everything begins to shadow. And if it is too much, shadow
starts too far back i.e., some of the fragments that should be in shadow are
incorrectly lit. We found that this problem is exaggerated in case of mechanical
parts with regions of high slope. We developed an adaptation of the second
depth technique [Wang94] that prevents self-shadowing and robustly handles
the near-vertical facets.

Second depth technique [Wang94] is based on the observation that in case
of solid objects there is always a back facet on top of a shadowed front facet.
It renders only the back facets into the shadow map and avoids many aliasing
problems because there is adequate separation between the front and back facets.
But it may show incorrect results when used with PCF for near-vertical facets.
As explained in Section 2.2, we use PCF to sample the neighborhood of a point
on a near-vertical facet. If any sample passes the visibility test, we mark the
point as accessible. Because the shadow map only partially overlaps the PCF
kernels for both points A and B, they will be reported as only 50% shadowed
and hence accessible. This is the intended result for point B, but incorrect for
point A.

To solve this problem, we use a visibility theorem for polyhedral surfaces
based on the results published in [Kett99] and [Ahn02].

Definition 1. An edge is a contour edge if it is incident to a front-facing facet

and a back-facing facet for a given viewing direction.

Theorem 1. For a given polyhedron and a viewing direction, if the edges and

facets of the polyhedron are projected into the viewing plane, the visibility of the

projected facets can only change at the intersection with convex contour edges.

The proof of the above theorem follows from the results presented in [Kett99]
and [Ahn02]. We exploit the corollary of the above theorem that the visibility of
projected facets cannot change at the intersection with concave contour edges.
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Fig. 2. The problem with the second-depth technique when used with PCF (the PCF
kernel and the contour edge has been exaggerated for illustration purposes); (a) Both
point A and point B are reported as only 50% shadowed and hence accessible; (b) The
problem is solved by rendering thick concave contour edges into the shadow map

When creating the shadow map, we also render thick concave contour edges
along with the back facets. As can be seen in Figure 2(b), now that the shadow
map fully overlaps the PCF kernel for point A, it will be correctly reported
as fully shadowed and hence marked as inaccessible. It can also be seen that
thickening the concave contour edges does not affect the accessibility of point B.

2.4 Transferring Results from the GPU to CPU

The previous sections describe how to find and highlight the mold-piece regions
using GPUs. This section describes how the information on mold-piece regions
can be transferred back to the CPU for other purposes such as designing molds.
We describe a simpler two-pass algorithm to accomplish the same.

We first assign a unique ID (color) to each facet of the given part. Almost
all the currently available graphics cards support at least 24-bit color palette
that can generate over 16 million unique colors. Then we follow the following
procedure to obtain the results on the CPU. The part is first rendered with
the camera placed above the part and view direction along the negative parting
direction. The resulting frame buffer (image) is read back to the CPU. The facets
whose IDs are present in the resulting image constitute the ‘core’ region. The
same procedure is followed with the view direction along the positive parting
direction to obtain the ‘cavity’ region. The facets missing from both the images
are undercuts.

The problem with the above approach is that it cannot find the ‘both’ region.
None of the facets will be present in both the frame buffers and all of the vertical
facets will be reported as undercuts because being perpendicular to the viewing
direction, they cannot be rendered. But now since the part is not rendered for
visualization purposes, we can perturb the vertices of the part. For both the
viewing directions (negative and positive parting direction), we slightly perturb
the vertices of the near-vertical facets such that it becomes a front-facing facet
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for that viewing direction and hence an eligible candidate for being rendered.
This perturbation is similar to adding a draft to the near-vertical facets and
can be done on either the CPU or by a vertex program loaded on the GPU. A
reference plane is first located at the top-most vertex with respect to the viewing
direction and then each vertex on the near-vertical facets is slightly moved along
the surface normal at that point. The perturbation amount is in proportion to
the distance of the vertex from the reference plane and is given by d = z. tan(τ),
where τ is a small user-defined angle, which depends on the average length of
facets and resolution of the frame buffer. We found that for a 512x512 buffer,
τ = 0.5◦ was appropriate for the parts that we tested.

The algorithm for transferring the results from the GPU to CPU is based
on the assumption that the each facet belongs to only one mold-piece region.
Sometimes a front facet needs to be split into a core and an undercut facet, or a
vertical facet needs to be split into all the four mold-piece regions. A brute-force
approach to overcome this limitation could be splitting each facet into very small
facets. Another approach could be projecting each facet into the viewing plane
and splitting them at the intersection with convex contour edges [Kett99], and
performing trapezoidal decomposition of vertical facets [Ahn02].

3 Implementation and Results

The latest GPUs allow users to load their own programs (shaders) to replace
some stages of the fixed rendering pipeline. We have implemented our algo-
rithm as shader programs using OpenGL Shading Language (GLSL). The im-
plementation has been successfully tested on more than 50 industrial parts. It
currently supports Stereolithography (STL) and Wavefront (OBJ) part files.
Figure 3 shows the screenshot of four example parts. Figure 4 shows the per-
formance of our implementation on 128 MB NVIDIA Fx700Go card. It shows
the obtained frame rates when simply rendering the part using fixed OpenGL
pipeline (without highlighting) and with highlighting. It can be seen that the
overhead imposed by the highlighting algorithm does not significantly affect the
time taken by the GPU to render a frame. The observed drop in performance
when highlight is at most one fps. In other words, the complexity of the algo-
rithms solely depends on the time to render the given part.

4 Conclusions

In this paper we describe a method that utilizes current-generation GPUs to
find and highlight mold-piece regions on a part. We presented techniques for
robustly handling the near-vertical facets by slightly perturbing the vertices on
those facets and visibility sampling. We also presented a technique that prevents
self-shadowing and robustly handles the near-vertical facets.

Our algorithm exploits the computational power offered by the GPUs. More-
over, an efficient implementation of our algorithm does not impose any significant
overhead on the GPU. The mold-piece regions even for parts with more than
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(a) 2219 facets, 60 fps (b) 3122 facets, 58 fps

(c) 5716 facets, 47 fps (d) 50000 facets, 5 fps

Fig. 3. Screenshots of four example parts. The color scheme for highlighting is follow-
ing. Core region is blue, cavity region is green, both region is gray, and the undercuts are
red. Number of facets and obtained rendering speed is reported against each subfigure.

50,000 facets can be highlighted at interactive rates. We believe that in the cur-
rent scenario when the data size is growing at exponential rates because of the
advances in scanning technology, such a system that provides real-time informa-
tion about mold-piece regions will be very useful to the part and mold designers
alike. They can easily optimize the part and mold design and if needed make
appropriate corrections upfront, streamlining the subsequent design steps.
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